
INTEGRATION OF SPATIAL OBJECTS IN A GIS

Richard G. Newell, Mark Easterfield & David G. Theriault
Smallworld Systems Ltd,

8-9 Bridge Street,
Cambridge, England

CB2 1UA

ABSTRACT

A GIS is distinguished from other database systems in a number of 
respects, particularly in the requirement to handle spatial objects 
with extent. Whereas a common approach is to treat "geometry" and 
"attributes" separately, a more integrated approach is to treat the 
spatial aspect as but one part of an integrated data model which 
accommodates all objects and their attributes in a seamless manner. 
Spatial objects differ from other object attributes in that they usually 
have extent and therefore efficient retrievals cannot be achieved by 
the mechanisms implemented within database systems on their own. 
This paper addresses the problem of implementing efficient spatial 
retrieval methods within an integrated object data model. An 
improved quadtree mechanism for clustering objects on disk is also 
described.

INTRODUCTION

In recent years, the problem of organising large numbers of spatial 
objects in a database has become much better understood. It is now 
up to the system implementors to apply the known methods in real 
systems. However, although there are many algorithms described for 
indexing and storing spatial objects, there is little published 
information on how to apply the algorithms within the context of a 
complete integrated database system which would support a GIS. In 
particular, there is an almost total lack of clear descriptions of 
implementations within the realm of the relational model, although 
papers have been published which seem to get good results using 
this approach (Abel 1983 and 1984, Bundock 1987).

Older systems use a proprietary structure of sheets or tiles to 
organise their spatial data, but this leads to serious problems in large 
systems. A modern approach is to implement a spatial database 
which is logically seamless. Some systems separate out the geometric 
objects into a separate proprietary database which is specifically built 
for fast spatial retrievals, and then this is linked somehow to a 
database of attributes. It is our contention that this does not meet any 
criteria of integration. This does of course beg the question of what 
to do about the integration of spatially located data that is already 
committed to institutional databases and which needs to be

408



accommodated within a GIS. We have no elegant answer to this 
problem.

Currently available relational database systems come under a lot of 
criticism for use with spatial data, on account of their apparent poor 
performance. However, in our view, the jury is still out on this issue, 
as, if appropriate data models are used, then acceptable spatial 
performance seems to be achievable (Abel 1983 and 1984), but this 
depends on the use to be made of the GIS. For relational databases, 
there are more serious issues than this to overcome, especially the 
management of long transactions and versioning (Easterfield et al 
1990).

It is significant however, that most commercial systems that use a 
commercial relational database system for holding spatial data 
employ a system of check out into a single user proprietary database 
before work starts, and they may even go one step further to employ 
a display file to gain adequate graphics performance.

We have been researching the implementation of fast spatial 
retrieval algorithms within the context of a version managed tabular 
database, which uses an interactive object oriented language for its 
development and customisation environment (Chance et al 1990, 
Easterfield et al 1990). Our approach has been to implement spatial 
retrieval methods in the system by using the normal indexing 
methods of the tabular database, without any ad hoc structures 
showing through to the system customiser and developer. We neither 
employ check out for reasons of handling multiple users nor do we 
need to employ a display file to achieve good performance.

HOW TO ACHIEVE FAST SPATIAL ACCESS

The nub of all spatial access algorithms (e.g. range trees, 
quadtrees, field trees, k-d trees etc) seems to be the same, in that if 
one can organise one's data somehow in the form of a tree structure, 
where each node of the tree corresponds to a subset of the area 
covered by its parent node, then candidate objects inside an area or 
surrounding a point can be found quickly. Such algorithms can 
retrieve an object in a time proportional to the logarithm of the 
number of objects in the database.

One approach is to provide an external spatial index into a database 
of objects which is not spatially organised. If one is retrieving many 
objects within say a rectangle, then the candidate objects can be 
identified very quickly, but retrieving the objects themselves is like 
using a pair of tweezers to extract each one from disk. The 
logarithmic behaviour still applies, but the constant term is very 
large because of disk seek time.

Thus, to gain the full benefit, the actual object data itself needs to 
be organised spatially on disk, by clustering the data, so that one can 
at least use a "shovel" to retrieve objects (bulk retrieval), instead of a 
pair of "tweezers" (random retrievals).

Certain methods of spatial indexing are structured so that each 
object is contained once only in the index. Other approaches

409



duplicate an object's entry in the index, based on sub-ranges of the 
total object. This has the advantage that candidate objects are more 
likely to be relevant, but the disadvantage that duplicates must be 
eliminated. (Abel 1983)

There does not seem to be a great performance difference 
between the many methods of indexing and clustering that have been 
described in the literature (Smith and Gao 1990, Kriegel et al 1990). 
The message is, just do anything in a tree structure and you will get 
most of the benefit, the rest is just tuning.

However, we are rather concerned with implementing such 
mechanisms within an overall integrated data model, where the 
peculiarities of particular methods are hidden, because if they are 
not, the complexity and cost of development is increased. In 
addition, as new spatial indexing mechanisms are discovered, these 
should be implementable independently of the overall data model.

SPATIAL KEYS IN TABULAR DATABASES

It is well known that it is possible to encode the size and position 
of an object in a unique spatial key, so that objects which are close to 
each other in space generate similar keys. Further, if objects with 
similar keys are stored at similar locations on disk, then the number 
of disk accesses required to retrieve objects can be greatly 
minimised.

Some methods lend themselves easily to the generation of a spatial 
key, such as a quadtree index and its many close variations (Samet 
1989). However, mechanisms such as range trees preclude this 
approach, indeed the actual structure produced depends on the 
order in which the database is created.

We have not investigated methods such as range trees for 
clustering objects, because they are ad hoc and it seems to us 
difficult to hide the storage mechanisms behind an acceptable 
interface for system developers.

It is common in a tabular database that records with similar 
primary keys are close to each other on disk, especially if the 
fundamental storage mechanism is something like a B*tree. Thus, if 
the most significant part of the primary key of all spatial objects is a 
spatial key, then the desired effects of spatial ordering on disk can 
be achieved (Abel 1983 and 1984, Libera & Gosen 1986). Further, 
topological relationships between objects (e.g. represented by an 
association table) can also be arranged to have the same spatial keys 
as parts of their primary keys so these will become spatially 
clustered as well.

However, the approach has one potential drawback. Consider the 
problem of changing the geometry of such an object in a way that its 
spatial key changes. Thus, making some, possibly minor, geometric 
edit could result in a change to the primary key, i.e. identity, of the 
object, resulting in problems of maintaining the overall integrity of 
the database. Modification of a primary key effectively means deletion 
followed by re-insertion.

410



One might consider a storage mechanism where records are 
clustered according to a spatial key which is not a part of the 
primary key. While this would be satisfactory for extremely simple 
models (e.g. a single table of records with an auxiliary index for 
primary key retrievals) it would not cluster the records in the many 
association tables that exist in a richly connected data model.

A PRAGMATIC APPROACH

The idea of containing a spatial key within the identity of each 
object does not complicate other kinds of retrieval. As far as these 
procedures are concerned, a spatial key is no different from an 
ordinary key. Our pragmatic idea is that at the time an object is first 
created, we generate a spatial key as part of its unique identifier. The 
value of this identifier never changes from this point on, even if the 
location and geometric extent of the object is changed. The 
pragmatic part comes in that geometric edits are rare, and major 
changes in position or extent are even rarer. Thus the object rarely 
moves far in space, so why should it move far on disk? Thus an 
object's identity is a function of where it is born and we assume that 
it never moves far from its place of birth.

However, by doing this, spatial retrievals may become unreliable, 
because some objects which should be retrieved may be missed. Our 
solution to this is to have a single external spatial address table, with 
accurate spatial keys which are always maintained up-to-date, and it 
is this which is used to retrieve objects. The "sloppy" spatial key is 
no more than a clustering device, i.e. an accelerator to speed spatial 
search. In the worst case, if large parts of the geometry were 
modified significantly (e.g. following rectification), then the system 
may get slow, but it would still work correctly.

The method used to implement the index does not need to be the 
same as the method used to organise the clustering of the actual data 
so that, for example, a range tree index (Guttman 1984) could be 
used to index data which is clustered in a quadtree.

In our implementation, we use the same approach for both 
clustering the data on disk and for building the external index.

HOW TO GENERATE A SPATIAL KEY

As there seems to be general agreement that there is minimal 
difference in performance between the many tree-based approaches 
to spatial clustering, (Kriegel et al for example found differences of 
the order of 20% between the various methods that they 
investigated) then perhaps the next criterion could be to aim for 
simplicity. This therefore eliminates the range tree, because neither 
is it simple, nor is it easy to see how one generates a permanent, 
reproducible key from it. Smith and Gao found that methods based 
on B-trees were good on storage utilisation, insert speed and delete 
speed, but were inferior on search times. We suggest here a 
modification to the method of creating a key based on a linear 
quadtree which gives a worthwhile performance improvement

411



without degrading the other performances, nor adding any undue 
complexity.

Now it is well known that point data can be incorporated in a 
Morton Sequence, which is directly equivalent to encoding the 
quadtree cell in which the point exists. A quadtree index is very good 
for encoding point data, because all points exist in the leaves of the 
tree (See figure 1) (see the MX quadtree in Samet 1989).

Coding Scheme 

Code for "A": 2133

Figure 1: Quad-tree Encoding of Point Object

Encoding spatial objects with extent in a quadtree can also be 
done, but many objects will exist near the root (see MX-CIF Quadtree 
in Samet 1989 and Batty 1990), thereby leading to them being 
included in many retrievals when they are not in fact relevant. For 
large databases, this leads to a degradation in retrieval performance. 
Samet's book contains a number of schemes for getting around this 
problem by allowing an object to exist in more than one quadtree 
node. However, this is not suitable for clustering the object data 
itself.

In our earlier researches we had investigated solving this problem 
by using a key based on a nine-tree in which each square is divided 
into 9 equal sized overlapping squares each of which is a quarter of 
the size (half the dimension) of its parent. Although it had the 
desired effect of not populating the root, the tree is not well 
balanced and the retrieval strategy is more complex. This in fact was 
the basic approach behind Bundock's paper (Bundock 1987).

We include here a simpler solution to this problem because we 
have not seen it described elsewhere. The idea is based on the fact 
that most objects are very small compared to the world. So in order 
to avoid trapping objects near the root of the tree, the subdivision 
method is modified so that each quadtree cell is divided into 4 parts 
which overlap slightly, i.e each quadtree sub-square is slightly more 
than half the dimension of its parent square (See figure 2). The 
overlap never needs to be more than the size of the largest object in 
the database, and in practice can be less than this. The optimum 
overlap depends on some statistic of the object size, such as the 
mean object size times a factor.

412



Normal Quad-tree 
Key :0

Overlapping Quad-tree 
Key : 1244

Figure 2: Quad-tree Encoding of Object with Extent

This slight modification to the simple quadtree key is no more 
complex to program, but does lead to worth while performance 
improvements for retrieving objects inside an area and in finding 
objects surrounding a point compared to the simple quadtree key 
mechanism.

A DATA MODEL FOR CIS

Figure 3 below illustrates graphically a simplified data model. It 
should be regarded as just a part of the complete model required for 
a GIS application. A large number of users' requirements for 
modelling their geometry and associated topology can be handled by 
a generic model of this form. Where users differ from one another is 
in the modelling of their own objects and interrelationships. The 
philosophy is not that geometric objects, such as polygons, have 
attributes, but that real world objects can be represented 
geometrically by such things as polygons. In this diagram, a line with 
an arrow signifies a one-to-many or many-to-one relationship and a 
line with an arrow at both ends signifies a many-to-many 
relationship. Of course, in a physical implementation, a many-to- 
many relationship is implemented by means of an intermediate table, 
which itself should also be spatially clustered.

The diagram should be read starting from the top. For example, a 
real world object, such as a wood is represented by an area, which 
may be made up of one or more polygons (these polygons may have 
resulted from intersections with other polygons in the same 
topological manifold). It is possible that each polygon may have one 
or more "islands" such as a lake (i.e in this case, a lake is an island). 
The lake area would of course share the same polygon as used by the 
wood area. Polygon boundaries are represented by a closed set of 
links, each one connecting exactly two nodes.

413



f SPATIAL]_JI |ND" J71 REAL WORLD 
OBJECTS

SPATIALLY 
CLUSTERED

Figure 3: Spatially Indexed Topological Model

From the point of view of the system implementor, it is only the 
interrelationships of this model that he wishes to worry about, 
without himself being concerned with efficient spatial retrievals. 
However, if all entities in the model are identified by means of a key 
with spatial content, then the desired clustering of instances in each 
table will occur transparently. As it is common that objects which are 
topologically related are also spatially near to one another, disk 
accesses for topological queries should also be greatly reduced.

All that is needed in addition to this model is the external spatial 
index itself, which is merely a device for generating candidate keys 
for spatial retrieval. The point is that the spatial indexing method 
does not perturb the logical structure of the model.

In our implementation, the spatial index is a table, just like any 
other, which refers to real world objects, such as houses, lakes and 
utility pipe segments. A real world object may then have a number of 
different representations depending on such contexts as scale.

CONCLUSION

This paper has been concerned with the implementation of fast 
spatial indexing methods within the context of an integrated GIS 
data model. A design criterion has been to implement the spatial 
mechanisms without complicating other retrievals from the database. 
An approach is advocated based on a precise spatial index which can 
generate candidate keys within a tabular database whose primary 
keys contain a permanent, but "sloppy", spatial key. The external 
precise spatial index could be regarded as part of the data model, or 
could indeed be implemented as an entirely different mechanism. 
The method proposed for generating spatial keys is a minor

414



improvement to the simple quadtree, which we have described here, 
because we have not seen it published elsewhere.

ACKNOWLEDGEMENTS

We are grateful to Mike Bundock for his helpful comments on an 
earlier draft of this paper.

REFERENCES

Abel, D.J. & Smith, J.L. (1983): A Data Structure and Query 
Algorithm Based on a Linear Key for a Rectangle Retrieval Problem, 
Computer Vision, Graphics, and Image Processing 24,1, October 
1983.

Abel,D.J. & Smith, J.L. (1984): A Data Structure and Query 
Algorithm for a Database of Areal Entities, The Australian Computer 
Journal, Vol 16, No 4.

Batty, P. (1990): Exploiting Relational Database Technology in GIS, 
Mapping Awareness magazine, Volume 4 No 6, July/August 1990.

Bundock, M. (1987): An Integrated DBMS Approach to 
Geographical Information Systems, Autocarto 8 Conference 
Proceedings, Baltimore, March/April 1987.

Chance, A., Newell, R.G. & Theriault, D.G. (1990). An Object- 
Oriented GIS - Issues and Solutions, EG7S '90 Conference 
Proceedings, Amsterdam, April 1990.

Easterfield, M.E., Newell, R.G. & Theriault, D.G. (1990): Version 
Management in GIS - Applications and Techniques, EG7S '90 
Conference Proceedings, Amsterdam, April 1990.

Guttman, A. (1984): R-trees: A Dynamic Index Structure for Spatial 
Searching, Proceedings of ACM SIGMOD Conference on Management 
of Data, Boston, June 1984.

Kriegel, H., Schiwietz, M., Schneider, R., Seeger, B. (1990): 
Performance Comparison of Point and Spatial Access Methods, in 
Design and Implementation of Large Spatial Databases: Proceedings 
of the First Symposium SSD '89, Santa Barbara, July 1989.

Libera, F.D. & Gosen, F. (1986): Using B-trees to Solve Geographic 
Range Queries, The Computer Journal, Vol 29, No 2.

Samet, H. (1989): The Design and Analysis of Spatial Data 
Structures, Addison Wesley, 1990, ISBN 0-201-50255-0.

Seeger, B. & Kriegel,H. (1988): Techniques for Design and 
Implementation of Efficient Spatial Access Methods, Proceedings of 
the 14th VLDB Conference, Los Angeles, California, 1988.

Smith, T. R. and Gao, P. (1990): Experimental Performance 
Evaluations on Spatial Access Methods Proceedings of the 4th Spatial 
Data Handling Symposium, Zurich 1990, Vol 2, p991.

415




