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SUMMARY

One of the most widely available procedures packaged with 
CIS for the analysis of a Digital Elevation Model (DEM) 
is the identification of the viewable area, or the 
viewshed. The elevations recorded in the DEM do, 
however, contain error, and the USGS, for example, 
publishes a Root Mean Squared Error (RMSE) for each DEM. 
Research reported here assesses the uncertainty of 
locations being within a viewshed, given the published 
error for the DEM. In this research, repeated error 
fields are simulated with variable spatial 
autocorrelation, and added to the original DEM. The 
viewshed is then determined in the resulting noisy DEM. 
Results show that using the basic assumption of spatial 
independence in the error which is implicit in the RMSE 
remarkably few points are reliably within the viewshed. 
With spatially autocorrelated noise, the reliability is 
higher, but still should be cause for concern to many 
using viewshed procedures.

INTRODUCTION

Research on the propagation of error within CIS 
operations has focused upon the polygon overlay operation 
(MacDougall, 1975; Newcomer and Szajgin, 1984; Chrisman, 
1989; Maffini et al., 1989; Veregin, 1989), at the 
expense of other CIS data types and functions. The 
experiments reported here examine one aspect of the 
propagation of error from a Digital Elevation Model (DEM) 
into the derivative product showing visible locations, 
sometimes known as a viewshed (see also Felleman and 
Griffin, 1990; Fisher, 1990).

This paper starts by briefly discussing the viewshed 
operation, and the nature of error in DEM data. The 
general methodology of simulating error is then 
discussed, followed by its application to a real 
location.
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VIEWSHEDS AND DBMS

The basic algorithm in establishing the viewshed examines 
the line-of-sight between two points (the viewpoint and a 
target), and assesses whether any land or object rises 
above that line-of-sight. If it does then the target is 
not within the viewshed of the viewing location, but if 
no land rises above the elevation, then the target is 
within the viewshed. In establishing the viewshed either 
all possible targets in the area of a database (Clarke, 
1990, 227-228), or only those within some constrained 
portion of the area (Aronoff, 1989, 234), may be 
considered. Several studies have explored differences in 
viewshed algorithms (Anderson, 1982; DeFloriani et al., 
1986; Sutherland et al., 1974), and Felleman and Griffin 
(1990) have compared the output of four different CIS- 
based implementations of the viewshed operation. They 
show the viewsheds delimited to be very different. This 
difference is not particularly surprising given the 
multiple decisions to be made in designing the 
implementation of the viewshed operation. For example, 
decisions have to be made as to whether the viewpoint in 
a gridded DEM is anywhere within the viewpoint gridcell, 
or is just the mid-point; similarly, should the surface 
be treated as the stepped phenomena it is coded as, or an 
interpolated surface? The outcome of such algorithm- 
design decisions may produce dramatically different 
viewshed results in some DEMs.

The viewshed is invariably reported as a binary product, 
a target location is either within or without the 
viewshed of the viewpoint. No shades of uncertainty are 
admitted; neither the likelihood nor the probability of a 
point being within, or of being without the viewshed is 
reported. In the light of the considerable interest in 
database accuracy this seems remarkable, especially when 
each DEM is required to be accompanied by an error report 
(USGS, 1987).

The USGS has adopted the Root Mean Squared Error (RMSE) 
for reporting accuracy in their DEM products (USGS, 
1987). The RMSE for any one DEM is based on the 
comparison between the elevations of at least twenty 
locations on the map, and their elevations recorded in 
the database. It should be noted that most USGS source 
maps are stated to conform to the National Map Accuracy 
Standards, which themselves state that "at no more than 
10 percent of the elevations tested will contours be in 
error by more than one half the contour interval", as 
established by comparison with survey data (Thompson, 
1988, p 104). In generating a DEM from a map, therefore, 
at least two stages are present when error may be 
introduced: map compilation and DEM generation from the 
map. The error reported for the DEM only refers to the 
second of these, and it is only that error that is 
examined here. Some DEMs are generated directly from 
aerial photographs by the Gestalt Photo Mapper II, and,
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in this case, the error may only be introduced in one 
stage.

Error in DEMs is then widely acknowledged, and has been 
the subject of some study. That study has, however, 
concentrated on the nature and description of the error, 
not its propagation into any derivative products. The 
only work known to the current author which provides any 
evaluation of error propagation is by Felleman and 
Griffin (1990). They have compared implementations of 
the viewshed operation, and simulated error in the DEM 
before calculating the viewshed, as is reported here. 
They examined 3 viewpoints in 2 test areas for each of 
which 10 error simulations were run. Results are, 
however, only reported for one test location.

METHOD

SIMULATING ERROR

A Monte Carlo simulation and testing approach is taken to 
studying the propagation of DEM error here. In this 
approach, randomizing models of how error occurs are 
established, and then coded as computer procedures. The 
resulting computer program may be used to generate 
multiple realizations of the random process. Many 
workers have used original data in combination with 
realizations of the defined random process to establish 
the statistical significance of the original data with 
respect to the random process (Besag and Diggle 1977). 
Thus Openshaw et al. (1987) executed 499 realizations of 
the random process to locate two significant clusters of 
incidents of childhood leukemia in northern England.

How the error is distributed across the area of any one 
DEM is currently unknown, and factors that may effect the 
distribution of error is largely unresearched. The 
inference of the error reporting used by the USGS is that 
the error at any point occurs independently of that at 
any other point (i.e. the error is not spatially 
autocorrelated). Therefore, the following algorithm may 
be implemented (Fisher, in press):

1. Define a standard deviation of a normal 
distribution (S = RMSE);

2. Read Original_Value for the current cell: 
2.a Using the Box-Muller (or some other)

algorithm generate a random number drawn 
from a normal distribution with mean = 0 
and standard deviation = S; 

2.b Add the random number to the
Original_Value for the current cell, to 
give the New_Value;

3. Repeat 2 for all cells in the Map_File.
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This assumes that the standard deviation of a normal 
distribution is equivalent to the RMSE. In the absence 
of any other information on error structure, this may not 
be unreasonable. Such independent error is, however, 
very likely to contribute only a small portion of the 
overall error. High spatial autocorrelation is probably 
present, and banding can often be seen in the DEM data. 
To accommodate the occurrence of spatial autocorrelation, 
a version of the algorithm given by Goodchild (1980) was 
implemented, using Moran's I to measure the 
autocorrelation (Goodchild 1986; Griffith 1987). It 
works thus:

1. Define a target autocorrelation (!+-)/ and a
standard deviation of a normal distribution (S 
= RMSE) ;

2. For each cell in the DEM generate a random
value, with a normal distribution with mean = 0 
and standard deviation = S (see first 
algorithm) ;

3 . Calculate the Spatial Autocorrelation of the 
field

Randomly identify two cells in the DEM:
4. a Swap the values in the two cells;
4.b Calculate the new spatial autocorrelation

4.c IF lt > I I AND I2 > !]_ THEN retain the
swap, and 1^ = I2 

OR 
IF It < I-L AND I2 < IJL THEN retain the

swap, and I x = I, 
ELSE swap the two cells back to their

original values;

5. Repeat 4 until (I^-l-jJ is within some 
threshold.

6. For each cell in the original DEM, add the 
value in the corresponding autocorrelated 
field.

This algorithm is simple and can be made computationally 
efficient, and it will be noted is an extension of the 
first algorithm listed.

The random number generator used in programming the 
algorithms was also tested, since like all such 
implementations it is truly a pseudo-random number 
generator (Ripley, 1986) . The generator included with 
Turbo Pascal 5.5 was used here. The runs test was used 
to check for serial autocorrelation, the chi-squared test 
was used to check for a uniform distribution, and serial 
autocorrelation was tested for all lags to check for 
cycling in the generator. The generator performed
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satisfactorily for all cases, when number sequences up 
to 10,000 long were tested (corresponding to the 100 by 
100 array used in the generation of autocorrelation).

MEASURING UNCERTAINTY

Each realization of the random process then resulted in a 
new DEM. The viewshed was calculated for each, and for 
any one view point, all the viewsheds in which the noise 
term had the same RMSE and spatial autocorrelation were 
summed to yield a summation image which describes the 
uncertainty of the viewshed, or the fuzzy viewshed. 
Since the viewshed is reported as a raster image coded as 
0 or 1, the maximum value in the fuzzy image is 20, the 
number of realizations. It is possible to define the 
viewshed with a particular likelihood (probability). 
Thus, with 20 realizations, cells with value 19 in the 
resulting image, have probability, p = 19/20 = 0.95 of 
being within the viewshed, and, similarly, those with 
value 10 have probability, p = 10/20 = 0.5.

THE STUDY AREA

A 200 x 200 cell subset of the USGS Prentiss, NC, 7.5 
minute DEM was acquired covering the Coweeta Experimental 
Watershed (Fig. 1). This DEM has been the subject of 
considerable research on DEM products (Band, 1986; 
Lammers and Band, 1990). Within the area of the DEM two 
test viewing locations (viewpoints) were arbitrarily

Figure 1

The Digital elevation model of the Coweeta Experimental
Watershed, N.C. The two test locations are shown, and the

1 km zone around each indicated.

209



identified, one near an interfluve (Point 1), and one in 
a valley bottom (Point 2). All viewsheds calculated in 
the research reported here were only to within 1km of the 
viewpoint, and from an elevation of 2m above the 
viewpoint (corresponding to approximately the near-view, 
and the eye level of an individual, respectively).

The DEM was read into a format compatible with Idrisi 
(Eastman, 1989), a PC based package for Geographic 
analysis, and all further processing was done with either 
Idrisi modules, or implementations of the above 
algorithms written by the author in Turbo Pascal version 
5.5. The VIEWSHED module of the Idrisi package is 
crucial to the research reported here, and so some simple 
test situations were established to examine the veracity 
of the viewable area calculated by that module. In every 
test, the module performed satisfactorily. The module 
operates on a DEM of any size, by using random access 
files, but at great expense in processing time. Only 
examining locations within 1 km of the viewpoint also 
made the processing time required for the research 
realistic.

RESULTS

Tables 1 and 2 report the frequencies of occurrence of 
values in the fuzzy viewsheds derived from the noisy 
OEMs, and those fuzzy viewsheds are shown in Figures 2 
and 3. For each set of viewsheds with a specific spatial 
autocorrelation in the noise, and for a particular 
viewpoint, the tables record in the first column the 
frequencies of cells which are outside the viewshed in 
the original DEM, but inside those in simulated elevation 
models, the second column records those that are in both 
viewsheds, and the last column records the sum of the 
first two. The results all refer to applications of 
noise with variable spatial autocorrelation and with RMSE 
= 7, the value specified for this DEM. Table 1 and 
Figure 2 show results for Point 1, while Table 2 and 
Figure 3 show results for Point 2.

DISCUSSION

It is apparent in both Tables 1 and 2 that when there is 
no spatial autocorrelation in the noise, there are very 
low frequencies of cells with high cell counts in the 
viewsheds of either test viewpoint. 8 and 9 cells occur 
within all 20 of the viewsheds of the two points (i.e. 
the nearest neighboring cells plus 1 in 1 case), and in 
the case of Point 2 only 16 cells have cell counts of 18 
or greater. The viewshed of the higher, ridge-top 
location (Point 1) appears to be more stable, however, 
with higher frequencies of cells with count greater than 
10 (giving p > 0.5 of being within the viewshed), 706 as 
opposed to 443 for Point 2.
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TABLE 1

Frequencies of occurrence of values between 1 and 20 in 
the image resulting from summing all noisy viewsheds, for 
Point 1 where the autocorrelation in the noise varies 
from 0 to 0.9. All points within 1 km of the viewpoint 
are included.

Cell 
Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1=0 
Out In 
View

1456
192
142
122
92
76
60
37
21
15
3
6
4
3

1

9
18
31
45
60
78
97

123
120
94
74
93
80
75
90
81
73
24
9

Sum

1457
192
151
140
123
121
120
115
118
138
123
100
78
96
80
75
90
81
73
24
9

1=0. 
Out In 
View

1425
226
123
117
81
90
63
47
23
21
4
6
3

1
3
1
3
9

14
30
49
66
87
73
73
78

104
84
85
93
86

123
142
71

7 
Sum

1426
229
124
120
90

104
93
96
89

108
77
79
81

104
84
85
93
86

123
142
71

1=0. 
Out In 
View

1574
204
100
68
72
47
35
35
34
31
14
5
7
3

3
2
3
6

16
15
29
32
35
49
48
57
61
63
73
90
82

110
92

101
308

9 
Sum

1577
206
103
74
88
62
64
67
69
80
62
62
68
66
73
90
82

110
92

101
308

The distribution of cell count frequencies becomes 
progressively less skewed towards the low frequencies as 
the autocorrelation in the noise increases. Indeed, in 
the case of Point 1, the distribution becomes strongly 
bimodal when I = 0.9. When the noise perturbing the DEM 
has high autocorrelation, the frequency of cells with 
high counts increases, so that as the value of I for the 
noise increases the number of cells with count 20 
increases dramatically for both Point 1 (9, 71, and 308 
for 1=0, 0.7 and 0.9), and Point 2 (8, 38, and 112). 
There are, however, only slight, but probably useful, 
rearrangements of frequencies in many of the other cell 
counts, and an increase in the number of cells with only 
a count of 1 can be noted in the case of Point 1. At 
Point 2, the number of cells with count 1 is reduced by 
nearly a third, but the number of cells with count 20 
does not increase by nearly as much as in the results for 
Point 1. There is, however, an evening of frequencies 
corresponding to counts from 5 to 20, which is not 
observed in the results for Point 1.

As the spatial autocorrelation increases the number of 
cells that are identified as not even possibly being 
within the viewshed, but within the search distance of
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the viewpoint, does increase with autocorrelation, but 
the change is not continuous in both cases. From Point 
1, the counts are 1456, 1425 and 1574 when 1=0, 0.7, 
and 0.9 respectively, and at Point 2, the values are 
1109, 918, and 897. Furthermore, the number of cells 
that may be within the viewshed (>0 in the fuzzy 
viewshed) but were not in the viewshed in the original 
DEM, increases with autocorrelation at Point 2, (822, 
1013, and 1034 for 1=0, 0.7, and 0.9 respectively), but 
at Point 1 the reverse is true (733, 804, and 655 
respectively). The upper frequencies of cells outside 
the original viewshed changes very little either between 
or within viewpoints (frequencies of 12 to 15 can be 
noted).

TABLE 2

Frequencies of occurrence of values between 1 and 20 in 
the image resulting from summing all noisy viewsheds, for 
Point 2 where the autocorrelation in the noise varies 
from 0 to 0.9. All points within 1 km of the viewpoint 
are included.

Cell 
Count
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1=0 
Out In 
View

1109
319
179
122
73
46
47
14
8
5
1
5
1
1

1

16
33
89
90

119
122
132
152
137
135
85
99
82
78
64
42
36
18
7
1
8

Sum

1125
352
268
212
192
168
179
166
145
140
86

104
83
79
64
42
36
18
7
1
8

1=0. 
Out In 
View

918
265
205
143
100
83
64
42
45
27
25
10
4

3
12
21
33
46
63
81
76
85
97

101
109
116
107
106
120
97
93
91
49
38

7 
Sum

921
278
226
176
146
146
145
118
130
124
126
119
120
107
106
120
97
93
91
49
38

1=0 
Out In 
View

897
255
177
137
124
88
60
64
45
39
25
9
4
3
4

1
2
6

13
19
29
39
59
66
89

113
88

100
115
113
119
111
109
125
117
112

.9 
Sura

898
257
183
150
143
117
99

123
111
128
138
97

104
118
117
119
111
109
125
117
112

SPATIAL ARRANGEMENT OF UNCERTAINTY

The spatial distribution of these fuzzy values are shown 
in Figures 2 and 3, together with the viewshed in the 
original DEM, the elevation map of the immediate area, 
and a viewshed image derived from the fuzzy image where I
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Figure 2

DEM and Viewsheds of Point 1: A) the elevations in the
near-view; B) the viewshed image from the original DEM;
fuzzy viewsheds where C) 1=0, D) 1=0.7, and E) 1=0.9; and

F) an image showing the viewshed where p>=0.5 from E.
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Figure 3

DEM and Viewsheds of Point 2: A) the elevations in the
near-view; B) the viewshed image from the original DEM;
fuzzy viewsheds where C) 1=0, D) 1=0.7, and E) 1=0.9; and

F) an image showing the viewshed where p>=0.5 from E.
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in the error = 0.9, and value in the fuzzy viewshed >= 10 
(probability of being within the viewshed >= 0.5). In 
those figures therefore, the spatial arrangements of the 
tabulations presented and discussed above can be seen.

In both areas, the application of increasing 
autocorrelation to the noise progressively increases the 
certainty of similar areas being within the viewshed. 
Thus the nucleus of the zones with high probability 
identifiable in those viewsheds where the noise term had 
I = 0.9 are identifiable in images where the noise had I 
= 0.

The ridge-top location, Point 1 (Fig. 2), has a higher 
frequency of high counts in the image. The areas of high 
likelihood of belonging to the viewshed are more 
contiguous for this location than for Point 2 (see Fig. 
3); most of the high likelihood values are in three 
blocks of land, one immediately to the northeast of the 
viewpoint, one to the north, and the other to the 
southwest. From Point 2 (Figure 3), the areas of greater 
certainty are by contrast highly disjoint, although one 
large area does exist to the southwest.

Particularly, it should be noted that in neither test 
location is it possible to identify those areas that are 
of high likelihood in the fuzzy images from properties of 
the viewshed as calculated in the original DEM (Fig 2b, 
and 3b). For example, elevations both above and below 
the viewpoint may contain both high and low certainty.

CONCLUSION AND CONTINUING WORK

Firstly, it is possible to observe that no absolute 
certainty can be placed on the viewshed. Depending on 
the spatial autocorrelation that is applied to the noise 
term, it is apparent that the likelihood of cells being 
in the viewshed, can be very low. Indeed, with the 
assumption of spatial independence (where 1=0, the only 
assumption that is acceptable given the method of 
calculation and publication of the USGS error statement) 
very little if any certainty can be placed upon the 
standard viewshed calculated. Fortunately, perhaps, the 
viewshed from an elevated location seems to be more 
reliable than one in a depression, but work presented 
here is only exploratory.

Although the method used here is too computationally 
intensive for widespread implementation, it does yield 
alternative fuzzy viewsheds from a particular viewpoint. 
In this paper alternative fuzzy viewsheds derived from 
simulated OEMs with variable spatial autocorrelation are 
discussed. The algorithms can already accommodate 
variable RMSE, and can be receded to accommodate 
variability in other parameters.
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This paper points to further work in three main areas, 
the effect of the error, the source of it, and terrain 
control on the stability of the viewshed. In the first 
of these, it is necessary to develop a method to predict 
the fuzzy viewshed, which derives results similar to 
those generated by simulation, but which is more 
computationally efficient, and so possible to use in 
regular CIS operations. To achieve this it is necessary 
to explore further, probably by simulation, the 
relationships between error structures in OEMs, and 
fuzziness in viewsheds. The effects in the middle and 
far view should also be explored. In the area of error 
sources, considerable need exists for more information on 
the structure of the error in the DEM, and the 
relationship between error derived from digitization (the 
only error studied here), and that derived from original 
map compilation. Finally, aspects of relative elevation, 
other relief properties, and further aspects of terrain 
on patterns of fuzziness and the nature of error need to 
be explored.
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