
SPATIAL OVERLAY WITH INEXACT NUMERICAL DATA

David Pullar
Surveying Engineering Department

National Center for Geographical Information and Analysis
University of Maine,
Orono, Maine, U.S. A.

Abstract
A methodology for the operation of spatial overlay is presented in this paper. A general
framework for spatial overlay based on concepts in epsilon geometry is developed to
cope with the problems of computational errors and handling inaccurate numerical data.
These problems normally cause topological inconsistencies and generate spurious
effects in the result. A mapping is defined to accommodate the edges and vertices in all
spatial layers so they are unambiguously aligned within a prescribed tolerance.
Geometrical arguments are given to show the correctness of this approach.

1. Introduction
Spatial overlay is an analytical tool used to integrate multiple thematic layers
(coverages) into a single composite layer. Each layer is organized into a polygon-
network structure where polygons are assigned to nominal, or ordinal, categories. The
data may be efficiently stored using a topological data structure [Peucker and Chrisman
1975]. Spatial overlay has proven to be a very powerful tool to analyse the association
among different spatial patterns and land characteristics. Despite its popularity there is
practically no theory to guide the development of algorithms.

Development of programs for spatial overlay have been hindered by a number of
problems related to map accuracy and computational geometry. If the input coverages
are overlaid exactly, then sliver polygons are produced along different versions of the
same boundary or spatially correlated boundaries represented in different layers. Slivers
are an undesirable byproduct of overlay as they are meaningless and degrade further
analysis and interpretation of the data [Goodchild 1978]. Other problems that arise are
as follows;

i) repeated application of tolerance intersections cause objects to move outside
their tolerance [White 1978],
ii) numerical instability causes topological inconsistencies [Franklin 1984],
iii) spurious affects from fuzzy creep and subtolerent segments [Guevara 1985].

One of the most significant achievements in polygon overlay software can be found in
the ODYSSEY system for geographic information processing [Dougenik
1979][Chrisman 1983]. The overlay program for ODYSSEY addressed many of the
problems listed above, and computed tolerant intersections as a solution to the sliver
polygon problem [White 1978]. The primitive operation for intersection was broadened
to include a tolerance parameter, and clusters of intersection points were analysed to
form consistent nodes [Chrisman 1983]. The value for the tolerance parameter is related

313

to the accuracy and scale of the input coverages. However, a problem arises when
trying to overlay many coverages which have multiple accuracies. A central tenet of this
paper is that the concepts and approaches used to analyze spatial data can profit from
further improvement of the overlay algorithm. A general framework for map overlay
which will integrate many coverages, with multiple tolerances, in a single operation is
described. The overlay algorithm is similar to Zhang and Tulip [1990] in avoiding
slivers by snapping less accurate points to more accurate points and not moving any
point outside its tolerance. We extend this work by presenting a verifiable methodology
for the overlay operation.

The proposed approach, called map accommodation, is based upon a simple concept
of accommodating the geometry between each layer to bring them into alignment in the
composite layer. Map accommodation detects and reports all types of intersections and
proximities between spatial data, and then objectively analyses the data to resolve
conflicts.

An outline for the paper is as follows. The next section describes issues related to
geometrical intersection. Section 3 describes an algorithm for reliable polygon set
operations. It is a robust algorithm, but it does not place an overall bound on positional
errors introduced in the process. Section 4 gives a brief outline of the solution we
propose, it aims to both bound and minimize any positional errors. Sections 5 and 6
give a more formal treatment of the overlay problem and the correctness of the
proposed solution. Section 7 describes a clustering algorithm which is central to our
approach. Section 8 analyses the performance of the proposed algorithm and suggests
some enhancements.

2. Geometric Operations
Geometric operations on objects representing physical phenomena pose special
problems for the design of computer algorithms. Hoffmann [1989] says that "practical
implementations of geometric modeling operations remain error-prone, and a goal of
implementing correct, efficient, and robust systems for carrying them out has not yet
been attained".

Geometric operations encounter two types of errors; i) numerical errors, and ii)
representational errors.

2.1 Numerical Errors
Geometric operations on polyhedral objects represented by floating-point numbers will
introduce numerical errors in the result [Hoffmann 1989], The most common numerical
error is round-off error. Geometric operations use intermediate results from numerical
computations to derive symbolic information. For instance, when a computed variable
is less than, equal to, or greater than zero indicates if a point lies below, on, or above a
line. If the difference between the values compared is less than a certain threshold £,
computations can lead to misleading results. Two broad approaches are proposed for
treating numerical errors; a) compute an exact result by performing intermediate
computations with a higher precision [Ottmann et al 1987], or b) determine error

314

intervals around geometric objects and perturb a version of the input data so objects are
unambiguously related to one another within their respective intervals [Hoffmann et al
1988].

2.2 Representational Errors
The coordinate descriptions for geometric objects, whether explicitly stated or not, are
expressions of measurement and include some positional uncertainty. Geometric
operations need to, a) capture the notion of "approximate tests", and b) to provide
estimates on the accuracy of objects. Guibas and others [1989] describe a general
framework for coping with errors in geometric operations called epsilon geometry, and
show how epsilon-predicates are incorporated in geometric tests.

In a similar vein Milenkovic [1989] describes a technique, called data normalization, to
perform reliable geometrical set operations on polyhedral objects. Data normalization
acts as a preprocessing stage to resolve any topological ambiguities before performing
set operations. A version of the input data is perturbed slightly to get better agreement
between vertices and edges in the output overlay. The decisions on what to perturb and
by how much can become very complex for arrangements of line segments.

Epsilon geometry bears some resemblance to techniques used in computer-assisted
cartography. Blakemore [1984] suggested an epsilon band could represent the
positional uncertainty of a digitized line, and illustrated its use to answer a point-in-
polygon query. It has also been used operationally in procedures for map overlay and
feature generalization. The overlay program in ODYSSEY was the first to include an
epsilon tolerance to control moving the location of boundaries for the removal of sliver
polygons [Dougenik 1979]. In feature generalization an epsilon tolerance is used for
line filtering [Chrisman 1983] [Perkal 1966].

The approach used in epsilon geometry can cope with inaccuracies significantly larger
than those introduced by numerical errors. Therefore, epsilon geometry provides a
good general framework to deal with both numerical and representational errors. This
chapter builds on these and other works to explore the use of epsilon geometry in
polygon overlay. The next section describes the method used to compute the
intersection of polyhedral objects which applies the concepts of data normalization. It is
a robust algorithm, but has undesirable drawbacks we wish to improve upon.

3. Data Normalization
This section describes a published algorithm that includes some discussion of the
reasoning steps involved in geometric operations. Milenkovic [1989] describes a simple
method to give a definite and correct answer to geometric operations on polyhedral
objects. The idea is to perturb the positions of objects, that are within a certain
threshold £, so they coincide exactly. The method is called data normalization, and it
assures all data objects satisfy two numerical tests:

1) no two vertices are closer than a tolerance £, and
2) no vertex is closer to an edge than a tolerance £.

315

Two primitive operations are applied to the data to satisfy these conditions, vertex
shifting and edge cracking. See figures 1 and 2. Vertex shifting will move one vertex
to another if they are closer than tolerance £. If a vertex is within tolerance £ to an
edge, edge cracking will move the vertex to a new cracked point along the edge.

Figure 1: Vertex Shifting

Figure 2: Edge Qacking

The algorithm described by Milenkovic initially makes two passes through the data.
The first pass tests for near coincidence between vertices from the input polygons.
When two vertices are found within the threshold tolerance then one vertex is shifted
and identified with the other vertex. The second pass tests for the proximity of vertices
to edges for the input polygons, and does edge cracking where necessary. Edge
cracking may introduce further near coincidences. Hence, the algorithm is reiterated
until both the numerical tests for data normalization are satisfied. With each iteration
slight perturbations accumulate and may lead to positional alterations larger than £, this
is called creep. For example, in the left diagram of Figure 3 the vertices ut and Vj are
within tolerance £ of edge (u0v0). The right diagram shows the results after edge
cracking, now the vertices u2 and v2 are within £ of the new edge (ufSj) which in
turn calls for further cracking. Edge cracking may continue in a cascading fashion so
that points along edge (UOVQ) will migrate outside their given tolerance.

Figure 3: Creep introduced by edge cracking.

This algorithm will compute output polygons with a valid planar topology, so in this
sense it is robust. However, positional error will accumulate with each iteration so the

316

procedure cannot place a constant bound on the extent polygons are perturbed. The next
section describes another approach which avoids creep.

4. Proposed Solution
This paper has used the ideas behind data normalization and adapted them to a new
approach to overlay called map accommodation. This section gives a brief description
of the mechanics of our approach to map overlay, and shows how a clustering
procedure is incorporated with the primitive operations for vertex shifting and edge
cracking. Latter sections will give a more formal and detailed description.

4.1 Issues
The two drawbacks to the algorithm described in the previous section are;

i) the perturbations are performed in an arbitrary fashion, and
ii) it does not prevent creep.

First, there is no objective evaluation of relations between the geometric primitives
(vertices and edges) to guide what gets snapped to what. It is a greedy algorithm which
accommodates primitives of one polygon to another as violations to normalization
conditions occur. We propose an algorithm which objectively evaluates the proximities
between geometric primitives to guide the accommodation process. Like the overlay
program in ODYSSEY [Dougenik 1979], a clustering strategy is used to minimize the
perturbations to the data. The benefit of this approach is it promotes a stable map
topology.

The stability of map topology and its relation to a discrete surface model is investigated
by Saalfeld [1987]. Measures of stability, or robustness in the topological structure, are
defined in terms of a geometrical measure of the closeness of primitives. We propose a
strategy to cluster primitives based upon proximity, such that primitives are clumped
together to minimize perturbations and provide the greatest separability between cluster
centers. In this way we expect greater stability in the overlay transformation.

Second, primitives can migrate from their original locations by a significant distance for
certain degenerate configurations. This was discussed briefly in the previous section
and, Milenkovic demonstrates a case where a valid polygon can collapse to a point. To
avoid the effects of creep we perform clustering in a special way to bound the
perturbations.

4.2 Brief Outline of Algorithm
The remainder of this section gives a simple description of map accommodation, and
latter sections will go into greater detail. The accommodation algorithm accepts as input
N layers of data structured in an topological format. To start, we check all vertex-vertex
proximities. If any two vertices are within a geometrical tolerance to one another they
are reported in a list. Cluster analysis is performed on the elements in this list to
determine consistent output vertices. By consistent we mean vertices satisfy the
normalization condition, that is; i) no two vertices are closer than the tolerance, and ii)
no vertex is moved greater than its tolerance. In effect, we have performed the task of

317

vertex shifting to accommodate the vertices among the layers.

Next, we check all vertex-edge proximities. If a vertex is found to be within the given
geometrical tolerance to another edge, then the vertex and its closest point along the
edge are reported in a list. Cluster analysis is again performed on this list to determine
consistent output vertices. Any internal points to edges that are clustered to other points
are treated as a cracked edge.

Finally, we check all edge-edge intersections. The composite layer may now be
assembled in a straight-forward manner.

4.3 Example
The process just described is illustrated by overlaying two simple geometric objects
shown in figure 4.

Triangle 1

Triangle 2

Figure 4: Two figures to be overlaid.

In figure 5, the highlighted vertices are found to be within the geometrical tolerance to
one another, and are clustered and identified with a single vertex. In figure 6, the
highlighted areas show edges found to be within the tolerance to a vertex. The edges
are broken at the closest point to the offending vertex, this point and the vertex are
clustered and identified with a single vertex. Now the geometry for the two triangles are
accommodated to common vertices and edges. It is a now a relatively simple problem to
compute their Boolean intersection. From the resulting figure we can answer
approximate tests concerning the coincidence or inclusion of vertices and edges.

Ouster Vertices

Figure 5: Vertex Shifting

318

Cluster Vertices
& Intersect Points

Figure 6: Edge cracking

This section has presented a very simple description of map accommodation.
Subsequent sections will give a more formal and detailed treatment of the process.

5 Accommodation Conditions
This chapter is mainly concerned with how the overlay transformation affects the
geometry of objects. Map accommodation is required to satisfy five geometric
conditions which validate the result of polygon overlay. These conditions form the
basis for the design of the map accommodation algorithm.

The basic geometric primitives are vertices and edges, and an associated tolerance
parameter called epsilon. A map layer is denoted by the triple { V,E,G }, where;

V is the set of vertices v representing points in the plane,
E is the set of edges e made up of ordered pairs of vertices, and
6 is the epsilon parameter £ associated with the vertices or edges.

To establish a convention, we will use lower case symbols to denote primitives of a set
D

and upper case to denote the sets. For example, e^ is the i-th element in the R-th set of
R p R edges, or in other words e e E. An element e has an associated tolerance denoted

A vital part of the overlay process is to accommodate the geometric primitives from all
input layers to resolve topological ambiguities. A number of input layers will be
mapped to a single composite layer. If a primitive is not within the epsilon tolerance to
another primitive then it remain unchanged. However, if it is necessary to accommodate
primitives from different layers then this may cause the combining of primitives or the
insertion of new primitives. The five conditions for map accommodation determine
what sort of changes are allowed. These conditions examine spatial proximities and are
defined in terms of the Euclidean distances d between primitives. Formally, we define
the accommodation mapping for 1..N input layers to one composite layer as,

{vW.e 1 }, {v2,E2,e 2 }, ... {VN,EN,G N } =» {V,E',e'}
such that the following accommodation conditions are satisfied;

319

Al) vf is moved to v^ iff d(vf,v') < if ,

A2) for any two \',v' implies d(v',v') > minimum(£j ,£:) ,
j j ~

R ft'A3) a cracked point p on e^ is moved to v. iff d(p,v.) < £ ^ ,

A 4) for any v.' and point p on any e' implies rf(p,v.') > minimum(£•',£'),
A5) no two e' intersect except at a common vertex v'.

An infinite number of mappings will satisfy these condition. Therefore, another
constraint is imposed to minimize any positional alterations. This is achieved by using
cluster analysis to objectively chose the output vertices to which other vertices are
moved. The next section describes the way cluster analysis is used in map
accommodation and presents informal arguments to show how the above conditions are
satisfied.

6 Accommodation Process
Central to the accommodation process is the clustering procedure. Clustering will
analyze points and replace the points which are agglomerated with their weighted
centroid. The weight for a point is related to its associated epsilon parameter. For now,
we only define the properties of the clustering method and leave the description of the
clustering algorithm for the next section. The input to cluster analysis is a set {P,6},
where;

P is a set of points p in the plane, and
6 is the epsilon parameter £ associated with each point.

Formally, clustering is a mapping between sets as,

{P,G} ==> {P',6'J,

where p' is the weighted centroid for agglomerated points pj«P, and £ ' is selected as
the minimum of the £ j«6 , and such that the following clustering properties hold;

Cl) for any p^ clustered to p' implies rf(pj,p') < £j, and

C2) for any two P.',p[implies d(p^,p') > minimum(£j',£').

Based on the given properties of a clustering, we describe each stage in the
accommodation technique and give informal arguments to show they satisfy the
accommodation conditions. This is followed by an outline of each step in the algorithm.
The three major stages of the accommodation technique are;

1. Vertex shifting,
2. Edge cracking,
3. Edge intersection.

320

The order of execution for each stage is designed to detect and resolve correlation
between boundaries. Correlated boundaries will demonstrate a similar pattern of
curvature. This correlation will be most prevalent at corresponding terminal points and
break points along boundary lines. Therefore, detection of coincident vertices should
proceed first. Figure 7(a) shows two correlated lines with areas of vertex coincidence
highlighted. Figure 7(b) shows the result after vertex shifting. Subsequent detection of
vertex to edge proximities will detect correlation along the boundary line. Figure 7(b)
also highlights areas of vertex to edge coincidence, and figure 7(c) shows the result
after edge cracking. The final stage will detect clear cases for two edges crossing.

(a) Detect vertex coincidence (b) After vertex shifting (c) After edge cracking
Figure 7: Map accommodation for two lines

6.1 Vertex Shifting
The task of vertex shifting is to detect vertices that are approximately coincident, and
then compute consistent output vertices. One pass is made through the input data
performing pairwise comparisons between vertices in each layer. When the distance
between two vertices is discovered to be less than the sum of their tolerances they are
reported in a list. This list serves as input to the clustering algorithm. Clusters are
computed and any affected vertices are identified with a new vertex at the respective
cluster centroid.

Clustering will satisfy properties (Cl) and (C2), which is sufficient to prove that
conditions (Al) and (A2) for the accommodation mapping (given in §5) are satisfied.
That is, no vertex is perturbed outside it epsilon tolerance, and vertices are separated by
at least the minimum epsilon tolerance.

6.2 Edge Cracking
Edge cracking detects vertices that lie approximately on an edge, and then computes
consistent output vertices which are inserted along the appropriate edge. One pass
through the data is required to find all vertices near edges. A vertex vj is considered
near to an edge e;, by first finding point p as the orthogonal projection of v^ onto e;,
when rf(vj,p) < (£j+£p. Any affected vertices and cracked edges are reported in the

321

list.

There does exist degenerate cases that require additional checking. In certain geometric
configurations cracking an edge will cause further edge cracking. Figure 8 shows such
a case, v causes e j to be cracked at p j which in turn causes 62 to be cracked at P2- The
later point is called an induced intersect point, these constructs were first identified in
the overlay part of the ODYSSEY program [Harvard 1983].

v cracks edge e

Induced intersect point

Figure 8: Edge ej is cracked at pj which may cause edge 62 to be cracked at P2

To guard against these degenerate cases requires an additional test. All new vertices
located along a cracked edge are tested against all other edges. If any induced intersect
points are discovered they are reported in the list. This list serves as input to the
clustering algorithm. Clusters are computed and any affected vertices are identified with
a new vertex at the respective cluster centroid.

Clustering properties (Cl) and (C2) are sufficient to guarantee conditions (Al) and
(A3) for the accommodation mapping (given in §5) are satisfied. Edge cracking will not
violate condition (A2) because the only way for two vertices to move close to each
other is if they are cracked by an edge between them, and therefore they must already
have been discovered and evaluated in the edge cracking procedure. By searching for
and including induced intersect points in the cluster analysis will guarantee there are no
further violations to condition (A4). Therefore, conditions (Al) to (A4) for the
accommodation mapping are satisfied.

6.3 Edge Intersection
Edge intersection identifies a common vertex at the point where two or more edges
cross. One pass through the data is required to find all cases where edges cross at
internal points. Note all intersections are computed without ambiguities since vertices
and edges now satisfy conditions (Al) to (A4). However, by creating a new vertex at
the intersection point may cause a violation to condition (A4). Figure 9 illustrates the
degenerate case that needs to be treated. An additional test for further edge cracking is
required (with the new intersection points only) to detect induced intersections. Again,
all intersection points and induced intersect points serve as input to cluster analysis.

322

Induced intersect points

Figure 9: Edges ej and 62 intersect at pj, which may cause edge 63 to be cracked at P2

When two edges cross they are cracked at a common point. This point is identified as a
common vertex for both edges, so condition (A5) of the accommodation mapping is
now satisfied. After this, all the conditions for the accommodation mapping are
satisfied and we can proceed to rebuild the topological structure for the composite layer
in a reasonably straight forward manner by tracing polygonal paths.

6.4 Accommodation algorithm
An outline of the algorithm for accommodation is presented. Accommodation calls the
cluster analysis procedure. For simplicity it is assumed clustering will satisfy
conditions (Cl) and (C2) for any input, and then details for the clustering algorithm are
explained in the next section.

PRELIMINARY
The algorithm accepts as input any number of layers, each composed of a set of edge-
paths. A tolerance parameter is associated with each edge, therefore tolerances may also
vary within layers. For convenience we shall denote the R-th layer in our set
terminology as {VR,ER,6R }. The algorithm needs a data structure to store intersect
points to be clustered, this is called MSET.

ALGORITHM - overlay of N layers of chains
Map-accommodation: {V l ,E l ,e 1 }, {V2,E2,e2 }..{VN,EN,G N } =* {V,E',6'}

R SStep 1. Do pairwise comparison of vertices v^ , v: where R*S, and report all pairs

within the tolerance, i.e. d(vf, vj) <(£j +£j), to the set MSET.
Step 2. Perform a clustering on the points in MSET. Identify all agglomerated vertices

v with the appropriate cluster centroid v' and assign the minimum £ to £.'.
R S Step 3. Do a pairwise comparison of vertices and edges v- , $• where R*S, and report

e
pairs within the tolerance, i.e. let p be point on e: perpendicular to Vj then

d(vf ,p) <(tf+e|), to the set MSET.
e

Step 4. Repeat Step 3 for the newly cracked points, i.e. the cracked points p on e-, to
find any induced intersect points, and report these pairs to the set MSET.

Step 5. Perform a clustering on the points in MSET. Identify all agglomerated vertices
v and cracked points on e with the appropriate cluster centroid v' and assign the

minimum £ to £'.

323

R S Step 6. Do pairwise intersection of edges e- , e- where R*S, and report pairs that
intersect (at an interior point on both edges) to the set MSET.

R S Step 7. Repeat Step 3 for intersect points, i.e. the point p on e^ and e-, to find any
induced intersect points, and report these pairs to the set MSET.

Step 8. Perform a clustering on the points in MSET. Identify all intersect points on e

with the appropriate cluster centroid v' and assign the minimum £ to £'.

7. Clustering
A central part of our approach to the accommodation process is the clustering
algorithm. The previous section defined the properties of a clustering, this section
describes how clustering is performed. A clustering problem is defined as a partition of
a finite set into n disjoint sets based upon minimizing an objective function. The
objective function is typically some proximity measure to bring out intrinsic structure in
the data. The complexity of obtaining a global optimal solution is NP-complete for n-
partitions (n>2) in two or more dimensions [Brucker 1978]. This is not computationaly
feasible, so a suboptimal heuristic solution is proposed.

The task at hand is to describe; i) the objective function used to measure proximity
between clusters, and ii) the strategy used to form partitions of the data.

7.1 Proximity Matrix
The proximity matrix represents an index of similarity (or dissimilarity) measures
between pairs of clusters. The most commonly used criteria for computing these
similarity measures is a square-error criteria, and is based on minimizing the square
error between component points and their computed cluster centroid [Jain & Dubes
1988]. This is similar to minimizing the within-cluster variation and maximizing the
between-cluster variation. We show how this criteria is adapted to clustering points
with a geometrical tolerance.

The weighted arithmetic mean for a set of values xj and their associated weights Wj is;
N

,N

The weighted mean vector for a cluster K, denoted m , is defined as the cluster
centroid. This is computed by the weighted arithmetic mean for ordinates of the cluster
points. If a coordinate is denoted by the pair {x,y} then the weighted coordinate
centroid m^ is denoted as {x^y w}. The weight is related to the positional uncertainty
associated with a point, and is defined as the inverse of the square of the epsilon
tolerance, i.e. w = l/£2.

The square-error for the k"1 cluster with n^ members is given as;

324

Figure 10: Distances used in computing square-error

A minimum variance partition is defined as a clustering which minimizes the sum of the
square-error for a fixed number of N clusters, that is by minimizing the expression;

2 2

The similarity measure computed in this chapter must additionally obey the following
constraints;

1) the distance between a cluster centroid and all its member points is not greater
than the given geometrical tolerance, and

2) the function should seek to minimize the number of clusters.

To fulfill the first requirement, we define the bounded-square-error for the ktn cluster
Ck as;

_ ̂ ^
if VXi€ck ^(xi,mk) < £{

otherwise,

_ ̂ek =

where £j is the geometrical tolerance associated with Xj. This says that we are only
interested in points within the given geometrical tolerance to the centroid, otherwise the
square-error can be some very large number.

In the second requirement, we need to limit the final number of clusters by gradually
merging clusters. The idea is to find the minimum number of clusters which satisfy
conditions (Cl) and (C2). At the same time the partitioning chosen should yield the

2 minimum value for E^ using a bounded-square-error criteria. A solution to this
problem is computationally not feasible. In fact, it requires examining the power set of
all points. The next section describes a suboptimal solution to the problem.

325

7.2 Clustering Strategy
We have already shown that an optimal partitioning based on minimizing an objective
function is not computationally feasible. Therefore, a selection strategy is used to
reduce the number of partitions evaluated to achieve a "reasonable" approximation. The
selection process is designed to converge to a local minima of the objective function.
Jain and Dubes [1988] give an extensive discussion on the factors involved in cluster
strategies. The major choices are between hierarchical and partitional schemes.
Hierarchical clustering schemes organize the data into a nested sequence of groups.
Partitional clustering schemes successively determine partitions of clusters such that
points are moved between clusters in an effort to improve a criteria function. The major
disadvantages we see for a partitional clustering are; i) it is very sensitive to a hill-
climbing solution, ii) it is designed to solve for a fixed number of partitions. A
hierarchical procedure is not as sensitive to a hill-climbing solution; but as Jain and
Dubes state, its most desirable feature is in modeling the global structure of the data.

An agglomerative algorithm for hierarchical clustering is proposed. It starts by placing
each point into an individual cluster. A proximity matrix made up of similarity measures
between clusters is computed. This matrix is interpreted to merge two or more clusters
at each level in the hierarchy. The process is repeated to form a sequence of nested
clusters. The bounded-square-error criteria will terminate when all values in the
proximity matrix are infinity. This provides a reasonable solution to minimizing the
number of clusters.

The algorithm needs an appropriate data structure to store clusters and their respective
member points. Operations for merging clusters and for finding which cluster a
particular point is in must be supported. A very efficient data structure called a
MERGE-FIND ADT is described in Aho, Hopcroft and Ullman [1985] for this
purpose.

8. Analysis of Algorithm
We can analyse the computational cost for the accommodation mapping in each of the
three steps by examining the complexity for; i) geometrical intersection, and ii)
clustering.

First, geometrical intersection involves the pairwise comparison between primitives in
the various layers. If there are M layers each having T primitives (interpret this as either
the number of vertices or edges) then it requires (MT)^ proximity comparisons between
primitives in a brute force approach. The number of points reported will depend on the
degree of spatial correlation between primitives in different layers. We estimate the
worst case occurs when all the layers are the same giving 2MT points.

A plane sweep solution to geometrical intersection [Preparata and Shamos 1985] is
unsuitable because the sweep invariant requires a strict order between edges and the
vertical sweep line. A modified sweep technique using a band sweep is used in the
ODYSSEY program [White 1978], and this is claimed to work well. An alternative
method using a griding technique [Franklin 1989] was adopted for our implementation.

326

The edges were organized into edge-cell pairs by testing if the band (given by the
epsilon tolerance about an edge) overlapped a grid cell. Then a brute force method was
used to compute tolerance intersection within each cell. Performance tests on
experimental data, which assume a uniform distribution of line segments, show
favorable execution times for a grid partitioning technique compared to the plane sweep
technique [Pullar 1990].

Second, the computational cost for clustering is extremely high using a brute force
approach. Let N=2MT, then it would require N(N-l)/2 computations to construct the
proximity matrix for a set of intersect points. To process this matrix for clustering
requires N^(N-l)/4 computations in the worst case, i.e. all N points merge to a single
cluster. Therefore, the computational complexity of the algorithm is of order O(N^) in
the worst case. Day and Edelsbrunner [1984] offer an improvement on this by efficient
determination of nearest neighbors in the clustering algorithm, they describe an
algorithm of O(N^ log N) in the worst case. This was still felt to be an unacceptable
cost.

In our implementation, the efficiency of clustering was improved by incorporating the
grid partitioning technique in the algorithm. An alternative clustering procedure, which
in principle works the same as an agglomerative algorithm, is used in collaboration with
the uniform grid. Assuming points are uniformly distributed over the coverage, a
nearest-neighbor search can be localized using a grid superimposd over the data. The
technique is described in Murtagh [1983], and an upper-bound for the expected time
complexity is reported to be O(N log N). If the grid resolution is no smaller than the
maximum epsilon tolerance then a nearest-neighbor search may be localized to the
current grid cell and its adjacent group of grid cells. In our experiments the partitioning
techniques had a very satisfactory average behavior and exhibited an O(N) cost
behavior. Further details of the algorithm will be published in a future article.

9. Conclusion
The main objective of this paper was to develop a methodology for map overlay which
overcomes problems of computational errors and handling numerical data of an
uncertain pedigree. A technique used to perform reliable geometrical set operation in
solid modelling systems, called data normalization, is adapted to the map overlay
problem. We show how the proposed technique, called map accommodation, will
prevent creep in the geometry of primitives and promote stability in map topology. We
have also presented informal arguments which demonstrate the correctness of this
approach.

The advantage of our approach is it breaks the complex task of map overlay into
simpler tasks which require simple data structures for implementation. The key
operations for reporting intersections and spatial proximities between primitives, and
clustering points involve a significant computational workload. Therefore, an efficient
approach needs to be incorporated in the all stages of the algorithm to provide
satisfactory performance. We propose the use of a grid partitioning technique.

327

Acknowledgements
I would like to express my appreciation to Renato Barrera for the advice and ideas he
contributed towards this work. Support for this project is provided by Prime Wild GIS
Inc., and from the U.S. National Science Foundation through the NCGIA.

References
Aho A., Hopcroft J. and Ullman J., 1985; Data Structures and Algorithms. Addison-

Wesley Publishing Co., Reading, MA.
Blakemore M., 1984; Generalization and Error in Spatial Databases. Cartographica,

Volume 21. pp.131-139
Brucker P., 1978; On the Complexity of Clustering Problems. In: Optimierung und

Operations Research, Editors R.Hen, B.Korte and W.Olletti, Springer, Berlin.
Chrisman N., 1983; Epsilon Filtering: A Technique for Automated Scale Changing.

Proceedings 43rd Annual Meeting of ACSM, Washington, DC. pp.322-331
Day W. and Edelsbrunner H., 1984; Efficient Algorithms for Agglomerative

Hierarchical Clustering Methods. Journal of Classification, 1. pp.7-24
Dougenik J., 1980; WHIRLPOOL: A program for polygon overlay. Proceedings

Auto-Carto 4, Vol.2, Reston, VA. pp.304-311
Dutton G., 1978; Harvard Papers on Geographical Information Systems. Addison-

Wesley Publishing Co., Reading, MA.
Franklin W.R., 1984; Cartographic Errors Symptomatic of Underlying Algebra

Problems. 1st International Symposium on Spatial Data Handling, Zurich.
pp. 190-208

Franklin W.R., 1989; Uniform Grids: A Technique for Intersection Detection on
Serial and Parallel Machines. Proceedings of Auto-Carto 9, Baltimore, Maryland.

Goodchild M., 1978; Statistical Aspects of the Polygon Overlay Problem. In: Harvard
Papers on Geographical Information Systems, Vol.6, Editor G. Dutton 1978.

Guevara J., 1985; Intersection Problems in Polygon Overlay. Unpublished paper,
available from author through E.S.R.I., Redlands, CA.

Guibas L., Salesin D. and Stolfi J., 1989; Epsilon Geometry: Building Robust
Algorithms from Imprecise Computations. Proceedings 5th Annual ACM
Symposium on Computational Geometry, West Germany.

Harvard, 1983; WHIRLPOOL Programmer Documentation. Harvard Computer
Graphics Laboratory, Cambridge, MA.

Hoffmann C., 1989; Geometric and Solid Modeling. Morgan Kaufmann, San Mateo,
CA.

Jain A. and Dubes R., 1988; Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, NJ.

Milenkovec V., 1989; Verifiable Implementations of Geometric Algorithms Using
Finite Precision Arithmetic. In: Geometrical Reasoning, Editors D. Kapur and J.
Mundy, MIT Press, Cambridge, MA.

Murtagh F., 1983; Expected-Time Complexity Results for Hierarchic Clustering
Algorithms Which Use Cluster Centres. Information Processing Letters, 16.
pp.237-241

Ottmann T., Thiemt G. and Ullrich C., 1987; Numerical Stability of Geometric
Operations. Proceedings 3rd ACM Symposium on Computational Geometry.
Waterloo, pp. 119-125

328

Perkal J., 1966; An Objective Approach to Map Generalization. Discussion Paper 10,
Ann Arbor MI, Michigan Inter-University Community of Mathematical
Geographers.

Peucker T. and Chrisman N., 1975; Cartographic Data Structures. American
Cartographer, Vol.2, pp.55-69

Preparata F. and Shamos M., 1985; Computational Geometry. Springer-Verlag, New
York.

Pullar D., 1990; Comparative Study of Algorithms for Reporting Geometrical
Intersections. 4th International Symposium on Spatial Data Handling, Zurich.

Saalfeld A., 1987; Stability of Map Topology and Robustness of Map Geometry.
Proceedings of Auto-Carto 8, Baltimore, Maryland.

White D., 1978; A Design for Polygon Overlay. In: Harvard Papers on Geographical
Information Systems, Vol. 6, Editor G. Dutton 1978.

Zhang G. and Tulip J. 1990; An Algorithm for the Avoidance of Sliver Polygons and
Clusters of Points in Spatial Overlay. 4th International Symposium on Spatial Data
Handling, Zurich, pp. 141-150

329

