
GeoGraph: A Topological Storage Model for Extensible GIS

K. Bennis m, B. David n, I. Morize-Quilio Q\, J.M. Thevenin ™, Y. Viemont ™

0) MASI, Universit6 Paris VI
45, Avenue des Etats Unis, 78000 Versailles. France

e-mail: viemont@sabre.ibp.fr

0 IGN-France
2, Avenue Pasteur, BP 68, 94160 Saint Mande\France

e-mail: david@ign.uucp

(3) INRIA-Rocquencourt
BP 105,78153 Le Chesnay .France
e-mail: theven@madonna.inria.fr

Abstract

Topological data structures are useful for reducing the cost of geometrical operations
within a Geographic Information System (GIS). Unfortunately, manipulating such data
structures can be quite complex — especially when supporting multiple, overlapping
geographical maps. The GeoGraph storage model proposed in this paper solves this
problem. It is implemented as a toolbox, and is used as a low-level system layer for
support of a GIS. The Ge"oGraph storage model is based on a graph with the
corresponding basic traversal primitives, and can be integrated within an extensible
relational DBMS so that important spatial operations can be directly executed by graph
traversals. Furthermore, the graph is decomposable so that only the useful subset of the
database can be loaded from disk without format conversion.

1. Introduction

Geographic information systems (GIS) require storage and manipulation of both
semantic and spatial data. Whereas conventional DBMS data models (e.g., the relational
model) are well suited to representing and manipulating semantic data, queries concerned
with spatial data imply the use of geometric operations not directly supported by these
data models. Furthermore, because the processing performance of geometric operations
is strongly influenced by data representation, systems supporting spatial data benefit
greatly from a data model specially tailored for efficient support of these operations.

There are several ways to implement spatial data. A simple solution is to store each
spatial object as a coordinate list. Although coordinate lists reflecting the position of
objects are sufficient to perform geometric operations, inter-object spatial relationships
that are obvious when seen on a map are complex and costly to capture when using this
representation. To reduce the number of inter-object comparisons required by this

349

approach, it is possible to use spatial indices on coordinate lists. As a more
fundamental attack on this problem, however, it is possible to enrich the geometrical
description of objects with topological information. This information explicitly
materializes the connectivity and contiguity relationships between spatial objects, and can
be represented as a graph that provides direct and efficient support for adjacency
operations.

Topological information has been used in several geographical information systems
[MorehouseSS, Herring87, Kinnear87, SpoonerPO]. The topological information is
usually stored in a graph using an appropriate internal representation [White79,
Peuquet84]. These representations can be complex to maintain and may require expensive
verification of integrity constraints. In many cases, topological graphs have been used to
store relationships between spatial objects of one geographical map at a time. For
instance the topology of a road map is stored separatly from the topology of a land cover
map. As a consequence operations involving several maps require the fusion of several
graphs, which can be a complex and expensive procedure [Schaller87].

In this paper we present GeoGraph, a storage model for topological information
that supports efficient operations involving several layers of maps. This model stores
the topology of an internal map corresponding to the overlay of several geographical
maps. Hence spatial objects of one geographical map are decomposed into collections
of elementary spatial objects and the internal map materializes the relationships
between the spatial objects. This principle has alrady been used in some GIS like
TIGER [MeixlerSS] and TIGRIS [Herring90]. We focuse on a clean integration of
topological information in a DBMS so that semantic and spatial data can be manipulated
in a uniform way.

GeoGraph is implemented using a toolbox approach and constitutes a low-level
system layer that can support general purpose GIS. This storage model is based on the
topological map theory that guarantees coherent updates of topological information, and
provides a minimal set of operations for navigation through a topology [DufourdSS]. In
this paper, we demonstrate a straightforward integration with an extensible relational
DBMS supporting a GIS. The integration is based on a single graph that incorporates
both relational data and spatial data in order to precompute all operations, and is currently
being investigated in the framework of the G6oTropics system [Bennis90], an extensible
DBMS based on extensions of SQL.

The paper is organized as follows. Section 2 reviews the basic concepts of
topological maps used in G6oGraph. Section 3 introduces the concept of map overlay
and then provides a formal definition of Ge"oGraph in terms of a graph structure and
primitive operations on the graph. Section 4 illustrates the use of the G6oGraph toolbox
for implementation of geographical operators of the GeoTropics system. Section 5 argues
for a specific implementation of GeoGraph when it is incorporated into a relational
DBMS. Section 6 gives our conclusions.

350

2 . Topological map concepts

Topological maps have been defined as an extension of combinatorial maps
[Edmond60, CoriSl]. They provide the necessary support for expressing relationships
between spatial objects in a plan [DufourdSS, Dufourd89]. This section gives intuitive
definitions of the basic concepts of topological maps in order to highlight their
contribution for topological information management in cartography. To clarify the
discussion we distinguish non fully-connected topological maps from topological maps.

2.1. Non fully-connected topological maps

A non fully-connected topological map defines a graph similar to the well known
topological graph [White79, Peuquet84], and uses two basic functions ~ a and a (see
figure 1). In general this graph is not fully-connected. Edges of this graph represent
lines which correspond to the location of linear features (e.g., roads), or boundaries of
surfacic features that we call faces. Nodes of this graph represent intersections of edges.
Conceptually, each edge is decomposed into two blades labeled by integers (e.g., b and
-b) corresponding to the two possible orientations of the edge. Function a applied to a
blade label gives the label corresponding to the opposite blade orientation. Function a is
a permutation which orders blades around their end-node in a clockwise fashion. Thus,
a applied to blade b gives the next blade ending at the end-node of b. Any traversal of
the graph can be expressed by a combination of the functions a and a. For instance, the
boundaries of one face can be traversed turning counterclockwise applying a loop on
function q> = OoO to any blade of that face. In the graph, a geometry is associated to each
edge. For this purpose, a last function y is defined such that y applied to a blade gives a
coordinate list corresponding to the geometry of the associated edge. A non fully-
connected topological map can be defined more formally as follows:

Definition: non fully-connected topological map
A non fully-connected topological map is defined as a quadruplet (B, a, a, y) where
B is a finite set of blades; a : B -> B is a permutation such that Vb € B oc(b) = -b;
a : B -> B is a permutation such that Vb e B a(b) is the next blade ending at the end
node of b, turning clockwise; and y is a function which applied to any blade returns
the geometry of the associate edge.
A permutation (p can be deduced from a and a such that cp =

According to this definition, the cycles (b,cc(b)) of a define edges, the cycles
oaCb),...,^ 1 ^)) define nodes and the cycles (b.cpO^.tpoqKb),...,^- 1 ^)) of (p

define faces. It is important to note that any blade defines one and only one edge, node,
and face using respectively a cycle of a, a or (p. The reverse is not true. From these
properties we can deduce that, given a face defined by blade b and function (p, the
adjacent area along blade b is defined by blade a(b) and function (p.

351

-1
Nodes :

nl = (1, 2, -3)
n2 = (-1, -4, -2)
n3 = (3, 4)

Faces :

fl = (1. -2)
f2 = (2, 3, -4)

Figure 1: An example of map

Compared to the usual adjacency graphs, non fully-connected topological maps have
the following advantages for geographic applications: (i) faces are easily enumerated; (ii)
the planarity of a map can be checked very efficiently using a, a, <p and y [Dufourd89].

2.2. Topological maps

Applying the definition of a non fully-connected topological map, the graph
resulting from a geographical map is in general not fully-connected, and useful
relationships between different fully-connected components of this graph are not
captured. In order to avoid this drawback, a topological map is defined below as an
extension of a non fully-connected topological map, where a partial order among the
fully-connected components is defined based on geometric inclusion. In support of this
definition, we note that given any pair of fully-connected components (cl, c2), the
following property is true: either cl and c2 locations are disjoint (side by side), or one of
cl or c2 is fully included into one face of the other component. Otherwise (cl, c2) would
form a single fully-connected component. In the second case, one component, say cl,
constitutes a hole in a face of the other component (c2).

A hole is an external face which is defined by the external boundaries of a connected
component. In order to distinguish internal faces from external faces a convention is
introduced: an internal face is defined by its boundaries, turning counterclockwise; an
external face is defined by its boundaries, turning clockwise. Figure 2 shows the graphic
representation of a topological map.

f7

f6
The inclusion tree

f5 and f7 are the most external faces. f6 is included into
the internal face f2 of the connected-component f5

cO

f5

Figure 2: an example of topological map
A topological map can be defined formally as follows:

352

Definition: topological map
A topological map is defined by: (i) a quadruplet (B, a, a, y) which is a non fully-
connected topological map; (ii) an inclusion tree T, composed of nodes q
representing the fully-connected components of the quadruplet (B, a, a, y) and arcs
(ci—»C2) connecting two components ci and C2 iff C2 is included in ci. An arc
(ci-»c2) is labeled by the face of ci containing C2- The root of t is a virtual
component CQ containing all the components of the map.

3 . The GeoGraph model

A topological map can efficiently handle all adjacency operations between objects of
a map, but is restricted to operations applied to objects belonging to the same map. In
cartography, however, the same area is often represented through several maps, each
map representing spatial objects associated to a particular semantic point of view (e.g.,
road map, land cover, etc.), and users frequently apply complex operations involving
several such maps. The GeoGraph model was therefore designed to efficiently deal with
a topology involving several layers of maps.

The purpose of this section is to present an extension of topological maps supporting
map overlay, and to then define the GeoGraph model. Our model is expressed in terms of
a specific graph structure called GeoGraph (which represents an extended topological
map), plus a set of basic traversal primitives for GeoGraphs.

3.1. Extending topological maps

Operations involving several layers of maps are based on costly geometrical
intersection computations. Optimized computational geometry algorithms for computing
shape intersections have been studied [PreparataSS], but, even with the use of supporting
index structures, they remain slow.

To avoid geometric intersection computations during query processing, intersections
between spatial objects (regions, lines and points) of several (overlapping) maps can be
pre-computed during the creation of the database. This technique has been exploited in
the GEOQL system [Sack87], where geometric processing is reduced by adding to the
object coordinate lists of several maps the points corresponding to inter-map object
intersections. Checking for object intersections then consists of looking for explicit
shared points.

The GeoGraph model is based on pre-computing a collection of elementary spatial
objects (ESOs) that correspond to a decomposition of the spatial objects of the original
maps. Figure 3 illustrates the result of this pre-computation step applied to the overlay of
a map representing Paris's districts and a map representing the underground rail network
of Paris. The ESO collection resulting from the pre-computation step constitutes a new
map which can be stored as a topological map where the ESOs are represented as faces,
edges, and nodes. To speed up operations defined on the original maps while actually

353

using the ESO map in computations, it is necessary to keep links between the original
objects and the ESOs. These links materialize aggregations of ESOs which represent
original elements. On the example of figure 3, district number 8 has been split in two
faces which have to be aggregated to reconstruct the map of Paris's districts. Topological
maps can be extended to maintain these aggregation links.

Paris Districts

RER: Underground rail network Storage in the database

Figure 3: The corresponding storage of two themes.

A topological map extended with aggregation links maintains adjacency relationships
between ESOs as usual, plus intersection and inclusion relationships between
aggregations of ESOs. Using an extended topological map, most of the operators
involving intersection and inclusion relationships on several maps can be evaluated using
graph-based processing instead of geometric processing.

3.2. GeoGraph definition

We first introduce a few notations appropriate in the context of a collection of
geographical maps. In most of our examples M will denote a particular geographical
map. A geographical map M is described by semantic data and spatial data. The spatial
data of a geographical map are called regions, lines, or points, and represent,
respectively, surfacic features, linear features or ponctual features. We denote by R, L,
or P, sets of regions, lines, and points, and by r, 1, or p, the elements of these sets. The
spatial data of a particular geographical map constitute a subset of R, L or P which is
identified by a unique name. We use S to denote one of these subsets. The ESO
resulting from the pre-computation step applied to the collection of geographical maps
are called faces (inner faces), holes (outer faces), blades and nodes. We denote by F,
H, B, N, or C, respectively, the sets of faces, holes, blades, nodes and coordinate lists,
and by f, h, b, n, or c, the elements of these sets. A region is an aggregation of faces

354

and a line is an aggregation of blades. A point is associated to a node.
The GeoGraph graph is a specitic representation of the extended topological map

described in section 3.1. This graph is illustrated in figure 4. Nodes of this graph are
elements of R, L, P, F, B, and N. Nodes and faces are explicitly represented in this
graph (unlike the representation of topological maps given in section 2) in order to more
directly associate spatial data with semantic data in the database. Edges of the GeoGraph
represent three kinds of functions: functions connecting elements of the original maps to
ESOs; functions on the topological maps; and functions connecting each blade to the
nodes representing the face and the node defined by the blade. Edge functions
connecting elements of an original map to ESOs are identified using the name associated
by the map to these elements. This allows retrieving from ESOs the original elements of
a particular map. The graph of GeoGraph can be defined more formally as follows.

Definition:
GeoGraph is a graph (X, A) where X = RuLuPuFuHuBuNuCis a set of

vertices of G and A is the set of edges defined below:
(i) Links between spatial objects and ESO:

• (r, S, f) e A iff r e S, S C R, f € F and f is a component of r,
• (1, S, b) e A iff 1 € S, S C L, b e B and b is a component of 1,
• (p, S, n) e A iff p e S, S C P, n e N and n correspond to p,

(ii) Topological links:
• (b, a, b') e A iff be B, b1 e B and a (b) = b1 ,
• (b, a, b1) e A iff be B, b1 e B and a (b) = b1 ,
• (b, (p, b1) e A iff be B, b1 e B and 9 (b) = b',
• (b, y, c) e A iff be B, ce C and c is the coordinate list associated with b,
• (f, h) e A iff f e F, h e H and h is a hole into the internal face f,

(iii) Correspondence between faces, nodes and blades:
• (b, f) e A iff b e B, f e F and f is the left face of b,
• (b, h) e A iff b e B, h e H and h is the left hole of b,
• (b, n) e A iff b e B, n e N and n is the end node of b.

Spatial
objects

Elementary
spatial
objects

Coordinate |
lists

Figure 4: Links between objects in GeoGraph

355

3.3. Primitive operations

The Ge"oGraph model provides a set of basic primitives to traverse a Ge"oGraph.
These primitives constitute a toolbox dedicated to the implementation of efficient
geometric operations involving several maps via graph traversal operations. This set of
primitives is detailed below:

• traversals of aggregation links between ESO and regions, lines or points are
supported by the following primitives :

(i) MemberFaces (r, S) = {f € F / r e R and (r, S, f) € A},
(ii) OwnerRegions (f, S) = {r e R / f e F and (r, S, f) e A},
(iii) MemberBlades (1, S), OwnerLines (b, S), MemberNode (p, S),

Ownerpoint (n, S) are defined similarly. Note that MemberNode and
Ownerpoint are singletons;

• traversals of the topological map defined on ESO are supported by :
(i) a, a and <p which are the conventional permutations of topological

maps,
(ii) y gives the coordinate list,
(iii) The primitives necessary to traverse the inclusion tree of topological

maps :
ContainingFace (h) = {fe F/ he H and (f, h) € A},
ContainedFaces (f) = {h e H / fe F and (f, h) e A};

• traversals between faces holes and nodes defined by blades:
(since faces and nodes are described by a list of blades, the inter-connections of
blades, faces and nodes are expressed in the next primitives)
(i) Left (b) = {fe F / be B and (b, f) e A} (Left (b) is a singleton),

BoundingBlades (f) = {b e B / fe F and (b, f) e A},
(ii) Left (b) = {he H / be B and (b, h) e A} (Left (b) is a singleton),

BoundingBlades (h) = {b e B / he H and (b, h) e A},
(iii) EndNode (b) = {ne N / be B and (b, n) e A} (EndNode (b) is a

singleton),
ArrivingBlades (n) = {b e B / ne N and (b, n) e A}.

Ge"oGraph primitives allow traversal of all edges of a Ge"oGraph in both directions,
so any traversal of a Ge"oGraph can be expressed by a combination of these primitives.
Within a GeoGraph, adjacency relationships between objects of several geographical
maps can be deduced from traversals along aggregation edges and along edges
materializing the topological map defined on the ESOs. Containment relationships
between objects of the same type (region/region or line/line) belonging to different
geographical maps can be deduced directly from traversals along aggregation edges.
Containment relationships between objects of different types (region/line, region/point or
line/point) belonging to different geographical maps can be deduced from traversals along

356

aggregation edges and along edges materializing the topological map defined on the ESO.
GeoGraph primitives are thus sufficient to carry out all the operations based on the inter-
object relationships.

To ease the implementation of these operations it is possible to deduce functions
useful as construction blocks in the design of a GIS. For example, the function
AdjFaces(f) = {Left (b) / b e BoundingBlades (f)} can be defined to retrieve the
adjacent faces of face f; the function Right(b) = Left (a(b)) can be defined to retrieve the
right face of blade b. In summary, G6oGraph supports all the links between spatial
objects which are important to efficient geometric operators. We leave unspecified the
details concerning links between spatial objects and semantical objects. These links are
not included in the GeoGraph model for they depend on the data model used in the GIS.

4. Using the GeoGraph model

This section illustrates the implementation of spatial operators as an extention of a
DBMS using the GeoGraph model. For the sake of clarity, the spatial operators are
presented in a relational context, but it is important to note that these operators and their
implementation can be generalized to other data models.

First, we present a possible integration of the GdoGraph data in a database using a
relational DBMS which can be extended with abstract data types [StonebrakerSS]. Then,
classical spatial predicates and spatial functions are enumerated. Spatial predicates are
applied to a couple of spatial objects to check some spatial properties. The definition of
the main spatial operators required in a relational DBMS extended toward geography is
then introduced. These operators are based on spatial predicates and spatial functions.
They work on sets of spatial objects and return the combination of spatial objects which
satisfy a given predicate. Finally the implementation of these operators with the
GeoGraph model is detailed. The architecture and the query langage of such a DBMS
extended toward geography can be found in [Bennis90].

4.1. Connection of GeoGraph with an extended relational database

A cartographic object is composed of semantic and spatial data. In order to support
the spatial data, the spatial domains Regions, Lines and Points are added to the
conventional domains of values used in relational DBMSs. A spatial relation is then
defined as a relation containing at least one attribute which takes its values in a spatial
domain. A map is a spatial relation with exactly one spatial attribute which is a key of
the relation. The conventional relational operators (i.e. selection, join and projection) are
augmented with spatial operators for spatial attribute manipulations.

To clarify the discussion, a few notations are introduced below. We use two spatial
relations named R and S. We denote by R.k (resp S.I) the spatial attribute of R (resp S).
We denote by r (resp S) a tuple of the R (resp S) spatial relation. We denote by AV a set
of values varying on the same domain and by v a particular value of this set. The result
of a spatial operation is a relation denoted by RES.

357

In the sequel of the paper we assume for clarity that the database is stored according
to the DBGraph storage model introduced in [Pucheral90]. This model stores a relational
database as a bipartite graph composed of a set of tuples named T, a set of values named
V and edges connecting each tuple to each of its attribute values (see figure 5). The
purpose of this storage model is to precompute all conventinal relational operations,
which is complementary with the objective of the GeoGraph. Two basic traversal
primitives are provided: succ_tup(t, R.k) is a function from T to V that delivers the value
of attribute R.k of tuple t and succ_val(v, R.k) is a function from V to T that delivers the
set of tuples whose th attribute value is v.

In a DBGraph, tuple vertices (resp. value vertices) may be grouped on a relation
basis (resp. domain basis) since the relations form a partition of T (resp. V). Spatial
domains constitute three subsets of V which comprise the sets R, L, P used as entry
points in the GeoGraph.

DBGraph /£>v GeoGraph
X^rT—————7J

Legends

T: tuple-vertices '' • •, ('' • •, (

N

O

O

relational
data
spatial data

elementary
spatial data
edges of
Gebgraph
edges of
DBGraph

V: value-vertices

Figure 5: a GeoGraph connected to a DBGraph

4.2. Spatial Predicates and Spatial Functions.

A spatial predicate takes two input spatial attribute values, and checks whether a
given spatial property is satisfied by this pair. The two input values can be of different
domains, although there are some restrictions depending on the predicate. Figure 6
summarizes the classical spatial predicates and the domains of the allowed input values.
Spatial predicates fall into two categories: one for checking neighborhood relationships
such as adjacency of regions; the other for checking containment relationships such as
inclusion or overlap of spatial objects. For detailed information on these predicates see
[David89]. Each spatial predicate can be evaluated by a traversal of the GeoGraph. This
traversal can be expressed by a sequence of primitive operations of the GeoGraph model.
One part of this traversal corresponds to a translation of the regions, lines or points given
in entry into ESO (faces, blades and nodes), while the other part selects elementary
components which satisfy the predicate. The first part uses operations on aggregation
links and the second part uses operations of topological maps. Examples of such

358

traversals can be found in section 4.4.

Predicate

Region

Line

Point

Region

Adjacent
Overlap
Inclusion
Right
Left
Overlap
Inclusion
Inclusion

Line

Border
Overlap

Connected
Overlap
Inclusion

Ends
Inclusion

Figure 6: The spatial predicates

Spatial functions are useful to calculate new values which are either numerical or
geometrical (coordinates lists). Some are also used to compute new values of type
region, line or point based on new aggregations of ESO. These functions can be
classified into two categories: those requiring a geometrical computation on spatial
values, and those which can be sped up by the topological map included in the GeoGraph
model. Figure 7 summarizes the main spatial functions.

Functions

Speed up by
G6oGraph

Involve a
geometrical
computation

Unary

Result is numerical
Area(Ol)withOl e R
Perimeter(Ol) with Ol e R
Length(Ol) with Ole L
Result is a coordinate list
Geometry(Ol) with Ol € R or L

Binary
Result € R or L or P

Intersection(Ol,O2) with Ol e R or L and O2 € R or L
Fusion(Ol,O2) with Ol € R andO2 e R orOl e L sidO2 e L
Difference(Ol,O2) with Ol e RandO2 e RorOl e LaniO2e L

Result is numerical
Distance(Ol,O2) with OleRor Lor P and O2eRor Lor P

Figure 7: The spatial functions

4.3. Spatial Operators
The data model of Ge"oTropics uses three basic spatial operators: the spatial

selection, the spatial join, and the calculation operators. The first two of these
correspond to extensions of the conventional selection and join operations of the
relational model. The spatial operators take as arguments one or two spatial relations and
return a spatial relation, and are now explained

The Spatial Selection operator, denoted by Sel(S, Q), is applied to a relation S,
and determines the subset AS of the tuples of S whose spatial attribute satisfy a
qualification Q. The qualification Q is a simple comparison S.I 0 const where const is a
spatial constant of the domain region or point and where 0 is a spatial predicate. The
spatial predicate used is generally inclusion or overlap. Selections involving these
predicates correspond to the usual geographical operations of clipping and windowing.
The selection operator is expressed as:

359

Sel(S, Q) = {Se S/ (S.I 0 c) is true}

The Spatial Join operator denoted by Join(R, S, 0), is applied to the spatial
relations R and S, and determines a set of tuples composed of all possible combinations
of a tuple r e R concatenated to a tuple S € S, such that the spatial attributes R.k and S.I
of r and S satisfy the join condition R.k0S.l, where 0 is a spatial predicate. Most of the
spatial operations based on relationships between spatial objects can be expressed by a
join operation involving a specific spatial predicate. The join operator is expressed as
follows:
Join (R, S, 0) = {(r, s) / r e R, S e S and (r.k 0 s.l) is true}

The Spatial Calculation operator, denoted by Calc (R, f) or Calc (R, S, f) can
take one or two relations as arguments. It is similar to the spatial join, but extends the
concatenation of the entry relations attributes with the result of a spatial function f
applied to the spatial attributes. Note that the join predicate is replaced by function f.
This operation can be expressed as follows :
Calc (R,f) = { (r,f(r.k)/re R }
Calc (R, S, f) = { (r, s, f(r.k, s.l)) / r e R, s e S}
The widely used overlay operation can be translated as follows: projection (Calc (R, S,
n)) where n involve R.k, S.I and the projection discards these two attributes.

4.4. Spatial Operator Implementation.

The G6oGraph model is currently being used to support the three spatial set-oriented
operators presented in section 4.3. Numerous versions of these operators can be
deduced depending on the spatial predicate used. It is not possible to give three general
algorithms that support all versions of these operators. For illustration, this section
focuses on two versions of the join operator and one version of the calculation operator
which correspond to the more commonly used geometric operations and illustrate well the
functionnality of the GeoGraph model. The join operation is first applied to retrieve all
couples of adjacent regions of two maps (spatial relations). Then it is applied to retrieve
all couples of overlaping regions and lines of two maps. The joins involves the
adjacency and the containment relationships, which belong to the two classes of spatial
predicates. The classical operation of overlay is then expressed in primitives of the
GeoGraph model. The execution of the selection operator is not detailed in this section
because it is efficiently handled by algorithms involving geometrical indices. For this
operation the GeoGraph model had to be augmented with geometric indices for
elementary components (Face, Blade and Node) and spatial attribute values (region, line
or point) (see section 5).

Let us consider the adjacent-join, a spatial join operation involving an adjacent
predicate. Two regions are adjacent if they have adjacent faces and if they do not have

360

common faces. The algorithm performing the operation is given figure 8. This algorithm
may be decomposed into four steps, each of which is a traversal of a subpart of the
Ge"oGraph. For each tuple r of R, the first step decomposes the region-value of attribute
R.k into faces. The second step executes a sequence of topological operations on ESOs
in order to get the set of faces which are adjacent to some faces obtained in the first step.
The third step converts the faces obtained in step2 into region-value of attribute S.I. All
these regions contain at least a face adjacent to one face of the region-value of r. The
fourth step checks that region-values selected in the 3fd step do not have common faces
with the region-value of r.

Function Join (R, S, Adjacent)
/* R.k and S.I take their values in R */
/* we assume card(R) < card(S) */
begin
/*..l st step */;
for each r € R do

AV3 = 0;
AVi := MemberFaces(r.k, R.k); /* decomposition into elementary faces */
/*...2ndstep */
for each vi e AVi

AV2 := BoundingBlades (vj); /* give all blades bounding vj */
for each \2 e AV2

AV3 := AV3 u Left (v2); /* give adjacent faces of vi */
endfor

endfor
AV~3 := AV"3 - AVI; /* discard faces belonging to r.k */
/*...3rd step */
for each v3 e AV3

AV4?=AV4uOwnerRegions(v3, S.I); /* retrieve regions of S.I including face V3 */
endfor
/*..4th step */
for each V4 e AV4

ifAVi n MemberFaces(v4, S.I) * 0 /* discard the regions which have */
/* common faces with region r.k */

then RES := RES + (r, succ_val(v4, S.I)); /* build the result made of tuple r */
/* and the tuple owning the region v4 */

endfor
end

Figure 8: Join operator involving the adjacency predicate

Consider now the overlap-join operator, a join operation involving a spatial predicate
checking the overlap between a line and a region. The algorithm performing this
operation is given figure 9 which starts from the lines to reach the overlaping regions. A
line and a region overlap if at least one blade of the line defines two faces belonging to
the region. This algorithm is also based on four steps which are similar to the four steps
of the previous algorithm. Nevertheless, these steps cannot be expressed in exactly the
same way. The first three steps determine the set of regions on the left of the line and the
set of regions on the right of the line. The fourth step performs the intersection of these
two sets.

361

Function Join (R, S, Overlap)
/* R.k takes its value in L
and S.I takes its value in R */
/* we assume card(R) < card(S) */
begin
/*...ist step */
for each re R do

AV4:= 0;
AVi := MemberBlades(r.k, R.k) /* decomposition into elementary blades */
for each vi € AVi

/*...2ndstep */
\1= Left(vi); /* give the face on the left of blade vi */
vr:= Left(a(vi)); /* give the face on the right of blade vi */
/*...3rd step */
AV2 := OwnerRegions(vr, S.I); /* retrieve regions of S.I including face Vr */
AV3:= OwnerRegions(vi, S.I); /* retrieve regions of S.I including face Vj */
/*..4th step */
AV4:= AV4 u (AV2 n AV3); /* discard the regions which border line r.k */

endfor
for each v4 e AV4

RES = RES u (r, succ_val(v4, S.I)); /* build the result made of tuple r */
/* and the tuple owning the region V4 */

endfor
end

Figure 9: Join operator involving the overlap predicate

Finally, let us consider a version of the spatial Calculation operator involving
the function of intersection of two regions. This operation is applied to two maps and
produces the overlay of the maps. The corresponding algorithm is given figure 10. If
we compare this algorithm to the previous ones, it can be decomposed into four steps
with an empty second step, since containment relatioships between objects of the same
type can be deduced from traversals along aggregation edges without the use of the
topology. In this algorithm, the computation of n (r.k, S.I) is reduced to a simple set-
intersection between two sets of faces with no access to the coordinates of the spatial
objects geometry.

In our experience, most of the algorithms of binary geometrical operations can be
decomposed into four steps. The first step decomposes the spatial attribute values of the
first map into a set ESO1, using aggregation edges. The second step performs topological
operations starting from ESO1 to reach a set ESO2 satisfying a topological predicate. The
third step retrieves spatial attribute values of the second map which aggregate elements of
ESO2, and the fourth step performs some supplementary verifications. For operations
involving containment relationships on objects of the same type, the second step is not
required. An important contribution of the extended topological map is that algorithms
based on these four steps always access ESOs of the same spatial location.

362

Function Calc (R, S, Intersection)
/* we assume the R.k and S.I take their values in R */
begin
/*...1 st step */

for each r e R do
AVi := MemberFaces(r.k, R.k); /* decomposition into elementary faces */
AV2:= 0;
/*...3rdstep */
for each vi e AVi

AV2=AV2UOwnerRegions(vi, S.I); /* retrieve regions of S.I including face vi */
endfor
/*...4th step */
for each \2 e AV2

AV3 := MemberFaces(v2> S.I); /* decomposition into elementary faces */
RES = RES + (r, succ_val(v2, S.I), AVi <~> AVs); /* build the result made */

/* of tuple r and of the tuple owning region */
/* V2 and of the intersection of r.k and V2 */

endfor
endfor
end

Figure 10: Calculation operator involving the intersection function

5. Implementation

There are many ways to implement the G6oGraph graph. It could be implemented
within a Network DBMS, an Object Oriented DBMS or as an extension of a Relational
DBMS. We detail below a particular implementation based on the third approach, and on
the connection of GeoGraph with the DBGraph model [Pucheral90] (as detailed in
section 4.1). The key point of this implementation is a good data clustering. The
objective is to partition the two graphs of figure 5 into separate segments which can be
loaded separatly according to the needs of operations being executed.

In order to ease the data partitionning, tuples and values are stored separately (see
figure 11). Since the domains form a partition of the set of values V, all the values
varying over the same domain can be clustered in a separate segment. Taking advantage
of vertical partitioning, the values of one domain can be loaded independently of the
others. Similarly, since the relations form a partition of the set of tuples T, the tuples of
one relation can be stored in one segment. Each object stored in a segment has a unique
and invariant identifier (OID). Thus, tuples and values can be referenced by OID's.

In the definition of a DBGraph, an edge between a tuple and a value can be traversed
in both directions. Consequently an edge is represented with two physical arcs: one from
the tuple to the value, and also a reverse arc. A tuple is implemented as an array of OIDs,
each referencing its attributes values, which are stored in separate domains. These OIDs
materialize arcs from the tuples to the values. Reverse arcs are materialized by inverted
lists attached to the values. Each inverted list is divided into a set of sublists so that there

363

is one sublist per attribute varying on the domain of the value. All these sublists are
referenced by an array attached to the corresponding value. Because of vertical
partionning, it is possible to cluster all the inverted sublists of one attribute into one
segment. Indices may be added on domain values to speed up selections on all attributes
varying on the same domain.

segment containing
the inverted sublists
of R.5

segment containing
domain Dj

The temporary relation results from a join between R and S.
The attribute S.4 is assumed to be a key attribute._____

Figure 11: implementation of the DBGraph part

Consider now the implementation of the Ge"oGraph part. There is a direct mapping
between a value of the spatial domain point and a node. Thus attributes of type point
directly reference node values stored in a node domain. Values of the spatial domain
region (resp. line) are stored as set of OIDs referencing face (resp. blade) values stored in
a face (resp. blade) domain. The sets of OIDs materialize aggregation links from spatial
objects to ESOs. Reverse links from blades and faces to the tuples, materilize reverse
aggregation links from ESOs to tuples containing spatial objects. Face and blade
domains are stored like DBGraph domains with inverted lists in order to materialize these
links. It is not necessary to maintain inverted lists for region and line values. For some
attributes it may be inefficient to store the values separatly from the tuples because they
are accessed each time the tuple is accessed, and graph traversals of costly operations
don't use links between the corresponding attribute values and the tuples. Values of
these attributes can be stored directly in the tuples. For example, region and line
attributes fall in this category. Spatial indices are maintained for the three domains node,
blade and face. Values of these domains are clustured with the spatial indices which
reinforce the contribution of the vertical partitionning, since algorithms based on extended
topological maps favors access to ESOs of the same spatial location (see section 4.4).

Values ot the three domains face, blade and node have a complex structure that stores
the topology of the ESO map (see figure 12). The main part of this topology is supported
by the blade values. A blade value is represented by a record containing five fields: (i)
the ODD of the opposite blade, which materializes the a function; (ii) the OID of the next
blade of the end-node, which materializes the a function; (iii) the OID of the left face of

364

the blade, which, used in conjunction with the a function, allows retrieval of the two
faces bordering the blade; (iv) the OID of the end-node of the blade, which is necessary
to access to the inverted list of the node; and (v) the ODD of a coordinate list material!zing
the geometry of the blade. Coordinate lists are stored in a separate domain without
inverted list. This domain is clustered with a geometrical index. A face value is the OID
of any blade of the face. The value of one node contains only the OID of one blade
reaching it. This information is sufficient for a node since the o function gives the
complete cycle of blades reaching it. Furthermore its geometry can be extracted from the
geometry of one of its blade. In a similar way, the value of one face is composed of a
record containing the OID of one blade of its boundary and a set of OID corresponding to
the set of holes contained in this face. Applying a succession of a and a functions to the
blade referenced by the face gives the complete cycle of blades of its boundary. Its
geometry can be obtained from the geometry of all of these blades.

f Faces, domain ~\
f
1

I |
NM«i<te [[toM,.*,*8>:M&l

V J

r Blades domain ^

" i ' '""""" i*
1 — I a(b)f o(b)l left-facej end-nod^ geometrjj

1

^[ot(b)[o(b) j left-facej «nd-node| geometrj|

0

1 |jJ o(bH o(b) j Mt-Jace I end-node! geometry!
^ 1 ——— 1 ——— 1 ————— 1 ————— I ————— \J

Nodes domain

|-J —— |
•t-SSSj

V J

Figure 12: Spatial values representation

5. Summary and futur work

In this paper, we have presented the GeoGraph storage model, a toolbox supporting
low layers of GIS in an extensible way. The definition of this model was given
independently of implementation detail, in terms of a graph structure and primitive
operations on that structure. This facilitates the description of the toolbox functionality,
and supports our argument of general utility. Topological information and geometric
information of several maps are incorporated in a single graph that directly supports
geometric operations based on adjacency and containment relationships. This graph is
based on the topological map theory guaranteeing that all updates on topological
information are coherent, and providing a minimal set of operations to navigate through
the graph.

Although GeoGraph is intended for various higher level data models, we illustrated
the utilization of this storage model in the context of an extensible relational DBMS. In
this context, the resulting GIS is itself extensible and can exploit fully the toolbox aspect
of GeoGraph. We showed that the GeoGraph graph can be integrated with relational data
in a straightforward fashion. Algorithms of the main geographical operations have been

365

given in an abstract form using the basic primitives of G6oGraph. These algorithms,
based on graph traversals, are simple and exibit desirable locality properties.

A specific implementation of the GeoGraph model has been proposed. This
implementation avoids data duplication and shows that the GeoGraph graph can be
partitioned to minimize disk trafic. Spatial data are clustered with spatial indices. This,
combined with the space locality properties of the algorithms, reinforce the contribution
of vertical partitionning. This implementation is currently being experimented in the
framework of the GeoTropics system, an extensible GIS based on extensions of SQL
[Bennis90].

Additional research will be useful in enhancing the G6oGraph model. For example,
the decision to always overlap geographical maps has some drawbacks: operations
involving only one map can be slowed down, since the number of elementary storage
elements can be unnecessarily large. It may prove more efficient to selectively overlap
layers based on the frequency of their joint use in queries[David90].

References
[AnsaldiSS] Ansaldi S., De Floriani L., Falcidieno B., "Geometric Modeling of

Solid Objects by Using Face Adjacency Graph Representation", ACM
SIGGRAPH'85 Conf., San Francisco, USA, 1985.

[Bennis90] Bennis K., David B., Quilio I., Vie"mont Y., "GeoTROPICS: Database
Support Alternatives for Geographic Applications", 4th Int.
Symposium on Spatial Data Handling, Zurich, Switzerland, July 1990.

[CoriSl] Con R. & Vauquelin B., "Planar maps are well labeled trees", Can. J.
Math., Vol. XXXIH, 1981.

[David89] David B., "External Specifications for the Cartographic DBMS",
ESPRTT-TR 2427-0022 TROPICS Project, June 1989.

[David90] David B., Viemont Y., "Data Structure Alternatives for Very Large
Spatial Databases", Sorsa colloquium 90, Fribourg, Deutshland, July
1990.

[Dufourd88] Dufourd J.F., "Algebraic Specification and Implementation of the
Topological Combinatorial Maps", PIXIM'88 proc., Paris, France,
1988.

[Dufourd89] Dufourd J.F, Gross C. et Spehner J.C., "A Digitizing Algorithm for
the Entry of Planar Maps", Computer Graphics International'89,
Leeds, Spring-Verlag, June 1989.

[Edmonds60] Edmonds J., "A Combinatorial Representation of Polyhedral
Surfaces", Notices Amer. Math. soc. n°7,1960.

[Herring87] Herring J.R., "TIGRIS: Topologically integrated geographic
information system", Auto-Carto'8 proc., Baltimore, Maryland, USA,
March 1987.

[Herring90] Herring J., "The definition and development of a Topologically Spatial

366

Data System", Photogrametry and Land Information Systems,
Lausanne, Suisse, March 1989 (Published in 1990).

[Lienhardt89] Lienhardt P., "Subdivision of N-Dimensional Spaces and N-
Dimensional Generalized Maps", 5th ACM Symposium on
Computational Geometry, Sarbriiken, RFA, June 1989.

[Kinnea87] Kinnea C., "The TIGER Structure", Auto-Carto'8 proc., Baltimore,
USA, March 1987.

[Meier82] Meier A., "A Graph Grammar Approach to Geographic Databases",
Proc. of 2nd Int. Work, on Graph Grammars and their Application of
Computer Science, October 1982, Lecture Notes in Computer Science,
Springer Verlay, 1982.

[Meixler82] Meixler D., Sadlfeld A., "Storing, Retrieving and Maintaining
Informations On Geographic Structures", Auto-Carto'7 Proc.,
Wachington, USA, March 1985.

[MorehouseSS] Morehouse S., "A Geo-Relational Model for Spatial Informations",
Auto-Carto'7 Proc., Washington D.C., USA, 1985.

[Peuquet84] Peuquet Donna J., " A Conceptual Framework and Comparison of
Spatial Data Models", Cartographica vo!21 n°4,1984.

[Pucheral90] Pucheral P., TheVenin J.M., Valduriez P., "Efficient main memory
Data Management Using the DBGRAPH Storage Model", VLDB90
proc., Brisbane, Australia, August 1990.

[Sack87] Sack-davis R., Mcdonell K.J., "GEOQL - A Query Language for
Geographic Information Systems", Australian and New-Zeland
Association for the Advancement of Science Congress Townsville,
Australie, August 1987.

[Samet85] Samet H., Webber E., "Storing a collection of Polygons Using
Quadtree", ACM Transaction on Computer Graphics 3 (4), July 1985.

[Schaller87] Schaller J., 3The Geographical Information System (GIS)
ARC/INFO", EuroCarto VI proceedings, Czechoslovakia, April 1987.

[Spooner90] Spooner R. "Advantages and Problems in the Creation and Use of
Topologically Structured Database", Photogrametry and Land
Information Systems, Lausanne, Suisse, March 1989 (Published in
1990).

[StonebrakerSS] Stonebraker M., Rubenstein B., Guttman A., "Application of Abstract
Data Types and Abstract Indices to CAD Databases", ACM Sigmod,
San-Jose, 1983.

[Waugh87] Waugh T.C., Healey R.G., "The GEOVIEW Design, a Relational
Approach to Geographical Data Handling", Int. J. Geographical
Information Systems", 1(2), 1987.

[White79] White M. "A Survey of the Mathematics of Maps", Auto-Carto'4
proc., 1979.

367

