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ABSTRACT

This paper discusses the nature of models applied primarily for 
environmental data, where, theoretically, data collection is not restricted 
in terms of resolution. Once these data are entered into a geographical 
information system, its data structure should also be adjusted to the 
underlying model. This adjustment can determine a range of scales for 
spatial primitives to be efficiently handled by the system. The paradox of 
data models, in terms of what is an object rather than a group of points, is 
shown with an example. It is concluded that there may not be a generally 
best resolution for a given environmental variable to be mapped.

INTRODUCTION

Resolution, as such, would be most frequently defined in 
dictionaries as technical limitation or characteristics of some kind of a 
system. Obviously it is associated with "the minimum difference between 
two independently measured or computed values which can be 
distinguished by measurement or analytical methods" (NCDCDS, 1988). 
Concerning a geographical information system (GIS), this definition 
would determine our task: Target objects to be mapped should be defined 
so that they can be distinguished from each other. This formal 
requirement would subsequently determine the amount of necessary 
detail to represent these objects. With abstract spatial entities defined, 
attribute properties can easily be assigned to them: census tracts have a 
population, square meters do not. In most instances of environmental 
mapping, however, the problem is faced from a different angle. First, the 
spatial entities should be defined according to which attributes can be 
assigned, since, for example, a census tract may not have high suitability 
for wheat. Secondly, the definition above treats distinguishability as a 
dichotomous variable and does not specify levels of accuracy. This is 
primarily due to the still existing gap in understanding the relationship 
between spatial and non-spatial resolution (see Dueker, 1979 for early 
reference) that can be referred to respectively as a 
recognition/identification problem in the mapping space and in the 
feature (or measurement) space (see Fig.l).

Let us treat the above outlined apparent contradiction in a 
"historical" context, i.e. with the analysis of the considerably long history 
of philosophical and sophisticated discussions in the GIS-era about the 
relationship of geometry and attributes, as well as their respective 
accuracies. There are numerous approaches to such issues from 
geosciences, cartography, statistics, etc., but unfortunately the more 
authoritative definitions read, the more confusing they are.

15



mapping space

• llrlbule-1

attribute-2

feature space

x y z attribute- 1 attribute-2 • • • class attribute- 1 attribute-2- •

INTERPOLATIO

CLASSIFICATION

Figure 1.
Schematic representation of the relationship 

between spatial and non-spatial data characteristics

The examination of the problem is organized as follows. Section 1 
describes the major distinct approaches, which deserve much attention. I 
would argue that, although some of the technical ideas have been around 
for two decades or more, their authors might have wanted to use and 
interpret them in an inadequate way. Therefore a significant section is 
devoted to the mathematical models and some examples are elaborated 
on to prove their use. Section 2 then introduces an uncertainty 
relationship between spatial resolution and attribute accuracy. It is an 
extension of the "control one, measure another" scheme (Sinton, 1978), 
because it shows how resolution will vary in the mapping space once 
attribute accuracy is fixed, and vice versa. Section 3 presents an 
illustrative ecological site characterization example.

APPROACHES TO RESOLUTION

The nature of the approaches to resolution issues in mapping 
varies because the primary task is considered to be different: (1) in the 
geosciences it is assumed to be based on stochastic signal reconstruction 
which is also the most popular view of those in remote sensing and
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image processing, (2) in "conventional" cartography it is more or less 
loosely linked to scale and observable detail, while (3) in the jargon of 
digital cartography ("data modelers") representation and model-fitting are 
the preferred key terms. For this discussion let us use an "ultimate" 
working definition of our task: derive information, or in other words, 
make a prediction at a "non-visited" site, where site refers to both 
mapping and feature spaces. Additionally, when discussing these 
approaches, one should not forget that all our mathematical tools operate 
on the foundations of mathematical models, i.e. much of our effort is 
focused on constructing meaningful models and the sometimes lengthy 
demonstration of mathematical apparatus must not hide this significant 
first step.

Geosciences - sampling, interpolation and variability

There is an obvious assumption about objects, or processes in 
space, namely, the larger the sample we have, the better. Since usually a 
number of constraints (e.g. time, storage, money) limit our ability to 
sample "infinitely", models, predicting our information loss with 
sampling, are of extreme interest. Therefore, not surprisingly, following 
paths of the "digital revolution of the 50's" in geosciences (see Clearbout, 
1976, Webster, 1977 for reviews), references to the sampling theorem 
have emerged in the general cartographic literature (e.g. Tobler, 1969, 
Csillag, 1987, Tobler, 1988). There are three very attractive aspects to this 
approach: (1) it can be utilized in sampling design, (2) it provides handy 
tools for interpolation as well as filtering, and (3) it is computationally 
very efficient.

Once one adopts this approach, the underlying mathematical- 
statistical assumptions of the model should be clearly understood. A 
significant part of the discussion below is written in order to outline the 
background of the choices one can have when applying mathematical 
models. It turns out, that in some cases certain assumptions are made not 
because they provide more reasonable basis, but because of the practical 
reason that otherwise certain problems could not have been handled. 
First of all, in this particular case, having a sample of size n, the model is 
concerned with ^(x1 ) / ...,^(xn) stochastic variables having joint normal 
distribution. It is crucial to everyday practice that we hardly have any 
tools to check this assumption. It is especially difficult, because the sample 
taken at n locations is a single realization of the variables. Furthermore, it 
is assumed that the expected value of this distribution is zero, and the 
variance is finite. So with this model we are confined in our prediction to 
the case, when, somehow, our original problem has been reduced to a 
zero-mean variable. With these assumptions we can prove that the 
covariance exists (i.e. COV[£(xi),£(xj)]< o) and it is positive semi-definite. It 
is our task now to construct an estimate of our distribution so the 
variance of the difference between the model and the estimate should be 
minimum. It is only due to the joint-normality assumption that our 
search for the estimate can be restricted for linear functions, i.e. in the 
form of weighted sum:

(1)
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The major problem in constructing our estimate is that we may not 
have sufficient information about the covariance, therefore further 
assumptions will be necessary. For instance, stationarity is a quite 
frequent assumption in order to reduce dramatically the number of 
elements to be estimated in the covariance matrix.

It is probably the advantage of modeling with linear functions that 
makes interpolation and filtering so popular in applying these tools (for 
math-intensive review of spectral analysis see Brace well, 1965, or Bend at 
and Piersol, 1986). However, even if our assumptions are valid, there are 
Imany manners of abuse. When I say abuse, I mean that you can rarely 
find anyone who would apply these techniques, usually available by 
pressing a button, having tested accuracy constraints.

Let us just consider two simple cases for demonstration, linear 
interpolation and moving averaging. For the former case, suppose that 
we have taken sparse samples. Disregarding the distortion that may be 
due to undersampling, (i.e. less frequent sampling than half of the 
shortest wavelength represented), let us linearly interpolate among our 
data points! The total RMS-error (Bendat and Piersol, 1986), the square 
root of the mean difference between the original and the interpolated 
signal over the entire Nyquist-interval, will be

(2) ERMS(f ) = 2 - sinc2(f )(2+(2W)2/3))

where sine denotes the sine-cardinal function [sinc(a)=sin(^a)/^a], 
while f denotes dimensionless frequency (equals frequency times 
sampling distance). As Figure 2 clearly illustrates, linear interpolation can 
severely distort higher frequency signals. If, for example, one would 
interpolate 1,2,4,... points between existing data points, the maximum 
error term (from Eq.2. at f'=0.5) would be -5.63, -26.83, -50.21 in decibels, 
and 52, 4, 0.3 in relative percentage, respectively, providing upper limits 
for accuracy.

Considering moving averaging, it is again the frequency-dependent 
distortion that should be pointed out. In general, filtering can be written 
in the form

(3) ' yk = Zj qxk+i (i = -N,N)

for which moving averaging is a special case with q= 1/(2N+1) for 
all i's. The amplitude response (or frequency modulation function, S(f')) 
can be obtained with the Fourier- transform of the (filter) coefficients. In 
this particular case it is in the form of a geometric series:

(4) S(f') = Si q exp{-j21if'} = 1/(2N+1) £j exp{-j2flif'} = 

= 1/(2N+1) exp{-j2TINf'} [1 

= sinc(2N+l)f'/sinc(f)
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Total RMS-error of linear interpolation for the Nyquist-interval 
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Figure 3.
The amplitude modulation transfer function of moving averaging

for filter-size 3 and 9. Local extremes can be calculated with the given
formulae, based on S(f')/ where N denotes the length of the filter.
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Some characteristics of S(f') for "everyday-size" moving average 
filters are displayed on Figure 3. It should be noted again, that these filters, 
generally applied heuristically, are close to our expectations at low 
frequencies, but at higher ones they seem to misbehave.

Such methods of spectral analysis aim to construct our estimate of 
the covariance matrix based on the strict stationarity assumption. A close 
relative, called kriging, became popular and uses the assumption of 
second order stationarity (Journel and Huijbregts 1978). The estimation 
procedure, in this case, is even further reduced, since it aims at the most 
commonly independent, parametric estimation of the substitute of the 
covariance function, called a semi-variogram (McBratney and Webster 
1986). We should point out that it is the equivalence of the squared 
deviation from the mean and the normalized square difference between 
all pairs, known since the early days of mechanics, that is behind this 
methodology.

There are some further necessary remarks to be made about 
kriging. The estimation procedure with the stationarity assumption 
already eliminated a number of unknown parameters, and the covariance 
became a function of distance. Thus the covariance matrix is only 
dependent on the spatial arrangement of the sample that is, again, 
computationally efficient. However, the estimation procedure becomes 
highly dependent on the values of the semi-variogram at small distances, 
i.e. the nugget value, (Ripley 1981), and becomes statistically unstable 
when this value is not zero (Mardia, 1980, Philip and Watson, 1986). Still, 
the popularity of kriging is due to its close links to spatial variation 
(variability, heterogeneity, etc.) and the seemingly straightforward 
manner in which it treats continuous functions characterizing such, 
otherwise hardly mappable, phenomena.

The spread of these methods in GIS-applications can probably be 
attributed to their ability to give direct estimates of deviation from an 
expected value for points, as well as for areas (Journel, 1986). The spatial 
mean derived this way for arbitrary spatial partitioning has been widely 
applied in environmental sciences as well as in remote sensing (Burgess 
and Webster, 1980, Woodcock and Strahler, 1984). This implies that our 
software eventually can map not only a certain variable, but its reliability.

Cartography - scale, precision and detail

My impression is that cartographers do not like the term resolution 
(Robinson et al., 1984, Campbell, 1991). Implicitly, however, a kind of a 
rule of thumb is used according to Tobler (1988): Since the smallest 
physical mark which the cartographer can make is about one half of a 
millimeter in size, one can get a fairly good estimate of resolution in 
meters by dividing the denominator of map scale by two thousand.

This rule is certainly far from being absolute. The real art in 
cartography is to represent objects even if they are smaller than this 
nominal resolution because of "relative importance". Discussions about 
generalization, in fact, clearly reflect this paradox. For example:
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"Cartographically speaking, it is essential to retain 
both the details required for geographical accuracy and 
required for recognizability within a digital data base.

To preserve accuracy and recognizability automatically 
during map generalization, one must be able to describe 
digitally the details that must be preserved." (Buttenfield, 
1989)

Inevitably, cartographers, in the "traditional" sense (Vasiliev et al., 
1990), are concerned with visually conceivable objects, i.e. map elements 
whose geometric and attribute characteristics are merged forming a 
graphic attribute. Thus the distinct boundary between precision and 
accuracy seems to be intentionally loosened.

In the previous section, for example, precision could have been 
understood as the definite upper limit of accuracy in both mapping and 
feature spaces, while here it is related only to location, and the content 
has been switched to recognizability. Consequently, this approach forms a 
counterpart of the one discussed above with extreme "geometrization" of 
the resolution issue.

Data model(er)s and structures - raster vs. vector

In one of the most recent summaries on accuracy-related research 
in GIS (Goodchild and Gopal, 1989), resolution had a roughly equal 
number of references (18) in the index with filtering (9) and interpolation 
(10), and generalization, on its own (17), was very close. This may mislead 
us into thinking of a delicately balanced approach.

The conventional separation of spatial data into geometry and 
attributes has not left this community yet. Such a separation is consistent 
with an entity-relationship model of phenomena, with geometry 
defining the objects, which then have attributes and relationships (Mark 
and Csillag, 1989). And there seems to be a borderline: Those who go for 
the priority of geometry (mapping space), having their roots in e.g. 
cartography or surveying, take a model of space most commonly called 
"vector", while those who emphasize the significance of classification, 
most probably rooted in geosciences, would adopt a model usually called 
"raster". Geometry and attributes, however, have in many cases intrinsic 
links to each other, therefore any treatment of one in isolation from the 
other will have a high risk of misrepresenting the phenomenon.

There is also a substantial difference between accuracy concepts in 
the vector and raster models (Chrisman, 1989, Mark and Csillag, 1989). 
The former, modeling space occupied by objects, attaches accuracy 
measures to representation of geometry (mapping space), while the latter, 
partitioning space into units which then will have attributes, prefers to 
assign such measures to the classification of attributes (feature space).

Regarding previous comments on the philosophy of modeling, 
once we have adopted a model, there are no mathematical-statistical tools 
to exchange it for another model; one can either apply it successfully with
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proper predictions, or can fail to get close to reality. In light of this, there is 
no valid conclusion available to decide which model is "better".

As far as choice or design of data structures is concerned, lots of 
efforts have been devoted to handling numerous kinds of objects (spatial 
primitives) simultaneously, and to implement their manipulation as 
transparently as possible (Goodchild, 1987). Thorough research has been 
carried out on the design of the functionality of GIS software focusing 
interest on user needs in terms of data volume and manipulation 
requirements.

Once a system is implemented on this basis, efforts to achieve a 
predefined classification accuracy may lead to either cumbersome 
recursion, or overdesigning the capabilities of the system. It seems to be 
more popular for "GISers" to provide performance tests only in terms of 
"geometrical representation", however, the community still lacks those 
tests on matching categorization requirements. Vector viewers specially 
claim that the raster approach overemphasizes geometric properties, 
while the vector model permits the attribute to be attached to the 
appropriate spatial object. Indeed, that is why there is emphasis on the 
links between geometry and attributes: the appropriate objects are not 
known a priori. It seems to me that the methodology of cartographers has 
been preferred to modeling uncertainty.

Unless data structures, efficiently handling a set of spatial 
primitives, are not adjusted to the inherent data characteristics, including 
accuracy, heterogeneity and the like, there will be no guarantee that a 
given representation can fulfill the requirements of classification 
accuracy. On the other hand, whenever the attribute domain was in focus, 
a very limited set of spatial characteristics, like a single fractal dimension, 
was taken into consideration (Goodchild and Dubuc, 1987). It would be 
properly modest to say that we have understood, and more or less 
successfully modelled, spatial data in the mapping space, while the 
exploration of feature space is still ahead.

THE CARTOGRAPHIC UNCERTAINTY RELATIONSHIP

The solution of the problem of making reliable maps (i.e. where 
both locational and classification accuracy is known and limited) has to be 
accompanied by the recognition that "accurate" and "erroneous" are not 
just two disjoint sets, but rather should be viewed as a continuum. When 
map users consider accuracy issues, they certainly want "the best". In 
simple words, if 10 m and 90% were printed on a tourist map as accuracy 
limits, they would like to assume that any dark green patch represents a 
forest with the same locational and thematic accuracy. And this is the 
point where real data may cause so much trouble to professional 
modelers. All of our tools dealing with spatial data, and de facto our 
geographical information systems, are context-dependent.

It requires manageable definitions of "objects to be mapped". We 
may want to ask, for instance in the previous example, whether our 
definition of a forest is useful at all: Can one, two, three... trees be a forest? 
Or, if one knows for sure that there is no forest covering more than 10,000 
square miles in an area, is that a useful piece of information? Such
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questions should not look absurd. When soil scientists are calculating the 
risk of missing a(n infinitely narrow) boundary in the field, landscape 
architects assign a value of ecological potential for a 5 km * 5 km area, or 
economists rank countries based on per capita income, etc., they are 
dealing with very similar problems: Complex human concepts (variables, 
categories and relationships) are "projected" into Euclidean space in a 
manner that their potential for further inference is maximized. In other 
words, spatial homogeneity criteria are defined so that uncertainty is 
tolerable.

There is a significant mathematical-statistical arsenal to study such 
criteria. Beyond classical works in autocorrelation studies (e.g. Griffith 
1988) more recently attribute classification with spatial constraints has 
been introduced (Gordon, 1987) more or less independently from 
mainstream GIS-related research (Chrisman, 1986).

Most importantly to our topic it has been shown for 
environmental variables that homogeneity criteria based on a given 
categorization reveal spatial variation (Csillag and Kertesz 1990). 
Generally speaking, there is a contradiction between the requirements of 
constant attribute accuracy and constant spatial resolution. The general 
concept that fixed these parameters independently over an entire data set 
cannot be held. If given that recognition probabilities for a class-set are 
predefined, there is no guarantee that a certain spatial resolution will 
match any homogeneity criterion. Conclusively, there may not be a 
unique, generally best resolution for a data set; either accuracy or 
resolution will exhibit variation.

ECOLOGICAL SITE CHARACTERIZATION - AN EXAMPLE

Let us illustrate the above outlined ideas with a practical 
environmental mapping example. The task of information processing in 
this case is to quantitatively describe ecological site characteristics of a salt- 
affected low-grass prairie (Toth et al., 1990a).

This landscape covers more than 100 km2 in the Hortobagy-region 
in E-Hungary, and it can be characterized by abrupt changes in soil 
conditions, surface grass cover, microrelief with very sharp boundaries 
(Rajkai et al., 1988). Additionally, the descriptive measures of the 
apparent surface pattern are highly scale dependent, consequently there 
have been numerous efforts to determine the spatial behavior of 
underlying variables. The primary tool of these investigations was 
geostatistics, but several botanical and cartographic considerations were 
also taken into account.

The section below is focused on the following problem. Given a set 
of interrelated variables their spatial characteristics are determined in 
order to find the most suitable resolution to sample and map them. If 
these characteristics turn out to be different, a pointwise classification 
based on these variables will lead to heterogeneous patches. Having a 
control categorical variable, the spatial variability of the individual 
variables can be described by patches. How can those patches be found, for 
which all spatial variances will be lower than an acceptable threshold?
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This way one can identify class-membership for any given location with 
predefined accuracy.

The variables included in this study cover a wide range related to 
salinity status, soil chemistry, soil texture, etc., as well as microrelief and a 
number of botanical variables. The typical alkali soils in the Hortobagy 
National Park, mainly heavy-clay solonetz soils, can be characterized by 
varying depth of A horizon (Rajkai et al., 1988), and that variation 
corresponds to the dramatically different surface conditions. It is an 
erosion process on an almost completely flat plain induced by local 
disturbance (Toth et al., 1990a). Eroded surfaces occur as micro-valleys, 
and there is a well-known toposequence from elevated spots through the 
slopes down to the valleys. As the A horizon is washed away pH, salt- 
content (S%), and exchangeable sodium percentage (ESP) increase, while 
ecological diversity decreases. This spatial pattern which is seemingly 
dominant in the meter range horizontally and in the centimeter range 
vertically produces a highly complex terrain over the whole extended 
area.

The mapping strategy must be based on understanding the 
interrelationships between soils and vegetation forming a complex 
ecological system. A 15 m by 15 m plot was selected as a test-site for 
detailed analysis, a number of 60 - 500 m long transects were sampled, 
while remotely sensed data were collected for regional extrapolation, 
inventory and monitoring (Toth et al., 1990b). From an environmental 
point of view the task is to assign description of spatial variation to 
patches, in terms of variables and resolution, which otherwise would 
appear as equally homogeneous in terms of salinity status.

Figure 4. summarizes some of the data collected for the test-site. 
Systematic sampling was applied along the 1.5 m by 1.5 m grid, while 
stratified random sampling was carried out for the distinct floors of the 
toposequence, i.e. for hills, slopes and valleys. Soil samples were collected 
for 100 cm3 samples, i.e. with approximately 5 cm2 ground resolution, 
while botanical data for individual species and total coverage were 
recorded corresponding to 50 cm by 50 cm quadrats.

The geostatistical evaluation of measurements revealed that there 
are sharp differences between the spatial characteristics of individual 
variables, even though they play more or less similar roles in describing 
salinity status. For example, while pH clearly showed well-defined spatial 
structure on the test-quadrangle with a characteristic range of about llm, 
that of clay percentage came out to be about 14 m with very high nugget, 
but salt-content had an unbounded semi-variogram. If one wanted to 
characterize a given surface within the region, there were always 
variables, which showed too high estimation variance, or others must 
have been oversampled. Therefore, an optimum sampling scheme for 
classification of salinity status based on these variables could not be 
computed.

Stratified sampling was controlled by botanical data Elevated spots 
are characterized by more complex associations and more surface cover, 
while valleys are dominated by one species. This is due to the dramatic 
difference between their salinity status: Where the A horizon is present, 
pH and salt-content is lower, while on eroded spots severe salinization
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Figure 4. 
Environmental data for resolution study (Hortobagy National Park, E-Hungary) - systematic

and stratified random sampling
[Distribution and classification of major botanical associations on the test-site (sketch-map,

top); Descriptive data along cross transect for vegetation quadrats (top left graph) and for
related variables (low left graph); Semi-variograms of two soil properties with curves to

guide the eye (top right graph); Descriptive statistics (mean and standard deviation) for pH
and salt-content for two-classes of the toposequence (low right graph) - see text for details]

25



occurs. Although this relationship supported the initial classification, 
descriptive statistics showed an interesting side-effect. On the hills pH and 
root-dry weight had significantly higher variance than in the valleys, or 
on the slopes, while this relationship was reversed in case of, for instance, 
salt-content. This observation leads again to a conflict, if one wishes to 
determine the necessary number and distribution of samples to classify a 
given location.

As a summary of this example the hierarchical nature of the 
possible solution should be pointed out. On a general soil map this area 
would be shown as a "highly variable salt-affected" area. Neither does this 
description contain explicit information about the amount or nature of 
this variation, nor does it provide reasonable estimates of the key 
variables by means of descriptive statistics. Having a detailed survey data 
set, say in a GIS, overlaying pH on salt-content leads to different results 
depending on which salinity class gets preference in determining 
classification criteria. It is because the objects to be mapped, in this case 
salinity classes, have class-dependent links between the mapping space 
and the feature space. Therefore, for example, more saline surfaces can be 
better identified with finer resolution, taking into account more non- 
spatial variation in salt-content, than non-eroded surfaces, and so on. 
Furthermore, this information can eventually be incorporated in the data 
structure as well.

CONCLUDING REMARKS

The evolution of geographical information analysis has resulted in 
conflicts with the common sense of "resolution". It has been shown that 
there is inherent uncertainty involved in data models applied in 
geographical information systems. Several approaches have been applied 
to spatial data to deal with this uncertainty, but they handle the mapping 
and feature space separately. In environmental mapping, when 
resolution of spatial sampling is theoretically unrestricted and 
classification does not define the spatial objects themselves, the problem 
of determining an optimal resolution, which provides a given constant 
attribute accuracy leads to a contradiction. A soil mapping example 
outlines that the most promising path for further research is context- 
dependent merging of criteria defined in mapping and feature space, 
rather than separating them as independent properties of objects to be 
mapped. The various statistical tools one can apply through data models 
permit not only control of accuracy, but they can contribute to the 
evolution of data structures, which incorporate this information. These 
data structures should be object-oriented, since there are no objects unless 
they can be recognized with certain probability, and can be located with 
certain accuracy.
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