
NEW PROXIMITY-PRESERVING ORDERINGS
FOR SPATIAL DATA

Alan Saalfeld
Bureau of the Census1
Washington, DC 20233

ABSTRACT

This paper presents new methods for ordering vertices or edges in a tree
(connected acyclic graph). The new orderings are called tree-orders; they can be
constructed in linear time; and they are fully characterized by a useful proximity-
preserving property called branch-recursion. The paper describes how tree-ordering
techniques can be applied to find orderings for other types of spatial entities:

 ordering points in the plane,

 ordering points in higher dimensional spaces,

 ordering vertices of any graph,

 ordering edges of any graph,

 ordering line segments in two-dimensional networks,

 ordering line segments of networks in higher dimensions,

 ordering regions in the plane,

 ordering (n — l)-cells in n-dimensional polytopal regions,

 ordering n-cells in n-dimensional cell decompositions.

For each of the spatial entities listed above, the orderings produced by ex
tending the tree-ordering methods exhibit important proximity-preserving prop
erties. The paper includes a description of several potential applications of the
new orderings of the diverse spatial objects.

PRELIMINARIES

At its most elementary level, database management is the art of organizing or
ordering data so that they may be accessed and utilized most efficiently for some
particular set of operations of interest. This paper presents a new way of ordering
data that will permit a collection of important operations related to clustering
and to systematic sampling to be carried out efficiently and effectively. In this

1 The views expressed herein are those of the author and do not necessarily represent the views
of the Bureau of the Census.

59

section we review and summarize some definitions and basic concepts needed to
describe our ordering techniques.

Orderings and Lists
Throughout this paper, ordering or order, without any qualifying adjectives, will

refer to a total order or linear order of a finite set of n elements. Such an order
is nothing more than a sequencing of the n elements, a one-to-one association
of the elements of the set with the integers 1 through n, or a listing of the n
elements. A set of n elements that have been ordered will be called a list or an
ordered list.

In a list of n elements, the (i + l)st element is the successor to the ith
element; and every element except the nth or last element has a unique successor.
Similarly, every element except the first element has a unique predecessor. We
may build a cyclic list or a cyclic order from a list by naming the first element to
be the successor to the last element (and the last element to be the predecessor
to the first). Cyclic lists are often useful because they have no distinguished
elements that require special case handling. For example, with a cyclic list, one
may begin anywhere in the list and exhaustively enumerate elements by taking
successors until one returns to the chosen starting element.

Spatial Queries
Points in two-dimensional and higher dimensional space are often assigned an

order or primary key to facilitate their storage in and retrieval from databases.
Space-filling curves, such as the Peano key and Hilbert curve ([FALl] and [FAL2]),
have proved quite useful for range queries and nearest neighbor queries. These
curves are instances of a large class of orderings called quadrant-recursive order-
ings ([MARK]). The defining property of quadrant-recursive orderings is that, in
any recursive decomposition of a rectangular region into subquadrants, the points
of any sub quadrant always appear consecutively in the quadrant-recursive order
ing. Points within any subquadrant are enumerated exhaustively before exiting
the subquadrant. We will see in the section on branch-recursion that quadrant-
recursive orderings are a special case of a more general class of orderings called
branch-recursive.

Systematic Sampling
Systematic sampling traditionally refers to selection of a subset from a list,

where the subset is formed by selecting elements at regular intervals (called the
skip interval) [KISH]. Elements may be weighted to adjust their probability of
selection (see figure 1).

If all weights are 1, then a skip interval of k produces a 1/fc sample. We may
think of the sampled elements as having the induced order of their sequenced
systematic selection achieved by skipping through the list.

If points in the plane are assigned any quadrant-recursive order, then a sys
tematic selection procedure will sample every subquadrant, no matter what its
size, to within one unit of the overall sampling fraction. This representative
coverage property was noted and utilized for Peano key ordering by Wolter and
Harter [WOLT].

If we regard systematic sampling as a means of ordering subsets, then trivially
we may recover the original order of an unweighted list by sampling with skip
interval equal to 1. This seemingly trivial means of recovering an ordering will
be exploited in the section on tree-ordering vertices to build an ordering when

60

Figure 1: Systematic Sampling from Lists

we sample a set systematically after breaking each element into weighted pieces
having total weight 1.

Graphs and Maps
The linework of any map has an underlying structure of a graph2 . We will use

the usual combinatorial definitions of graph theory found in the standard text
by Harary [HARA]. A graph G = (V,E) consists of a finite non-empty set V
of vertices together with a set E of unordered pairs of vertices called edges. A
vertex v and an edge {u, iu} are incident if and only if v = u or v = w. The
degree of a vertex is the number of edges incident to the vertex. A walk of the
graph G consists of a sequence (v\v^vz • • • v*) of vertices u,-, not necessarily all
distinct, such that for each j = 1,2,. . . , (k — 1), {vy,vj+i} is an edge of G. A
tour is a walk (viv^vy • • «*) such that Vi = v*. A path is a walk with no edges
repeated. A cycle is a path (v\v^v^ • • -vt) with k > 3 such that Vi = u*. A tree
is a graph with no cycles. A tree as we have defined it is sometimes called a free
tree to differentiate it from a rooted tree, which possesses a distinguished vertex
called the root.

PROPERTIES OF TREES

We describe some properties of trees that make them easier to work with than
graphs in general. We will show in the sections on ordering vertices and edges in
a graph how problems of ordering graph components can be converted to prob
lems of ordering tree components for a derived tree. Computer scientists have
developed a number of ways of ordering the vertices of rooted trees embedded in
the plane [AHO2]. We will be looking at new orderings for free trees.

Combinatorial Properties
We list some important properties of trees.

2 For some applications it may be preferable and even necessary to regard the linework of a
map as a pseudo-graph, a structure which allows multiple edges between two vertices. For the
applications which we are examining here, the distinction is unimportant.

61

Property 1 Every tree with n vertices has exactly (n — 1) edges.

Property 2 A connected graph having n vertices and (n — 1) edges is a tree.

Property 3 Adding a new edge to a tree (between existing vertices) always cre
ates a cycle.

Property 4 Removing an edge always disconnects a tree.

Figure 2: Edge Removal Creates Two Branches

We say that each edge determines two branches which are the disconnected
component subtrees resulting from that edge's removal. Always one of the
branches determined by the edge {u,v} contains u and the other branch always
contains v.

Planar Embeddings
Not every graph can be drawn in the plane with non-intersecting line-segment

edges, but a tree can always be represented or realized as a straight-line drawing
in the plane. Moreover, suppose that for each vertex in a tree, we arbitrarily
assign a cyclic order to the edges incident to that vertex. Then there is always
a drawing in the plane of that tree with straight-line-segment edges such that
the clockwise order of the edges incident to any vertex is the arbitrarily assigned
cyclic order of the edges about the vertex.

EULERIAN TOURS

An Eulerian tour of a tree is a special well-balanced tour that traverses every
edge exactly twice, once in each direction. We give two equivalent descriptions
of an Eulerian tour of a tree. Each description depends on our having assigned
a cyclic order to the incident edges of each vertex.

Geometric Version
Draw the tree so that the assigned cyclic order of edges at each vertex is the

clockwise order. Start a tour at any vertex x. Depart along any incident edge
{x, u} toward u. Upon arriving at u, depart along the edge {u,u} that is next to
{z, u} in the clockwise order around u. Upon arriving at u, depart along the edge
{v,z} that is next to {u, v} in the clockwise order around u, etc., until finally
you return to z along the edge that precedes {x, u} in the clockwise order (see
figure 3).

The tour that we have described will traverse each edge twice, once in each
direction and visit every vertex a number of times equal to its degree.

This tour can also be visualized as follows: imagine that the tree itself is the
top view of a wall. Walk next to the wall with your right hand continuously

62

Figure 3: Geometric Depiction of Eulerian Tour

touching the wall. You will eventually return to your starting point, at which
time you will have touched both sides of every wall. Thus, had someone else
been walking on top of the wall and keeping up with you, that person would
have walked every edge of the tree exactly twice.

Combinatorial Version
An Eulerian tour of a tree on n vertices is a walk (viV^v^ • • -t^n-i)? where the

v,-'s are vertices, clearly not all distinct, satisfying

1. Vi = t>2n-l.

2. For t = 1,2,..., 2n 3, {ut-+i, ^+2} is the successor to {u,-, u,-+i} in the cyclic
ordering of edges about the vertex v,-+i.

3. {vi,v2 } is the successor to {t>2n-2 5 Vi} in the cyclic ordering of edges about
the vertex v^.

4. For every edge {u, v} of the tree, the sequence uv and the sequence vu each
appear exactly once in the walk (v\vi • • • u2n-i)-

5. Each vertex except v\ appears as often as its degree.

6. The vertex ui appears one more time than its degree.

Notice further that if uv appears before vu in the Eulerian tour, then the
subwalk between uv and vu that starts and ends at u completely consumes every
edge and vertex in the v-branch determined by edge {u,v}. Moreover, this
subwalk touches nothing but the v-branch of the tree (see figure 4).

Figure 4: A Subwalk Consumes an Entire Branch

Similarly, the remainder of the tour (the part before uv and after vu) com
pletely consumes every edge and vertex of the u-branch resulting from the re
moval of the edge {u, v}. Clearly, no vertex or edge that appears in the v-branch
can ever appear in the u-branch.

We summarize this partitioning of the tour into two non-intersecting walks
in the following lemmas.

63

Tour Splitting Lemmas

Lemma 1 Let (x • • • uv • • • y • • • vu • • • z • •) be an Eulerian tour of some tree,
with x, y, z, u, v vertices on the tour. Then u ^ y, x ^ y, and z ^ y.

Lemma 2 Let (UjV xu2) be an Eulerian tour of some tree, with u\ = u2
and no other occurrences of u\ between Ui and u2 . Then v = x.

Figure 5: Edge Removal Splits the Tour

Figure 5 illustrates the proof of both lemmas. The subwalks uv and vu are
the only means of getting from one branch to the other.

Eulerian Tree Orderings
During the course of an Eulerian tour, all of the vertices and edges are visited at

least once. Suppose we wish to assign the integers 1 through n to our n vertices.
A procedure that visits the vertices in Eulerian tour order, assigning either the
next available number or no number to every visit of each vertex, hi such a way
that exactly one of the visits of each vertex receives an order number, will be
called an Eulerian tree-ordering (ETO) of vertices.

A procedure that visits the edges in Eulerian tour order, assigning either the
next available number or no number to every visit of each edge, in such a way
that exactly one of the two visits of each edge receives an order number, will be
called an Eulerian tree-ordering (ETO) of edges.

Garey and Johnson [GARE] and others [PREP], [EDEl] describe one such
Eulerian tree-ordering of vertices of a Euclidean minimum spanning tree (EMST)
obtained by starting anywhere on the Eulerian tour and assigning the next avail
able number to the first visit to each and every vertex (see figure 6).

Figure 6: First-Visit Eulerian Tree-Ordering

Their ordering, or for that matter, any other Eulerian tree-ordering of a
EMST will always approximate a Euclidean Travelling Salesman Tour to within
a factor of 2, since the Eulerian tour itself is never more than twice the length of
the Euclidean Travelling Salesman Tour.

We now describe a simple procedure for generating all other Eulerian tree-
orderings of the vertices of a tree.

64

TREE-ORDERING VERTICES

Suppose that we are given a tree and an Eulerian tour (vj_, t>2 , , «2n-i) for that
tree (equivalently we are given an embedding of the tree in the plane and a
starting vertex and edge). Then to order the vertices we will proceed as follows.

Setup: Weighting Vertex Visits
For i = 1,2,3,..., (2n 1), regard each v,- that appears in the tour (ui, u2 , , vzn-
as a vertex visit.

For i — 1,2,3,..., (2n — l), assign a non-negative weight u;,- to the ith visit
so that the sum of weights for all visits to any fixed vertex v is one:

For every v 6 V, ^ u;,- = 1.
{ ><=«>

We call any such weight assignment a unit-sum weight assignment.
An important instance of a unit-sum weight assignment assigns the same

weight to all visits to the same vertex. Because each vertex u,- is visited deg(v,-)
times3 , that uniform weight is exactly given by:

, for i = 1,2,..., (2n - 2); and
deg(r;,-)

«>2n-l = 0.

Building the Sampling Interval
As we walk the Eulerian tour, we begin accumulating weights, (exactly as is

done to build a weighted list for systematic sampling) .

Let WQ = 0, and

An Illustration: Uniform Weighting. We illustrate the accumulating of
weights for the uniform weighting scheme for the walk (defegehedbabcbd) drawn
in figure 7.

The total accumulated weights are exactly n and the total weight correspond
ing to each vertex of the tree is exactly one. We can assign numbers to the vertices
by skipping through the weighted interval with skip interval equal to 1. This is
the same as assigning an order number to a vertex each time a vertex visit takes
us up to or past the next whole integer:

If [Wj'-iJ < L^'J» tnen assig11 vertex v, the number \Wj\.
Because some vertices appear in several places in our accumulated weighted

interval, one may suspect that our numbering scheme may assign more than one
order number to a vertex. This cannot happen.

Proofs of Correctness
The proof that the selection procedure outlined above actually produces an

ordering of the vertices follows immediately from the following lemma and its
first corollary.

3 Because the Eulerian tour is cyclic, we like to count vi and vzn-i as the same visit. We
should only assign the appropriate weight to one or the other. We have chosen to assign the
uniform weight to v\.

65

Figure 7: A Tour and its Accumulated Weights

Lemma 3 (Integral-Branch-Weights) The fractional vertex weights accumu
lated between any two consecutive visits of the Eulerian tour to a multivisited
vertex always add up to an integer.

Proof: The proof of this lemma rests entirely on the observation that between
two consecutive visits to any vertex u, one must depart and enter along the same
edge, and an entire branch emanating from that vertex v is completely consumed
by the subwalk of the Eulerian tour, as seen in lemmas 1 and 2.

In consuming an entire branch, one must visit every vertex in that branch as
many times as possible, i.e. as many times as the degree of that vertex. Thus
each vertex in the branch gets fully counted. In other words, the sum of weights
for all the visits for any individual vertex during the walk of the branch is 1. And
the sum of weights for all the visits of all vertices during the walk of the branch
is an integer, equal to the number of distinct vertices in the branch. D

Figure 8: All Vertices of a Branch are Consumed

This lemma has two useful corollaries. To prove the first corollary we will
want to talk about the fractional part of a number or an interval of numbers.
Our meaning is the usual one: the fractional part of 5.35 is 0.35. The fractional
part of an interval such as [17.32, 17.84) is just the set of all possible fractional
values: [0.32, 0.84).

Corollary to Lemma 3.1 Every vertex gets hit exactly once by skipping one
unit at a time through the n-interval.

Proof: Consider any vertex v of degree = k. Let the visits to the vertex v occur
at 11,1*2, ,»*. Then the visits to the vertex v will result in intervals of length

66

u;,-!,«;,-,, • • • ,Wfk being added to the cumulative interval. We want to prove that
the fractional parts of the accumulated sub intervals corresponding to v, namely,

(Wu-i.WiJ,^.!,^],--., and (Wtt . lt Wit] t

in the total interval of length n have no overlap. From lemma 3, it is clear
that each successive interval, (W<y-i, WiJ, corresponding to a visit to v has its
fractional part begin (at W»._i) where the fractional part of the previous interval
(W, j-i, Wj], corresponding to a visit to v left off (at W^^J, since an interval
of integer length (i.e. having no fractional part) corresponding to all of the vertex
visits of the branch consumed, has intervened.

Since the intervals (W^-i.WiJ, (Wia _i,Wia], , (Wit _i,Wit], have no frac
tional parts overlapping and have total length equal to one, the fractional parts
of values assumed in the accumulated intervals corresponding to any individual
vertex must span all of the values between 0 and 1.

This last observation tells us that we can take a random start r in [0,1), take
skip interval 1 once again, and we will again produce an ordering of the tree
vertices. Any real number r or integral augmentation r + m of r can hit at most
one of the k intervals of determined by visits to u; and there is exactly one integer
mo such that r + mo will hit one of the A; intervals, n

Figure 9: Cyclic Ordering with Uniform Weighting

Because the Eulerian tour is cyclic, we can make our cumulative interval
cyclic and our resulting ordering cyclic as well by removing the dependence on
the starting point of the tour when building our cumulative vertex-visit weight
interval, as shown in figure 9. Putting all of the lemmas and corollaries together,
we have the following theorem:

Theorem 1 While making an Eulerian tour of a tree, build a separate (cyclic)
interval of total length n units by assigning a non-negative weight to each vertex
visit in any way so that the total weight for all visits to any individual vertex
is one. Then every vertex gets hit exactly once by skipping one unit at a time
through the cyclic n-interval.

Branch-Recursion
Throughout this section we will regard the orderings generated by our ordering

procedure as cyclic by making the first vertex successor to final vertex.

67

The next corollary follows immediately from lemma 1 and the proof of
lemma 3.

Corollary to Lemma 3.2 The collection of vertices of any branch of the tree
always constitute a complete interval (i.e. appear consecutively) for any cyclic
Eulerian tree-ordering.

We will say that any cyclic vertex ordering that keeps vertices of a branch
together for all branches is a branch-recursive ordering. Corollary 3.2 states that
every Eulerian tree-ordering is branch recursive. It is not difficult to prove the
converse using induction on branch size. We leave the proof of that theorem as
an exercise.

Theorem 2 Every branch-recursive cyclic ordering of the vertices of a tree is
an Eulerian tree-ordering for some Eulerian tour of the tree and some unit-sum
weight assignment to the vertex visits of that Eulerian tour.

Branch-recursion constitutes a very strong proximity preservation property,
where proximity is measured by the link-distance in the tree or graph. Branches
of a tree may correspond to data clusters in cases where we have built minimum
spanning trees. All quadrant-recursive orderings of a point set in the plane may
be realized as orderings induced on the leaf subsets of branch-recursive orderings
(i.e. Eulerian tree-orderings) of the quad-tree of those points.

Analysis of Complexity
An analysis of the time complexity of our tree-ordering algorithms depends on

the choice of data structure with which we represent the tree. If we have a
topological data structure which allows us to find the adjacent edge to any edge
at any vertex in constant time, then we can order the vertices in linear time. If
we need to build topology from an elementary list of vertices and edges, we can
do so in time O(nlogn), then proceed in linear time to complete the ordering
procedure.

Space complexity is even easier to analyze. The Eulerian tour is always linear
in the size of the tree. It is exactly of size (2n 1). The cumulative interval of
weights that we must build is also of that size.

Enumerating Orderings
If we allow arbitrary unit-sum weighting schemes and arbitrary Eulerian tours,

then we can generate all possible branch-recursive orderings. The number of
branch-recursive cyclic orderings can be shown to be:

as follows. Since there are (deg(u) 1)! ways of cyclically ordering the edges
incident to the vertex v, there are:

possible distinct cyclic Eulerian tours, hi each Eulerian tour, a vertex v may be
enumerated immediately prior to any of its deg(u) branches. This results in

68

distinct cyclic orderings for each Eulerian tour. If, however, we only consider
uniform unit-sum weighting schemes for fixed Eulerian tours, then we have proved
[SAAL] that there are no more than:

LCM{deg(v) | v G V} distinct cyclic orderings;

where LCM is the least common multiple. This translates into the following:
If the maximum degree in the tree is 3, then there are at most 6 distinct cyclic
orderings (independent of the number of vertices) for a fixed Eulerian tour. Max
imum degree 4 translates into at most 12 distinct orderings; and maximum degree
5 or 6 results in at most 60 distinct cyclic orderings.

Some important trees have small maximum degree. A Euclidean Minimum
Spanning Tree (EMST) of points in the plane, for example, has maximum degree
6. The EMST for points in general position has a canonical Eulerian tour as well;
so the unique EMST generates at most 60 distinct cyclic orderings of points in
general position in the plane, no matter how many points are hi the point set!

TREE-ORDERING EDGES

Many of our results and methods for ordering vertices are equally valid for edge
ordering. Theorem 1 for vertices has an exact counterpart for edges:

Theorem 3 While making an Eulerian tour of a tree, build a separate (cyclic)
interval of total length (n — l) units by assigning a non-negative weight to each
edge visit in any way so that the total weight for all visits to any individual edge
is one. Then every edge gets hit exactly once by skipping one unit at a time
through the cyclic (n — 1) -interval.

The proof the theorem 3 is identical to the proof of theorem 1: between consec
utive vertex visits to some vertex, all (both) edge visits to any particular edge
within a branch are exhausted.

Uniform Edge Weighting
A uniform weighting scheme for edges instead of vertices would have each edge

getting weight exactly 1/2 (since every edge is visited twice in the Eulerian Tour).
But giving every edge weight 1/2 amounts to nothing more than skipping every
other edge in our selection procedure. So we have the following corollary to
theorem 3:

Corollary 3.1 While making an Eulerian tour of a tree, number every other
edge visited. Then every edge gets exactly one number assigned to it.

We also see immediately that:

Corollary 3.2 Edges which are consecutively numbered using a uniform weight
ing scheme are never more than link distance 2 apart.

Analysis of Complexity
As before, an analysis of the time complexity of our tree-ordering algorithms

depends on the choice of data structure with which we represent the tree. With
a topological data structure we can order the edges in linear time. If we need
to build topology from an elementary list of vertices and edges, we can do so in

69

time O(nlogn), then proceed in linear time to complete the ordering procedure.
Space complexity is once again linear for edge ordering.

Branch- Recursion
As with vertices, every Eulerian tree-order of edges in branch-recursive in the

same sense:

Corollary 3.3 The collection of edges of any branch of the tree always con
stitute a complete interval (i.e. appear consecutively) for any cyclic Eulerian
tree-ordering of edges.

And, conversely,

Theorem 4 Every branch-recursive cyclic ordering of the edges of a tree is an
Eulerian tree-ordering of edges for some Eulerian tour of the tree and some unit-
sum weight assignment to the edge visits of that Eulerian tour.

Enumerating Edge Orders
As with vertex orders, the number of branch-recursive edge orders is equal to

the number of Eulerian tours times the number of distinct edge orders for every
fixed Eulerian tour. Since each edge may be weighted so that it gets enumerated
either on its first visit in the Eulerian tour or on its second visit, then as long as
these two visits are not adjacent in the Eulerian tour, they will produce different
orderings. Two edge visits to the same edge are adjacent in an Eulerian tour if
and only if the edge is incident to a leaf vertex. A tree with more than two edges
and t leaf vertices has exactly n £ 1 non-leaf edges. Thus for a fixed Eulerian
tour and an arbitrary unit-sum edge weighting scheme there are 2n~*~ 1 possible
orderings. The number of branch-recursive edge orderings is, therefore:

Enumerating uniform-weight edge orders for a fixed Eulerian tour is even more
trivial than enumerating uniform vertex orders. There are exactly two uniform-
weight edge orders if the tree has 3 or more edges.

ORDERING SPATIAL OBJECTS

In this section we will adapt our tree-ordering techniques to order spatial objects.
Our approach in every case will be to convert the ordering problem to a tree-
ordering problem, then solve the tree-ordering problem by a uniform- weight ing
of vertices or edges, as appropriate.

Ordering Points in the Plane
Suppose that we want to assign an ordering to a set of points in the plane.

We know how to order vertices of a tree. So we may convert the points into
vertices by building a tree (adding edges); and one natural tree to build is a
Euclidean minimum spanning tree (EMST) . The EMST is unique if the points
are in general position or if no two interpoint distances are equal. So the steps
needed to convert the problem of ordering points in space to one of ordering tree
vertices are:

1. Build Euclidean minimum spanning tree.

70

2. Walk Eulerian tour, tree-ordering vertices.

We can build a Euclidean minimum spanning tree hi time O(n log n) [AHO2],
sorting the edges at each vertex in clockwise order as they are inserted. The
planar embedding of the tree gives us the geometric version of the Eulerian tour
for free (i.e. the usual clockwise ordering of edges around a vertex). We can then
walk the Eulerian tour and order the vertices in O(n) additional time.

A Cluster Sampling Application. Cluster sampling is a survey sam
pling strategy of selecting small groups (clusters) of neighboring points instead
of selecting individual points randomly distributed. Within-cluster correlation
may reduce the efficiency of such a strategy from a pure sampling viewpoint, but
that consideration is often outweighed by the economic impact of reduced travel
costs for interviewers.

A serious limitation to successfully selecting clusters from lists, however, is
the fact that proximity in the list does not guarantee proximity on the ground.
Selection of points from a list that has been ordered by performing our uniform-
weight tree-ordering algorithm on a EMST of the points will guarantee very
strong proximity correspondence. The following theorem holds:

Theorem 5 Order points in the plane by building their EMST and applying the
uniform-weight vertex tree-ordering algorithm. Then two consecutive points in
the order have a maximum link distance of six and an average link distance of
less than two.

Proof: The degree of any vertex in a EMST is less than or equal to six. Thus
the uniform-weight tree-ordering algorithm accumulates a weight of at least 1/6
with each vertex visit. Moreover, in any tree, the average degree is ^p^-

Ordering Points in Higher Dimensional Spaces
To apply the methods of the section on points in the plane to points in higher

dimensions, we must first address two issues: (1) building a EMST hi higher
dimensions, and (2) defining an Eulerian tour in higher dimensions.

There are straightforward O(n2) time algorithms for building a EMST in
higher dimensions [AHO1]. Some exact algorithms are known with complexity
slightly sub-quadratic [YAO].

Building an Eulerian tour in higher dimensions is not so straightforward. It
requires establishing a cyclic order of edges about every vertex. One possibility
is to project the edges onto some two-dimensional subspace, then order the pro
jection of the edges clockwise on that plane. Another more canonical approach,
suggested by Herbert Edelsbrunner [EDE2], is to map the edge configuration
about a vertex onto points on the surface of a sphere of dimension one less than
the space of the EMST, then apply the ordering scheme to those points on the
sphere recursively (i.e. build then- EMST and order them in a space of smaller
dimension).

In any case, if all we require is some ordering of the edges around each vertex,
we can find one in O(nlogn) time. We summarize the steps needed to convert
the problem to a tree-ordering problem.

1. Build EMST.

2. Cyclically order edges at each vertex.

71

3. Walk Eulerian tour, tree-ordering vertices.

A Sample Stratification Application. Sample stratification is a par
titioning of the universe into groups which are similar across several character
istics. The characteristics should be hi some sense comparable (dealing with
relative incomparability is sometimes known as the Scaling Problem). Stratifi
cation is often accomplished by treating the observations as n-tuples of the n
characteristics (i.e. as points in n-space) and finding a hyperplane or collec
tion of hyperplanes that optimize separation of the points across the half-spaces
or n-cells created. A more straightforward approach to stratification (and one
that would be computationally much simpler) might be to partition a EMST of
the points into branches of greatest separation. With branch-recursive ordering
methods, this operation boils down to list splitting! We at the Bureau of the
Census will be comparing results of using tree-ordering methods to the standard
more complex stratification algorithms.

Ordering Vertices of any Graph
If we are only concerned with ordering the vertices of a graph, we may think

of the graph as a tree with too many edges. So we throw away the least useful
edges until we have whittled the graph down to a tree. If the edges have costs
associated with them, we may wish to minimize the cost of the resulting tree, for
example. We know exactly how many edges to throw away. We will discard an
edge as long as it does not disconnect the graph and we still have (n — 1) edges
left. We summarize the steps needed to convert the problem to a tree-ordering
problem.

1. Build a (minimum) spanning tree.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering vertices.

Ordering Edges of any Graph
In the section on ordering vertices in a graph, we regarded our graph as having

too many edges; and we threw some away. To order the edges of our graphs, we
regard our graph as having too few vertices to be a tree; and we add vertices
by splitting the vertices of the graph and creating more vertices with the same
number of edges. Once again we use our knowledge of the edge/vertex relation
ship in a tree to know when'to stop splitting vertices. We summarize the steps
needed to convert the problem to a tree-ordering problem.

1. Split vertices.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering edges.

We must next order the tree edges about each split vertex. Then the tree edges
may be assigned a cyclic order based on selecting alternate hits from an Eulerian
tour of the corresponding edges of the derived tree.

Since we can certainly split vertices in O(nlogn) time using sorting and a
plane sweep operation, and also order edges about each vertex in some arbitrary
fashion in the same tune complexity, we can accomplish the following ordering
for the edges of any connected graph efficiently:

72

Corollary 5.1 One may find a cyclic ordering for the edges of any connected
graph in O(nlogn) time so that any two edges which are consecutive in the cyclic
ordering never have link distance greater than two in the graph.

Ordering Line Segments in Two-Dimensional Networks
This is just the graph-edge ordering problem, but with fewer decisions to make

because the Eulerian tour is given by the geometry. The word network will
also imply that the topological information of the graph permits linear-tune
generation of the ordering. The steps for converting a connected-network edge-
ordering problem to a tree-edge-ordering problem are:

1. Split vertices.

2. Walk Eulerian tour, tree-ordering edges.

Ordering Line Segments Of Networks in Higher Dimensions
The difference between this section and the section on 2-D networks lies in

establishing a cyclic ordering of edges about each vertex. There may be such
a structure implicitly or explicitly embedded in the topological structure of the
network. We summarize the steps needed to convert the problem to a tree-
ordering problem.

1. Split vertices.

2. Cyclically order edges at each vertex.

3. Walk Eulerian tour, tree-ordering edges.

Ordering Regions in the Plane
There is planar graph dual to every graph or pseudograph in the plane that is

itself a pseudograph. Every region of the plane corresponds to a vertex in the
new pseudograph; and two vertices in the new pseudograph are adjacent (share
an edge) if and only if the regions shared a face or common side. This dual is
called the adjacency pseudograph; and to reduce a pseudograph to a tree on the
same vertex set, the procedure is the same as with a graph you throw away
edges.

We summarize the steps needed to convert the problem to a tree-ordering
problem.

1. Build adjacency pseudograph.

2. FindMST.

3. Walk Eulerian tour, tree-ordering vertices.

Application to Block Numbering. Consider the problem of numbering
regions of a map in such a way that consecutively numbered regions are adjacent.
It is well known that not every arrangement of blocks can be so numbered. In
fact, when formulated as a problem in the adjacency graph, block numbering
is nothing more or less than the problem of finding a Hamiltonian path for the
adjacency graph (i.e. a path that passes through each vertex exactly once). Even

73

the problem of merely deciding whether such a path exists for an arbitrary planar
graph is NP-complete.

By throwing away edges so as to minimize the maximum degree of vertices
in the resulting pruned tree, one may guarantee that the link distance between
blocks numbered consecutively is no greater than the maximum degree of the
resulting pruned tree by the same argument used to prove theorem 5.

Multistage Sampling. Sampling is often done in stages. Regions may be
selected; and then individual households within selected regions may be subsam-
pled. Region clustering, the capability of selecting groups of nearby regions, is
important to reduce travel and other operational costs of surveys. Non-compact
region clustering involves the selection of nearby, but non-adjacent regions. Non-
compact clustering is an attempt to gain the benefits of reduced travel costs
without the negative impact of high correlation.

Ordering regions by tree-ordering a pruned version of their adjacency graph
will provide a reliable means of forming non-compact region clusters.

Ordering (n — 1) -Cells in n-Dimensional Polytopal Regions
The adjacency dual pseudograph can be constructed for higher-dimensional cell

decompositions. We may split vertices to realize the edges of the adjacency
pseudograph as edges of a tree, as we do in this section; or we may prune edges
and keep the vertices of the adjacency graph, as we do in the next section. We
summarize the steps needed to convert the problem to a tree-ordering problem.

1. Build adjacency pseudograph.

2. Split vertices.

3. Cyclically order edges at each vertex.

4. Walk Eulerian tour, tree-ordering edges.

Ordering n-Cells in n-Dimensional Cell Decompositions
We summarize the steps needed to convert the n-cell ordering problem to a

tree-ordering problem.

1. Build adjacency graph.

2. FindMST.

3. Cyclically order edges at each vertex.

4. Walk Eulerian tour, tree-ordering vertices.

CONCLUSIONS AND FOLLOW-UP

This introduction to branch-recursive orderings does not include empirical evalu
ations of the performance of those orderings. There was neither time to conduct
those evaluations nor space to include them in this restricted paper. However,
the principal reason for not assessing the performance empirically is that it is
evident that these orderings will not do very well for the usual tasks of im
age analysis, range search, and nearest-neighbor-finding as studied in the recent
comparative paper by Abel and Mark [ABEL]. Objects which are adjacent in the

74

branch-recursive ordering are fairly close in space; however, objects which are
adjacent hi space may be rather distant in the branch-recursive ordering. And
there is no easy way to predict how distant or when discontinuities will occur
with general branch-recursive orderings, as is the case with the more common
quadrant-recursive orderings. The somewhat unorthodox nearness properties
that are described in this paper should, nevertheless, prove very useful for sam
pling activities and analysis related to those activities.

The fact that many spatial entities can be realized as or identified with vertices
or edges of trees or graphs makes our results widely applicable. The following
example illustrates both strengths and weaknesses of our methods. Consider the
two tasks of (1) finding a cyclic ordering for n points all lying on a straight line,
and (2) finding a cyclic ordering for n points all lying on a circle. The reason for
considering the two tasks simultaneously is that their Euclidean Minimum Span
ning Trees are topologically the same: they are both linear trees, as illustrated
in figure 10.

Figure 10: Cyclic Ordering of Collinear and Co-circular Points

The uniform weighting strategy will cause us to skip every other point in our
numbering scheme (except at the ends of our linear tree). For the collinear points,
this is clearly optimal hi the following sense: This strategy minimizes the maxi
mum distance between neighbors (i.e. adjacent elements hi the cyclic numbering
scheme). On the other hand, for the co-circular points, the uniform weighting
strategy may produce a distance nearly double that of the optimal numbering
strategy in terms of minimizing the maximum distance between neighbors.

What this example illustrates is that we necessarily lose some shape informa
tion when we embed our data in a tree and use only the topological structure of
the tree from that point on. What the example also illustrates is that we may in
some cases get optimal performance for cyclic orderings.

REFERENCES

[ABEL] Abel, David J.,and David M. Mark, 1990, A Comparative Analysis
of Some Two-Dimensional Orderings, International Journal of Geo
graphical Information Systems, 4(1), 21-31.

75

[AHO1] Aho, Alfred, John Hopcroft, and Jeffrey Ullman, 1974, The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading,
MA.

[AHO2] Aho, Alfred, John Hopcroft, and Jeffrey Ullman, 1985, Data Struc
tures and Algorithms, Addison-Wesley, Reading, MA.

[EDE1] Edelsbrunner, Herbert, 1987, Algorithms in Combinatorial Ge
ometry, Springer-Verlag, New York.

[EDE2] Edelsbrunner, Herbert, 1990, personal communication.

[FALl] Faloutsos, Christos and Yi Rong, 1989, Spatial Access Methods Using
Fractals: Algorithms and Performance Evaluation, University of Maryland
Computer Science Technical Report Series, UMIACS-TR-89-31, CS-TR-
2214.

[FAL2] Faloutsos, Christos and Shari Roseman, 1989, Fractals for Secondary
Key Retrieval, University of Maryland Computer Science Technical Report
Series, UMIACS-TR-89-47, CS-TR-2242.

[GARE] Garey, Michael R., and David S. Johnson, 1979, Computers and
Intractability, A Guide to the Theory of NP-Completeness, W. H.
Freeman, New York.

[KARA] Harary, Frank, 1969, Graph Theory, Addison-Wesley, Reading, MA.

[KISH] Kish, Leslie, 1965, Survey Sampling, John Wiley, New York.

[MARK] Mark, David M., 1990, Neighbor-based Properties of Some Orderings
of Two-Dimensional Space, Geographical Analysis, April, 22(2), 145-
157.

[PREP] Preparata, Franco, and Michael Shamos, 1985, Computational Ge
ometry, An Introduction, Springer-Verlag, New York.

[SAAL] Saalfeld, Alan, 1990, Canonical Cyclic Orders for Points in the Plane,
submitted to Journal of Computational Geometry: Theory and
Applications, Elsevier.

[WOLT] Wolter, Kirk, and Rachel Barter, 1989, Sample Maintenance Based
on Peano Keys, presented at Statistics Canada Symposium on Analysis of
Data in Time, Ottawa, Canada.

[YAO] Yao, Andrew Chi-Chih, 1982, On Constructing Minimum Spanning Trees
in k-Dimensional Spaces and Related Problems, SIAM Journal of Com
puting, November, 11(4), 721-736.

76

