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Abstract
Spatial reasoning is very important for cartography and GISs. Most known 
methods translate a spatial problem to an analytical formulation to solve 
quantitatively. This paper shows a method for formal, qualitative reasoning 
about cardinal directions. The problem addressed is how to deduce the 
direction from A to C, given the direction from A to B and B to C. It first 
analyzes the properties formal cardinal direction system should have. It 
then constructs an algebra with the direction symbols (e.g., {N, E, S, W}) 
and a combination operation which connects two directions. Two examples 
for such algebras are given, one formalizing the well-known triangular 
concept of directions (here called cone-shaped directions) and a projection- 
based concept. It is shown that completing the algebra to form a group by 
introducing an identity element to represent the direction from a point to 
itself simplifies reasoning and increases power. The results of the 
deductions for the two systems agree, but the projection bases system 
produces more 'Euclidean exact' results, in a sense defined in the paper.

1. Introduction
Humans reason in various ways and in various situations about space and 
spatial properties. The most common examples are navigational tasks in 
which me problem is to find a route between a given starting point and an 
end point. Many other examples, such as decisions about the location of a 
resource, which translates in a mundane household question like "where 
should the phone be placed?", or the major problem of locating a nuclear 
waste facility require spatial reasoning. Military applications using spatial 
reasoning for terrain analysis, route selection in terrain, and so on. (Piazza 
and Pessaro 1990) are frequent. Indeed, spatial reasoning is so widespread 
and common that it is often not recognized as a special case of reasoning.

Spatial reasoning is a major requirement for a comprehensive GIS and 
several research efforts are currently addressing this need (Abler 1987, p. 
306, NCGIA 1989, p. 125, Try and Benton 1988). It is important that a 
GIS can carry out spatial tasks, which include specific inferences based on
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spatial properties, in a manner similar to a human expert and that there are 
capabilities that explain the conclusions to users in terms they can follow 
(Try and Benton 1988, p. 10). In current GIS systems, such spatial 
reasoning tasks are most often formalized by translating the situation to 
Euclidean geometry then using an analytical treatment for finding a 
solution. This is admittedly not an appropriate model for human reasoning 
(Kuipers 1978, p. 143) and thus does not lead to acceptable explanations, 
but Euclidean geometry is a convenient and sometimes the only known 
model of space available for rigorous analytical approaches. A similar 
problem was found in physics, where the well known equations from the 
textbook were not usable to build expert systems. Using more qualitative 
than quantitative approaches, a formalization of the physical laws we use in 
our everyday lives was started, the so called 'naive physics' (Hayes 1985, 
Hobbs and Moore 1985, Weld and de Kleer 1990).

This paper addresses a small subset of spatial reasoning, namely qualitative 
reasoning with cardinal directions between point-like objects. We assume a 
2-dimensional space and exclude radial reference frames, as is customary 
in Hawaii (Bier 1976). We want to establish rules for inference from a set 
of directional data about some points to conclude other directional relations 
between these. We follow McDermott and Davis (1984, p. 107) in 
assuming that such basic capabilities are necessary for solving the more 
complex spatial reasoning problems. A previous paper with the terms 
'qualitative reasoning' in its title (Dutta 1990) is mostly based on analytical 
geometry. In contrast, our treatment is entirely qualitative and we use 
Euclidean geometry only as a source of intuition in Section 4 to determine 
the desirable properties of reasoning with cardinal directions.

Similarly, the important field of geographic reference frames in natural 
language (Mark, et al. 1987) has mostly been treated using an analytical 
geometry approach. Typically, spatial positions are expressed relative to 
positions of other objects. Examples occur in everyday speech in forms like 
"the church is west of the restaurant". In the past these descriptions were 
translated into Cartesian coordinate space and the mathematical 
formulations analyzed. A special problem is posed by the inherent 
uncertainties in these descriptions and the translation of uncertainty into an 
analytical format. McDermott and Davis (1984) introduced a method using 
'fuzz' and in (Dutta 1988) and (Dutta 1990) fuzzy logic (Zadeh 1974) is 
used to combine such approximately metric data.

The problem addressed in this paper, described in practical terms, is the 
following: In an unknown country, one is informed that the inhabitants use 
4 cardinal directions, by the names of 'al' "bes 1 'eel' and 'des', equally 
spaced around the compass. One also receives information of the type

Town Alix is al of Beta, Celag is eel of Diton, Beta is des of Diton,
Efag is eel of Beta, etc.

We show how one can assert that this is sufficient information to conclude 
that Alix is al of Efag.

Our concern is different from Peuquet (Peuquet and Zhan 1987), who gave 
'an algorithm to determine the directional relationship between arbitrarily- 
shaped polygons in the plane'. She started with two descriptions of the
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shape of two objects given in coordinate space and determined the 
directional relationship (we say the cardinal direction) between the two 
objects. We are here concerned with several objects. Cardinal directions 
are given for some pairs of them and we are interested in the rules of 
inference that can be used to deduce others.

This paper lists a set of fundamental properties cardinal directions should 
have and defines what exact and approximate qualitative spatial reasoning 
means. It then gives two possible methods to construct a system of cardinal 
directions. They seem quite different, one based on a cone shaped or 
triangular area for a direction, the other based on projections, but they 
result in very similar conclusions. The projection based is slightly more 
powerful and easier to describe. The set of desirable properties are 
formally contradictory and contain some approximate rules, but these seem 
to pose more of a theoretical than a practical problem; however, clearly 
more research is necessary to clarify this point.

An approach that is entirely qualitative, and thus similar to the thrust in 
this paper, is the work on symbolic projections. It translates exact metric 
information (primarily about objects in pictures) in a qualitative form 
(Chang, et al. 1990, Chang, et al. 1987). The order in which objects 
appear, projected vertically and horizontally, is encoded in two strings, and 
spatial reasoning, especially spatial queries, are executed as fast substring 
searches (Chang, et al. 1988).

This work is part of a larger effort to understand how we describe and 
reason about space and spatial situations. Within the research initiative 2, 
'Languages of Spatial Relations' of the NCGIA (NCGIA 1989) a need for 
multiple formal descriptions of spatial reasoning both quantitative- 
analytical and qualitative became evident (Frank 1990, Frank and Mark 
1991, Mark and Frank 1990, Mark, et al. 1989). Terence Smith presented 
some simple examples during the specialist meeting .

"The direction relation NORTH. From the transitive property of 
NORTH one can conclude that if A is NORTH of B and B is NORTH 
of C then A must be NORTH of C as well (Mark, et al. 1989)"

The organization of this paper is as follows: In Section 2 we introduce the 
concept of qualitative reasoning and relate it to spatial reasoning using 
analytical geometry; we define 'Euclidean exact' qualitative reasoning 
based on a homomorphism. In the following section, we list the properties 
of cardinal directions and in Sections 4 and 5 we discuss two different 
systems for reasoning with directions and compare them. We conclude the 
paper with some suggestions for future research.

2. Qualitative approach

2.1. Qualitative reasoning
In this paper, we present a set of qualitative deduction rules for a subset of 
spatial reasoning, namely reasoning with cardinal directions. In qualitative 
reasoning a situation is characterized by variables which 'can only take a 
small, predetermined number of values' (de Kleer and Brown 1985, p. 
116) and the inference rules use these values and not numerical quantities
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approximating them. It is clear that the qualitative approach loses some 
information, but this may simplify reasoning. We assume that a set of 
propositions about the relative positions of objects in a plane is given and 
we have to deduce other spatial relationships (Dutta 1990, p. 351)

"Given: A set of objects (landmarks) and
A set of constraints on these objects.

To find: The induced spatial constraints".
The relations we are interested in are the directions, expressed as symbols 
representing the cardinal direction.

Without debating whether human reasoning follows the structure of 
prepositional logic, we understand that there is some evidence that human 
thinking is at least partially symbolic and qualitative (Kosslyn 1980, Lakoff 
1987, Pylyshyn 1981). Formal, qualitative spatial reasoning is crucial for 
the design of flexible methods to represent spatial knowledge in GIS and 
for constructing usable GIS expert systems (Buisson 1990, McDermott and 
Davis 1984). Spatial knowledge is currently seldom included in expert 
systems and is considered 'difficult' (Bobrow, et al. 1986, p.887).

In terms of the example given in the introduction, the following chain of 
reasoning deduces a direction from Alix to Efag:

1. Use 'Alix is al of Beta' and 'Efag is eel of Beta', two statements 
which establish a sequence of directions Alix - Beta - Efag.

2. Deduce 'Beta is al of Efag' from 'Efag is eel of Beta'
3. Use a concept of transitivity: 'Alix is al of Beta 1 and 'Beta is al of

Efag' thus conclude 'Alix is al of Efag'.
We shall formalize such rules and make them available for inclusion in an 
expert system.

2.2. Advantage of qualitative reasoning
A qualitative approach uses less precise data and therefore yields less 
precise results than a quantitative one. This is highly desirable (Kuipers 
1983, NCGIA 1989, p. 126), because

  precision is not always desirable, and
  precise, quantitative data is not always available.

Qualitative reasoning has the advantage that it can deal with imprecise data 
and need not translate it to a quantitative form. Verbal descriptions are 
typically not metrically precise, but are sufficient for finding the way to a 
friend's home, for example. Imprecise descriptions are necessary in query 
languages where one specifies some property that the requested data should 
have, for example a building about 3 miles from town. It is difficult to 
show this in a figure, because the figure is necessarily overly specify or 
very complex. Qualitative reasoning can also be used for query 
simplification to transform a query from the form in which it is posed to 
another, equivalent one that is easier to execute.
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o
A town

Figure 1: Overspecific visualization Figure 2: Complex visualization

In other cases, the available data is in qualitative form, most often text 
documents. For example, (Tobler and Wineberg 1971) tried to reconstruct 
spatial locations of historic places from scant descriptions in a few 
documents. Verbal information about locations of places can leave certain 
aspects imprecise and we should be able to simulate the way humans deduce 
information from such descriptions, (for example in order to automatically 
analyze descriptions of locations in natural science collections) 
(McGranaghan 1988, McGranaghan 1989, McGranaghan 1989).

2.3. Exact and approximate reasoning
We compare the result of a qualitative reasoning rule with the result we 
obtain by translating the data into analytical geometry and applying the 
equivalent functions to them. If the results are always the same, i.e., if we 
have a homomorphism, we call the qualitative rule Euclidean exact. If 
the qualitative rule produces results, at least for some data values, which 
are different from the ones obtained from analytical geometry, we call it 
Euclidean approximate.

I- !•
dir 

Figure 3: Homomorphism

This is a general definition, which applies to the operation to combine two 
directions and deduce the direction of the resultant (introduced in 4.3, see 
figure 5). We establish a mapping from analytical geometry to symbolic 
directions using a function dir (PI, P2), which maps from a pair of points 
in Euclidean space to a symbolic direction (e.g., west). Vector addition, 
with the regular properties is carried to (i.e., replaced with) the symbolic 
combination oo.

DEFINITION: a rule for qualitative reasoning on directions is called 
Euclidean exact (for short 'exact') if dir (Pi, P2) is a homomorphism 
(Figure 3).

dirCPi.Pi) oo dir (P2 , P3) = dir ((P,, P2) + (P2 , P3))
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2.4. Formalism used
Our method is algebraic (specifically, a relation algebra) and the objects we 
operate on are the direction symbols S for south, E for west, not the points 
in the plane. Arguments involving pairs of points, standing for line 
segments between them, are used only to justify the desirable properties we 
list.

An algebra consists of
  a set of symbols D, called the domain of the algebra - comparable to 

the concept of data type in computer programming languages (e.g., D 
= {N, E, W, S)

  a set of operations over D, comparable to functions in a computer 
program (primarily operations to reverse and to combine directions), 
and

  a set of axioms that set forth the basic rules explaining what the 
operations do (Gill 1976, p. 94).

Specifically, we write (Pi, P2) for the line segment from PI to P2, and dir 
(Pi,Pa) = di for the operation that determines the direction between two 
points PI and P2, with di the direction from P! to P2 expressed as one of 
the cardinal direction symbols.

3. General properties of directions between points
We are interested in two types of operations applicable to direction:

  the reversing of the order of the points and thus the direction of the 
line segment (the inverse operation), and

  the combination of two directions between two pairs of consecutive 
points (the combination operation).

Using geometric figures and conclusions from manipulations of line 
segments, we deduce here properties of these two operations. These 
properties form then the basis for the qualitative reasoning systems defined 
in the next two sections.

We define direction as a function between two points in the plane that maps 
to a symbolic direction:

dir: p x p -> D.
The symbols available for describing the direction depend on the specific 
system of directions used, e.g., {N, E, S, W} or more extensive {N, NE, 
E,SE, S, SW,W, NW).

In the literature, it is often assumed that the two points must not be the 
same, i.e., the direction from a point to itself is not defined. We introduce 
a special symbol, which means 'two points too close that a meaningful 
direction can be determined', and call it the identity element 0. This makes 
the function total (i.e., it has a result for all values of its arguments),

for all P dir(P, P) = 0. 
3.1. Reversing direction
Cardinal directions depend on the order in which one travels from one 
point to the other. If a direction is given for a line segment between points
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PI and P2, we need to be able to deduce the direction from P2 to PI (Figure 
4). Already (Peuquet and Zhan 1987) and (Freeman 1975) have stressed 
the importance of this operation: "Each direction is coupled with a 
semantic inverse". We call this 'inverse' (this name will be justified in 
4.3.5) written as 'inv' .

inv: d -> d such that inv (dir (P^ P2)) = dir (P2 , PI) 
and

inv (inv (d)) = d because inv (inv (P1,P2)) = inv (P2 , PI) = 
(P1,P2).

P2
"^

P3 
P1 

Figure 5: Combination

3.2. Combination
Two directions between two contiguous line segments can be combined into 
a single one. The combination operation is defined such that the end point 
of the first direction is the start point of the second.

comb : d x d -> d , always written in infix format: di    d2 = da 
with the meaning:

dir (Pi,P2)  o dir (P2 , P3) = dir (Plt P3).
This operation is not commutative, but is associative, and has an identity 
and an inverse.

Combinations of more than two directions should be independent of the 
order in which they are combined (associative law) and we need not use 
parenthesis:

aoo(booc) = (a  b)  c = a ob oc (associative law) 
This rule follows immediately from Figure 6 or from the definition of 
combination:

dir (P t , P2) oo ( dir (P2, P3 )    dir (P3 ,P4)) =
dir (P,, P2) oo dir (P2 , P4) = dir (P,, P4).
( dir (Pi, P2) oo dir (P2, P3)) oo dir (P3 ,P4) =
dir (P,, P3) oo dir (P3 , P4) = dir (P t , P4).

P3

P1
Figure 6: Associativity
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The definition of an identity element states that adding the direction from a 
point to itself, dir (Pi,PI) to any other direction should not change it.

doo() = 0ood = dfor any d.
In algebra, an inverse to a binary operation is defined such that a value 
combined with its inverse, results in the identity value. From Figure 4 it 
follows that this is just the inverses of the given line segment:

dir (Pi, P2) oo dir (P2 , P,) = dir (P l5 P,). 
In case that two line segments are selected as in Figure 7, such that

dir (Pi, P2) = d! and dir (P2 , P3) = d2 = inv (dj) 
computing the combination

dir (Pi, P2) oo dir (P2 , P3 ) = di    inv (di) = 0
is an approximation and not Euclidean exact. The degree of error depends 
on the definition of 0 used and the difference in the size of the line 
segments - if they are the same, the inference rule is exact.

This represents a type of reasoning like New York is east of San Francisco, 
San Francisco is west of Philadelphia; thus the direction from New York to 
Philadelphia is 'too close' in this reference frame to determine a direction 
different from 'the same point' (which is defined here as an additional 
element of the possible values for a cardinal direction).

• P2

Figure 7: d    inv (d) 

We find that this combination is 'piece-wise' invertable:
inv ( a oo b) = inv (a) oo inv (b).

Combinations of directions must have the special property that combining 
two line segments with the same direction results in the same direction. In a 
relation-oriented approach, this is a transitivity rule (as quoted in the 
introduction).

dir (P,, P2) = dir (P2 , P3 ) = d then dir (Pt , P3) = d
or short: d °° d = d, for any d.

3.3. Summary of Properties of Cardinal Directions
The basic rules for cardinal directions and the operations of inverse and 
combination are:

  The combination operation is associative (I 1 ).
  The direction between a point and itself is a special symbol 0, called 

identity (1) (2')
  The direction between a point and another is the inverse of the 

direction between the other point and the first (2) (3').
  Combining two equal directions results in the same direction 

(idempotent, transitivity for direction relation) (3).
  The combination can be inverted (4).
  Combination is piece-wise invertible (5).
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dir(Pi,PO = 0 (1) d o(dood) = (d od)ood (I 1 ) 
dir (?!, P2) = inv (dir (P2 , PI)) (2) dooO = 0  d = d (2 1 ) 
d  d = d (3) dooinv(d) = 
for any a, b in D exist unique x in D

such that
a oo x = b and x oo a = b (4) 

inv (a oo b) = inv (a) oo inv (b) (5)

Properties of direction Group properties
Several of the properties of directions are similar to properties of algebraic 

groups or follow immediately from them. Unfortunately, the idempotent 
property (transitivity for direction relation) (3) is in contradiction with the 
remaining postulates, especially the definition of identity (3'). Searching for 
an inverse x for any d oo x = 0, we find x = d (using (3)) or x = 0 (using 3'), 
which contradicts the uniqueness of x (4). It is thus impossible to construct a 
system which fulfills all requirements at the same time. Human reasoning 
seems not to insist on associativity.

4. Cardinal directions as cones
The most often used, prototypical concept of cardinal directions is related 
to the angular direction between the observer's position and a destination 
point. This direction is rounded to the next established cardinal direction. 
The compass is usually divided into 4 major cardinal directions, often with 
subdivisions for a total of 8 or more directions. This results in cone shaped 
areas for which a symbolic direction is applicable. We limit the 
investigation here to the case of 4 and 8 directions. This model of cardinal 
direction has the property that 'the area of acceptance for any given 
direction increases with distance1 (Peuquet and Zhan 1987, p. 66) (with 
additional references) and is sometimes called 'triangular'.

4.1. Definitions with 4 directional symbols
We define 4 cardinal directions as cones, such that for every line segment, 
exactly one direction from the set of North, East, South or West applies.

for every PI, P2 (Pi * P2) exist d (Pi, P2) with d in D4 ={N, S, E, 
W}.

South 

Figure 8: Cone-shaped directions

An obvious operation on these directions is a quarter-turn, anti-clock-wise 
(mathematically positive) q, such that >

q: d -> d, with q(N) = E, q(E) = S, q(S) = W, q (W) = N
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and four quarter turns are an identity:
q (q (q (q (d))))= q< (d) = d. 

Reversing a direction is equal to 2 quarter turns (or one half turn)
inv (d) = q2 (d).

Finally, we just define the combination of two directions, such that 
transitivity holds

d ood = d 
but every other combination remains undefined.

These definitions would fulfill the requirements for the direction except 
that we did not define a symbol for identity. Very few combinations of 
symbols produce results.

4.2. Completion with identity
Introducing an identity element, we eliminate the restriction in the input 
values for the direction function

for every PI, P2 exist d (Plf P2) with d in D5 = {N, S, E, W, 0}. 
A quarter turn on the identity element 0 is 0

q(0)=0 
and thus

inv ( 0 ) = 0 from q(q(0)) = q (0) = 0
dooO = 0«>d = d from group properties
0 oo 0 = 0 from d oo d = d.

The inverse must further have the property that a direction combined with 
its inverse is 0

d oo inv (d) = 0.
These definitions contain the previously listed ones as subset D4 (not 
subgroup, because identity is not in the subset). Both the set D5 and the 
subset IXj is closed under the operations 'inverse' and 'combination'.

From the total of 25 different combinations, one can only infer 13 cases 
exact and 4 approximate; other combinations do not yield an inference 
result with these rules. Summarized in a table (lower case indicate 
approximate reasoning):

N 
E 
S 
W 
0

N
N 

o 

N

E

E

o 
E

S
o 

S 

S

W

0

W 
W

0
N 
E 
S 
W 
0

4.3. Directions in 8 or more cones
One may use a set of 8 cardinal directions D9 = {N, NE, E, SE, S, SW, W, 
NW, 0}, using exactly the same formulae. In lieu of a quarter turn, we 
define a turn of an eighth:
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e (N) = NE, e (NE) = E, e (E) = SE, .... , e (NW) = N, e (0) = 0 
with 8 eighth turns being the identity

e8 (d) = d 
and inverse now equal to 4 eighth turns

inv (d) = e4 (d).
All the rules about combination of direction, etc., remain the same and one 
can also form a subset {N, NE, E, SE, S, SW, W, NW} without 0.
An approximate averaging rule combines two directions that are each one 
eighth off. For example, SW combined with SE should result in S, or N 
combined with E should result in NE.

e (d) oo _e (d) = d
with -e (d) = e7 (d), or one eight turn in the other direction) 

One could also assume that if two directions are combined that are just one 
eights turn apart, one selects one of the two (S combined with SE results in 
S, N combined with NW results in NW).

e(d) oo d = d and d    e(d) = d 
Human beings would probably round to the simple directions N, E, W, S, 
but formalizing is easier if preference is given to the direction which is 
second in the turning direction. This is another rule of approximate 
reasoning.

This rule can then be combined with other rules, for example to yield 
(approximate)

e(d) oo inv d = 0 and e(d) oo e (inv (d)) = 0.
In this system, from all the 81 pairs of values (64 for the subset without 0) 
combinations can be inferred, but most of them only approximately. Only 
24 cases (8 for the subset) can be inferred exactly; 25 result in a value of 0 
and another 32 give approximate results. We can write it as a table, where 
lower case denotes Euclidean approximate inferences:

N
NE
E
SE
S
SW
W
NW
0

N
N
n
ne
0

o
0

nw
n
N

NE
n
NE
ne
e
o
o
o
n
NE

E
ne
ne
E
e
se
0

o
o
E

SE
0

e
e
SE
se
s
o
o
SE

S
o
o
se
se
S
s
SW

0

S

SW
0
0

0

s
s
SW
SW

W

SW

W
nw
o
o
o
SW

SW

W
W

W

NW
n
N
o
0

o
W

W

NW
NW

0
N
NE
E
SE
S
SW
W
N-W
0

5. Cardinal directions defined by projections

5.1. Directions in 4 half-planes
Four directions can be defined, such that they are pair-wise opposites and 
each pair divides the plane into two half-plains. The direction operation 
assigns for each pair of points a combination of two directions, e.g., South
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and East, for a total of 4 different directions. This is an alternative 
semantic for the cardinal direction, which can be related to Jackendoff s 
principles of centrality, necessity and typicality (Jackendoff 1983, p. 121). 
Peuquet pointed out that directions defined by half-planes are related to the 
necessary conditions, whereas the cone-shaped directions give the typical 
condition (Mark, et al. 1989, p. 24).

North
West

South

NW
East

SW

NE

SE
Figure 9: Two sets of half-planes Figure 10: Directions defined by half-planes

Another justification for this type of reasoning is found in the structure 
geographic longitude and latitude imposes on the globe. Cone directions 
better represent the direction of 'going toward', whereas the 'half-plane1 
(or equivalent parts of the globe) better represents the relative position of 
points on the earth. However, the two coincide most of the time. To reach 
an object which is northhaif-piane on the globe one has to go northco^.

For half-plane directions, one defines the cardinal directions as different 
from each other and E - W and N - S pair-wise inverse (Peuquet and Zhan 
1987, p. 66). In this system, the two projections can be dealt with 
individually. Each of them has the exact same structure and we describe 
first one case separately and then show how it combines with the other.

The N-S case, considered the prototype for the two cases E-W and N-S has 
the following axioms:

for every P,, P2 (P, * P2) dirns (P,, P2)= dns with dns in {N,S} 
The inverse operation is defined such that inv (inv (d)) = d holds:

inv (N) = S, inv (S)= N.
Next we define the combination of two directions, such that transitivity 
holds:

for all d in {N,S} d  o d = d (which is N    N = N, S    S = S) 
We now combine the two projections in N-S and E-W to form a single 
system, in which we have for each line segment one of 4 combinations of 
directions assigned.

D4 = { NE, NW, SE, SW}
We label the projection operations by the directions they include (not the 
direction of the projection):

pns : d4 -> dns , dns in {N, S}
pew :d4->dew, dew in {E, W} 

and a composition operation
c: dns x dew -> d9 such that c ( pns (d), pew (d)) = d. 

The rules for dew are the same as for dns explained above, replacing N by E 
and S by W:
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inv (E) = W, inv (W) = E
E    E = E, W o\V = W. 

The inverse operation is defined as the inverse applied to each projection:
inv (d) = c (inv (d^), inv (dew)) 

and combination is similarly defined as combination of each projection
dl oo d2 = C (dns (dl) oo dns (d2), dew (dl) oo dew (d2)).

Unfortunately, combination is defined only for the four cases
NE oo NE = NE NW oo NW = NW
SE oo SE = SE SW oo SW = SW 

and others, like
NEooNW

which should approximately result in N, cannot be computed. This system, 
lacking an identity, is not very powerful, as only 4 of the 16 combinations 
can be inferred.

5.2. Directions with neutral zone
We can define the directions such that points which are near to due north 
(or west, east, south) are not assigned a second direction, i.e., one does not 
decide if such a point is more east or west. This results in a division of the 
plane into 9 regions, a central neutral area, four regions where only one 
direction letter applies and 4 regions where two are used.We define for N- 
S three values for direction dns {N, P, S} and for the E - W direction the 
values dew {E, Q, W}.

NW

W

SW

NE

SE
Figure 11: Directions with neutral zone

It is important to note, that there is no determination of the width of the 
'neutral zone' made. Its size is effectively decided when the directional 
values are assigned and a decision is made that P2 is north (not north-west 
or north-east) of PI. We only assume that these decisions are consistently 
made. Similar arguments apply to the neutral zone of cone shaped 
directions, but they are not as important.

Allowing a neutral zone, either for the cone or projection based directions 
introduces an aspect of 'tolerance geometry'. Strictly, whenever we assign 
identity direction dir (Pi, P2) = 0 for cases where PI * P2 we violate the 
transitivity assumption of equality.

dir (Plf P2) = 0 and dir (Pi, P3 ) = 0 need not imply dir (P2 , P3 ) = 0 
A tolerance space (Zeeman 1962) is mathematically defined as a set (in this 
case the points P) and a tolerance relation. The tolerance relation relates 
objects which are close, i.e., tol (A, B) can be read A is sufficiently close to 
B that we can or need not differentiate between them. A tolerance relation
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is similar to an equality, except that it admits small differences. It is 
reflexive and symmetric, but not transitive (as an equality would be)

tol (A, B)
tol (A, B) = tol (B, A). 

A tolerance relation can be applied to geometric problems (Robert 1973).
Using the same methods as in 5.1 for the definition of the operations in 
each projection first and then combine them, we find for the inverse 
operation the following table:

d= NE N NW E WO SE S SW 
inv(d)= SW S SE W E 0 NW N NE 

The combination operation, again defined as the combination of each 
projection, allows one to compute values for each combination. Written as 
a table (again, lower case indicates approximate reasoning):

N
NE
E
SE
S
SW
W
NW
0

N
N
NE
NE
e
o
w
NW
NW
N

NE
NE
NE
NE
e
e
o
n
n
NE

E
NE
NE
E
SE
SE
s
o
n
E

SE
e
e
SE
SE
SE
s
s
o
SE

S
o
e
SE
SE
S
SW
SW
w
S

SW
w
o
s
s
SW
SW
SW
w
SW

W
NW
n
o
s
SW
SW
w
NW
W

NW
NW
n
n
o
w
w
NW
NW
NW

0
N
NE
E
SE
S
SW
W
NW
0

The system is not associative, as
(N oo N) oo S = N oo S = 0 but N oo (N oo S) = N oo N = N. 

In the half-plane based system of directions with a neutral zone, we can 
deduce a value for all input values for the combination operation (81 total), 
56 cases are exact reasoning, not resulting in 0, 9 cases yield a value of 0, 
and another 16 cases are approximate.

6. Assessment
The power of the two systems which lack an identity element, the 4 
direction cone-shaped and the 4 half-plane directional system, is very 
limited; most combinations cannot be resolved. The two systems with 8 
direction and identity, the 8 direction cone-shaped and the 4 projection 
based directional system, are comparable. Each system uses 9 directional 
symbols, 8 cone directions plus identity on one hand, the Cartesian product 
of 3 values (2 directional symbols and 1 identity symbol) for each 
projection on the other hand. The reasoning process in the half-plane based 
system uses fewer rules, as each projection is handled separately with only 
two rules. The cone-shaped system uses two additional approximate rules 
which are then combined with the other ones. An actual implementation 
would probably use a table look-up for all combinations and this would not 
make a difference.
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Both systems violate some of the desired properties. One can easily observe 
that associativity is not guaranteed, but the differences seem to not be very 
significant.

An implementation of these rules and comparison of the computed 
combinations with the exact value was done and confirms the theoretical 
results. Comparing all possible 106 combinations in a grid of 10 by 10 
points (with a neutral zone of 3 for the projection based directions) shows 
that the results for the projection based directions are correct in 50% of the 
cases and in only 25% for cone-shaped directions. The result 0 is the 
outcome of 18% of all cases for the projection based, but 61% for the 
cone-shaped directions. The direction-based system with an extended 
neutral zone produces a result in 2% of all cases that is a quarter turn off, 
otherwise the deviation from the correct result is never more than one 
eighth of a turn (namely in 13% of all cases for cone-shaped and 26% for 
projection based direction systems). In summary, the projection based 
system of directions produces a result in 80% of all cases that is within 45  
and otherwise the value 0.

7. Conclusions
This paper introduces a system for inference rules for completely 
symbolic, qualitative spatial reasoning with cardinal distances. We have 
first stressed the need for symbolic, qualitative reasoning for spatial 
problems. It is important to construct inference systems which do not rely 
on quantitative methods and need not translate the problem to analytical 
geometry, as most of the past work did. The systems investigated are 
capable of resolving any combination of directional inference using a few 
rules. Returning to our example in the introduction, we cannot only assert 
that Alix is al of Efag, but also that Alix is al-des from Diton and Celag, 
etc.
We used geometric intuition and the definition of a direction as linking two 
points. From this we deduced a number of desirable properties for a 
system to deal with cardinal directions. We use an algebraic approach and 
define two operations, namely inverse and combination. We found several 
properties, e.g.,

- the direction from a point to itself is a special value, meaning 'too 
close to determine a direction'

- every direction has an inverse, namely the direction from the end 
point to the start point of the line segment

- the combination of two line segments with the same direction result in 
a line segment with the same direction.

We defined the notion of 'Euclidean exact' and 'Euclidean approximate' as 
properties of a qualitative spatial reasoning system. A deduction rule is 
called 'Euclidean exact' if it produces the same results as Euclidean 
geometry operations would.

We then investigated two system for cardinal directions, both fulfilling the 
requirements for directions. One is based on cone-shaped (or triangular) 
directions, the other deals with directions in two orthogonal projections.
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Both systems, if dealing with 4 cardinal directions, are very limited and 
when dealing with 8 directions, still weak. The introduction of the identity 
element simplifies the reasoning rules in both cases and increases the power 
for both cone and projection based directional systems. The deductions in 
this section use only the algebraic properties and does not rely on 
geometric intuition or properties of line segments.

Both systems yield results for all the 81 different inputs for the 
combination operation. But the projection based system more often yields 
an Euclidean exact result than the cone based one (49 vs. 25 cases). It also 
produces the value 0 less often (9 vs. 25 cases).

Another important result is that the two systems do not differ substantially 
in their conclusions, if definite conclusions can be drawn, i.e., not the value 
0. This reduces the potential for testing with human subjects to find out 
which system they use, observing cases where the conclusion to use one or 
the other line of reasoning would yield different results.

We have implemented these deduction rules and compared the results 
obtained for all combinations in a regular grid. The projection based 
system results in 53% of all cases in exact results and in another 26% in 
results which are not more than 45  off. In 18% of all cases the application 
of the rules yields a value of 0. The results for the cone-shaped directions 
are less accurate. It will be interesting to see how this accuracy compares 
with human performance but also if it is sufficient for expert systems and 
for query and search optimization. The methods shown here can be used to 
quickly assess if the combination of two directions yields a value that falls 
within some limits and thus a more accurate and slower computation should 
be done.

There is not much previous work on qualitative spatial reasoning and 
several different directions for work remain open:

- Qualitative reasoning using distances,
- Combining reasoning with distances and directions,
- Hierarchical system for qualitative reasoning,
- Directions of extended objects, and
- Reasoning systems, human beings use.

Qualitative reasoning using distances - There is a good, 
mathematically based definition for distance measures expressed as real 
numbers. This can probably be carried over to qualitative distance 
expression, e.g., {Near, Far} or {Near, Intermediate and Far}, and rules 
for symbolic combinations similar to the one listed here deduced.

Combining reasoning with distances and directions - Combining 
the reasoning with directions and distances can be more than just 
combining two orthogonal systems; there are certainly interesting 
interactions between them (Hemandez 1990). Most of the approximate 
reasoning rules are based on the assumption that the distances between the 
points discussed are about equal. This is not as unreasonable as it may 
sound, as directional reasoning is probably more often carried out 
regarding objects of the same import and thus at about the same distance.
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Nevertheless, it is a weak assumption and further work should approach 
spatial reasoning on distances and then combine the two.

Hierarchical systems for qualitative reasoning - A system for 
reasoning with distances differentiating only two or three steps of farness is 
quite limited. Depending on the circumstances a distance appears far or 
near compared to others. One could thus construct a system of 
hierarchically nested neighborhoods, wherein all points are about equally 
spaced. Such a system can be formalized and may quite adequately explain 
some forms of human spatial reasoning.

Distances and directions of extended objects - The discussion in this 
paper dealt exclusively with point-like objects. This is a severe limitation 
and avoided the difficult problem of explaining distances between extended 
objects. Peuquet in (Peuquet and Zhan 1987) tried to find an algorithm that 
gives the same result than Visual inspection'; however, visual inspection 
does not yield consistent results. It might be useful to see if sound rules, 
like the above developed ones, may be used to resolve some of the 
ambiguities.

What system of qualitative reasoning do humans use? - We can
also ask, which one of the systems proposed humans use. For this, one has 
to see in which cases different systems produce different results and then 
test human subjects to see which one they employ. This may be difficult for 
the cone and projection based direction system, as their deduction results 
are very similar. Care must be applied to control for the area of 
application, as we suspect that different types of problems suggest different 
types of spatial reasoning.
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