
STRUCTURING THE KNOWLEDGE OF CARTOGRAPHIC
SYMBOLIZATION - AN OBJECT-ORIENTED APPROACH

Feibing Zhan
Center for Computer Graphics and Mapping

Faculty of Geodesy, Delft University of Technology
Thijsseweg 11, 2629 JA Delft, The Netherlands

ABSTRACT

Knowledge-based systems for cartographic symbolization concerned
with GIS's output have been suggested by a number of researchers.
The structuring of the knowledge with a proper knowledge
representation scheme is one of the key issues for the development
of such a system. The specific requirements for the knowledge
representation scheme are specified. It is argued that the
conventional knowledge representation schemes such as rules,
semantic networks, conceptual graph, object-attribute-value and
frames are not rich and powerful enough to meet the requirements.
Then it is suggested to use an object-oriented knowledge
representation (OOKR) scheme to construct the knowledge. It meets
the requirements and overcomes major problems of the
conventional knowledge representation schemes. Further, examples
are given to demonstrate the power and flexibility of the object-
oriented knowledge representation scheme.

1. Introduction

The analysis results of a GIS are usually represented by maps which are, at
present, generated through the relevant facilities of a GIS automatically or
interactively. The maps are subsequently used as a major tool for decision
making and communication. Currently, none of the GIS systems includes
mechanisms to ensure the correct use of graphic functions. This may lead to
poor use of graphics as GIS systems are widespread, and many of the users
of GIS's are not professional cartographers. Indeed, many poorly designed
maps can be observed (Muller and Wang, 1990). To solve this problem,
considerable investigations on using knowledge-based system technology
have been conducted and some achievements have been made (Mark and
Buttenfield, 1988; Muller and Wang, 1990; Weibel and Buttenfield, 1988).
However, no comprehensive and truly intelligent system has been
constructed up to now.

Many issues should be addressed for developing a full-scale map design
knowledge-based system (Mackaness and Fisher, 1986; Weibel and
Buttenfield, 1988). Among these issues, a proper knowledge representation
scheme that can be used to organize the relevant knowledge and facilitate
the relevant issues concerned is fundamental for the development of such
a system. In the Artificial Intelligence (AI) community, commonly used
knowledge representation schemes are rules, semantic networks,

247

conceptual graph, object-attribute-value(OAV) and frames. Each of them
has certain advantages and disadvantages. Muller and Wang (1990) used a
frame-based knowledge representation scheme for cartographic symbol
design. Wang (1990) proposed a conceptual graph based representation
scheme for cartographic information representation.

In this paper, it is suggested to use object-oriented knowledge
representation (OOKR) scheme for a knowledge-based system for
cartographic symbolization concerned with GIS's output (hereafter we will
only call it cartographic symbolization). In next section, the specific
requirements for the knowledge representation scheme are specified. In
Section 3, it is argued why the conventional schemes are not rich and
powerful enough to meet the requirements, and why object-oriented
knowledge representation scheme is suitable. The representation of the
knowledge of cartographic symbolization by the object-oriented
representation scheme is illustrated by examples in Section 4. Discussions
and future work are given in Section 5.

2. The Requirements for the Knowledge Representation Scheme

A knowledge representation scheme is the way in which the facts and
relationships of the domain knowledge are organized. It is an issue of key
importance for developing a knowledge-based system. General
requirements of a knowledge representation scheme can be found, for
example, in Luger and Stubblefield (1989). Up to now, there has been no
comprehensive knowledge representation scheme which can be used to
organize every kind of knowledge. The choice of the knowledge
representation scheme depends on the characteristics of the domain
knowledge under consideration. The first question then is: what are the
requirements of the knowledge representation scheme for cartographic
symbolization?

First, let us have a look at an example. Suppose a geographic information
system contains information about the buildings of a municipality. A user
of the system wants to have the statistical information of each district about
area of buildings used for residential and industrial purposes respectively,
and the statistic information must be represented on a map. The common
procedure for the generation of the map, at present, is: First, one groups the
two kinds of information on each district (e.g. by SQL) to produce a data file.
Second, one designs the map type and relevant symbols for representing the
information based on cartographic symbolization principles. In this step,
besides the rules used for decision making, some calculation is often
necessary, for instance, to determine the value and size of a symbol. Then
the designed map parameters are passed to a package (e.g. GIMMS) to
generate the map. If a cartographic symbolization knowledge-based system
is attached to the GIS, it is natural and desirable that the knowledge
representation scheme could facilitate the issues concerned with the three
steps mentioned above.

248

More generally, the following issues are essential requirements for a
knowledge representation scheme when developing a knowledge-based
system for cartographic symbolization.

a. Like any knowledge representation scheme, the scheme must have the
capabilities to describe the objects and model the relationships between
the objects concerned with cartographic symbolization. The objects in
cartographic symbolization are those concerning the interpretation of
the spatial information to be mapped, the cartographic symbolization
principles, and the relevant cartographic semiology.

b. An important feature of spatial information, and the relevant
cartographic symbolization principles is their organization into class
hierarchies (e.g. Egenhofer and Frank, 1990; Muller and Wang, 1990).
Thus the ability of the knowledge representation scheme to represent
the inheritance between a class and its instance objects, and between a
class and its superclass is essential.

c. As it is believed that the development of a map design knowledge-based
system should be started from a limited domain (Muller and Wang,
1990), and thus knowledge may then be gradually acquired in an
"amplified intelligence" strategy (Weibel and Buttenfield, 1988), it is
desirable that the knowledge representation scheme should be well
structured and be able to support modularity and reusability. Hence,
when the size of the knowledge base increase significantly, the
knowledge is still manageable, and can be extended and reused.

d. When the knowledge base grows and changes, consistency checking
becomes important. Moreover, judging from the issues concerned with
map design knowledge-based systems (e.g. Muller and Wang, 1990), one
can see that map design and generation are problems that mix logical
deduction, rule-based inference, and procedure execution (e.g. graphics
generation). The solution of these problems demands a knowledge
representation scheme that effectively combines rules and procedures,
and provides a vehicle for implementing graphics I/O, consistency
checking, and interactions between objects.

e. When using GIS, spatial information to be mapped is usually from the
database of a GIS, this information is then used for deduction, reasoning
and map generation. Therefore the knowledge representation scheme
should not only be able to support data input through consultation, but
also be able to facilitate automatic feeding of data from a spatial database.
This should be considered as an essential feature of the knowledge
representation scheme.

These issues may be partially addressed by combining existing technologies
such as database, conventional knowledge representation scheme and
mapping packages (e.g. Muller and Wang, 1990). However, what is desirable
is that the issues could be accommodated by a knowledge representation
scheme in a uniform way. We will see how object-oriented approaches can
be used to facilitate the issues.

249

3. Why an OOKR Scheme is Suitable for Structuring the Knowledge

We will see, in this section, why the conventional knowledge
representation schemes can not meet the requirements discussed in Section
2, and describe the promises of the object-oriented knowledge
representation scheme.

3.1 Object-oriented knowledge representation

Follow Luger and Stubblefield (1989), and Meyer (1988), an object-oriented
knowledge representation scheme may be defined as the organization of
knowledge as structured collections of abstract data type implementations.
In this scheme, everything is defined as an object or system of objects. An
object can be defined as an independent entity represented by some
declarative data and a set of methods (such as routines and rules) that
operate on the object. Relationships between objects and the overall
problem specification are implemented as messages between objects. In
addition, objects are abstracted into a hierarchy of classes, allowing the
inheritance of properties and methods.

For other basic concepts concerned with object-oriented knowledge
representation such as classes, inheritance, attributes, methods, controls,
message passing, encapsulation, redefinition, polymorphism, dynamic
binding, modularity and reusability, we refer to Leung and Wong (1990) and
Meyer (1988).

It should be noted that object-oriented knowledge representation scheme is
different from conventional knowledge representation schemes (except
frames) in that knowledge is abstracted to classes which are instantiated by
objects. It differs from commonly-called object-oriented approach for
software construction in that rules are included in methods.

To adequately model a complex system in reality, abstraction mechanisms
are necessary. The fundamental abstraction mechanisms from the database
paradigm can be used. These abstract mechanisms are classification,
generalization and aggregation (Smith and Smith, 1977). Classification is
the abstraction from individuals with common properties and behavior to
a class, by which 'instance-of relation is modeled. Generalization is the
combination of several classes to a more general superclass, by which 'is-a'
relation is modeled. A class that references one or more other classes is
called an aggregation of those other classes. By using aggregation, a 'has-a'
relation between classes is modeled. Using types in the various relations
and message passing, any kind of specific relations can be modeled (Meyer,
1988).

3.2 Conventional versus object-oriented knowledge representation

Conventional knowledge representation schemes, such as rules, semantic
networks, conceptual graph, object-attribute-value triples and frames, are

250

commonly used in traditional knowledge-based systems (Luger and
Stubblefield, 1989; Townsend, 1986). Each of them has its own advantages
and disadvantages (Leung and Wong, 1990).

As pointed out by Leung and Wong (1990), a common shortcoming in
rules, semantic networks, conceptual graph and OAV representations is
that they are not structured enough. Because the knowledge cannot be
modularized, the interactions among rules and objects become too complex
when the number of objects or rules in the system increases significantly.
Thus the system becomes very difficult to manage. When the value of an
attribute is modified, it is difficult to pinpoint the effects on the whole
system. Therefore, such knowledge representations are difficult to develop
and maintain, especially for a large knowledge base like cartographic
symbolization.

Frames are more structured than rules, semantic networks, conceptual
graph and OAV knowledge representations, since related attributes and
rules can be grouped into frames hierarchically. However, modularity of
knowledge represented in frames can not be clearly defined, and frame
representation lacks flexibility. In a frame system, relationships between
frames may be member or subclass links and thus are not unique.
Moreover, in some systems, a rule is represented by a frame linked to
another frame with special relationship. These factors greatly reduce the
structure in a frame system (Leung and Wong, 1990).

Another shortcoming of the conventional knowledge representation
schemes is that the objects represented in the schemes are not active. Thus
operations through message passing between objects are not possible.
Although frames allow the creation of complex objects and the integration
of procedural and declarative representations, they are passive data
structures that must be acted on by external procedures. The execution of
attached procedures requires that the procedure definition be retrieved and
evaluated by some external agent (Luger and Stubblefield, 1989).

Object-oriented knowledge representation scheme has the following
advantages over the conventional schemes.

Firstly, like semantic networks and conceptual graph, it is flexible. In object-
oriented knowledge representation, by storing the names of other objects as
the attributes of an instance object, relations between instance objects can be
established dynamically (Leung and Wong, 1990). These relationships have
the same power as links in semantic networks, and relationships in
conceptual graph. In fact, the object-oriented construct can be viewed as
dynamic semantic network. The 'is-a' links of semantic network can be
implemented in object-oriented representations by relationships between
classes and subclasses or between classes and instances. The 'has-a' links can
be implemented by the relationships between classes and attributes.

Secondly, object-oriented knowledge representation supports classes and
inheritance. In a pure object-oriented system, everything is an object; all
objects are abstracted to a certain number of classes. This allows inheritance

251

of attribute names, values, and methods. In addition, each class defines
instance variables, which must be instantiated when an individual member
of that class is created. Instance objects bind these variables to all the
particular information, such as size and location, that distinguishes
individuals from each other. The behavior of the members of the class, or
the set of all messages to which the class responds, is called the protocol of
the class (Luger and Stubblefield, 1989).

Thirdly, it supports modularity and reusability. Modularity and reusability
are of prime importance for any truly flexible system. A true modularized
system should facilitate modular decomposability, modular composability,
modular understandability, modular continuity and modular protection.
To achieve these modular capabilities, modules must correspond to
syntactic units in the language used, every module should communicate
with as few others as possible, exchange of information between modules
should be as little as possible, interfaces between modules must be explicit
and all information about a module should be private to the module unless
it is specifically declared public. Five issues must be solved before we can
hope to produce practically reusable modules. These issues are: variation in
types, variation in data structure and algorithms, related routines,
representation independence and commonality within subgroups (Meyer,
1988). Object-oriented approach satisfies the criteria and principles of
modularity, and provides a remarkable set of answers to the set of
reusability issues (Meyer, 1988).

Finally, declarative and procedural knowledge can be integrated, and the
objects are active. Objects in a object-oriented knowledge representation
scheme are active in the sense that the methods are bound to the object
itself, rather than existing as separate procedures for the manipulation of a
data structure. Objects thus have characteristics of both data and programs
in that they retain state variables as well as react procedurally in response to
appropriate messages. Objects execute their methods directly in response to
a received message. It is the active nature of objects that makes the message
passing, execution of methods (rules, routines, etc.) possible. Such methods
provide the vehicle for consistency checking, implementing graphics I/O,
and combining rules and procedures.

3.3 How OOKR scheme facilitates the requirements

Based on the observations in the last two subsection, we then discuss how
the OOKR scheme facilitates the specific requirements which are specified
in Section 2.

a. Objects and their relationships can be represented in both passive form,
and active form by a mixture of attributes, rules, routines, 'is-a'
relations, 'has-a 1 relations and messages. Therefore declarative and
procedural knowledge can be integrated in a uniform way, and complex
knowledge can be adequately organized.

b. Inheritance exists between classes and subclasses. Thus, knowledge can
be represented in an abstracted form with common features generalized

252

in a superclass. Existing classes can be extended and reused by using
relevant techniques in object- oriented approaches.

c As object-oriented approach facilitates modularity, related rules can be
well grouped in a class or a module that is independent of other classes
or modules. This enhances manageability, understandability and
maintainability.

d. Rules and procedure executions can be defined in methods, thus rules
and procedures are naturally combined. Routines can be defined by any
language which produces routines in an executive form, and then
bound to the objects, hence routines such as graphics generation and
parameter calculation can be conveniently performed.

e. Data can not only be input through consultation but also be
automatically feed from a spatial database through the execution of
relevant methods, therefore a knowledge-based system based on this
scheme can be naturally attached to a GIS.

Hence it can be concluded that the object-oriented knowledge
representation scheme provides a set of answers to the specific
requirements, and gives the promises to fully address the issues concerned
with cartographic symbolization in a uniform way.

4. Examples of Knowledge Structuring for Cartographic Symbolization

In this section, first an example is used to demonstrate how object-oriented
knowledge representation scheme can be used to address the issues
concerned with cartographic symbolization. Then the abstraction of the
knowledge, the capability of the scheme to support reusability and
extendibility are discussed.

4.1 Knowledge structuring of cartographic symbolization for
representing statistical building information from GIS - the example

Let us see how object-oriented knowledge representation scheme can be
used to address the issues concerned with the example mentioned in
section 2. To solve the problem, classes 'building', 'statistical_map',
'graphics_map' are defined. The definition of each class is illustrated as
below. For the convenience of illustration, the definition of the classes is
condensed. The notation used is those from Luger and Stubblefield (1989),
except that rules are also included in the methods.

253

Class name: building
Superclass:
Instance variables: district_identifier, building_identifier,

building_type, area, ...
Instance methods: ...

groupQ: begin
message(district_identifier, building_type, total_area)

end

end
Class methods: ...

Class name: statistical_map
Superclass: thematic map
Instance variables: mapjype, info_property, title, legend, ...
Instance methods:

info_input(): begin
for i:= 1 to N do begin

message(info_property(i))
end

end
end

map_type(): begin
rule: IF info_property = <quantitative> & <absolute> & <multiple>

THEN mapjype = <graphics_map>
end

end

Class methods:
begin
message(map_type l symbol)

map_generation(title, map_type, symbol, legend)
end

Class name: graphicsjnap
Superclass: ...
Instance variables: symbol_type, no_of_variables, variable_color,

variable_size, ...
Instance methods:

symbol_type(): begin
rule: IF mapjype = <graphics_map>

THEN symbol_type = <bar_graphs> or <pie_charts>
end

end
no_of_variables(): begin

message(no_of_variables)
end

end
variable_color(): begin

for i:=1 to <no_of_yariables> do begin
message(variable_color(i), color)

end
end

end
size(): begin

for i:=1 to <no_of_variables> do begin

254

message(variable_size(i), size_calculation)
end

end
end

Class methods: ...

After these classes have been defined, the cartographic symbolization can be
effected by message passing. Through assembling the classes together by
message passing, building information can be grouped from relevant
database; consultation can be conducted; the map type can be inferred
(graphic maps); the symbol can be determined (bar graphs) and the visual
variables can be calculated (two elements, color and size), and finally the
statistical map can be generated.

It is easy to see from the example that all issues such as procedures, rules,
data (described by attributes) can be addressed in a uniform way with the
scheme. But, this simple example can not completely show the power of the
scheme. The power of the scheme is the abstraction of complex knowledge,
the capability to support extendibility and reusability for constructing a
system in the large, in our case, the construction of knowledge-based system
for cartographic symbolization. We discuss these issues in the following
sub-section.

4.2 Abstraction, extendibility and reusability

Although the above example has shown the flexibility and power of the
object-oriented knowledge representation scheme, one can not see from it
how the complexity of the knowledge of cartographic symbolization can be
modeled. In this section, we will first discuss how the knowledge of
cartographic symbolization can be abstracted by classification, generalization
and aggregation. We will then illustrate the extendibility and reusability of
the abstracted knowledge.

Aspects concerned with cartographic symbolization are generally the
interpretation of spatial information concerned, the choice of map type and
the design of symbols. These aspects can be sketched as in Figure 1.

cartographic symbolization

building ... population ... land_use ... graphicsjnap ... point_ area_
symbol symbol

Figure 1 Sketched aspects of cartographic symbolization

255

To model these aspects in an abstract form, abstraction mechanisms are
often used. One can see from Figure 1, information contained in a GIS may
be classified as 'building', 'population1 , 'land use' and so on; these classes
can then be generalized to a superclass- 'spatial information'. Likewise, map
symbols are often classified as 'point symbol' and 'area symbol 1 , the
common property of these classes can be generalized in an abstract form in a
superclass - 'symbol'.

Let us take the symbol module and go into depth. All point symbols can be
considered as instance objects of class 'point_symbol' which is defined as
follows:

Class name: point_symbol
Superclass: symbol
Instance variables: form, orientation, color, texture, value, size
Instance methods:

form(): begin
message(form, circle)

end
end
orientation(): begin

message(orientation, 45)

end
end
color(): begin

message(color, green)

end
end
textureQ: begin

message(texture, 1/5)

end
end
valueQ: begin

message(value, value_calculation)

end
end
sizeQ: begin

message(size, size_calculation)

end
end

Class methods: ...

Class 'point_symbol' can be regarded as subclass of class 'symbol'. By
generalization, the above definition can be revised as follows:

256

Class name: symbol
Superclass: ...
Instance variables: orientation, color, texture, value
Instance methods:

orientation(): begin
message(orientation, 45)

end
end
color(): begin

message(color, green)

end
end
texture(): begin

message(texture, 1/5)

end
end
valueQ: begin

message(value, value_calculation)

end
end

Class methods: ...

Class name: point_symbol
Superclass: symbol
Instance variables: form, size
Instance methods:

form(): begin
message(form, circle)

end
end
size(): begin

message(size, size_calculation)

end
end

Class methods: ..

The above two definitions are abstractive in the sense that any point symbol
can be generated through the definitions. They are generalized because
common visual variables such as orientation, color, texture and value are
defined in the superclass 'symbol'. This ensures that common behaviors
across several subclasses (point and area symbols) will indeed have
common definition, and instance variables and methods in class 'symbol'
can be inherited by its subclass 'point_symbor.

We then discuss how the definitions can be extended and reused. Suppose
that a knowledge base only contain the above two classes about symbol, and
now one wants to add class 'area_symbol' into the knowledge base. The
question becomes how the definitions can be reused and extended without
modifying the existing two classes. In this case, the answer is very simple:

257

use inheritance and redefinition to define a new class 'area_symbol' as
illustrated below. In the class 'area_symbol', 'color', 'texture' and 'value'
are redefined. Only orientation is inherited from the superclass 'symbol'.

Class name: area_symbol
Superclass: symbol
Instance variables: color, value, texture
Instance methods:

color(): begin
for i:=1 to N do begin
message(color(i), color)
end
end

end
texture(): begin

for i:=1 to N do begin
message(texture(i), texture)
end
end

end
valueQ: begin

for i:=1 to N begin
message(value(i), value_calculation)
end
end

end
Class methods: ...

After the examples, one can immediately see that knowledge concerned
with the interpretation of spatial information and determination of map
type can be abstracted in a similar way. And then can be reused and
extended by using inheritance, redefinition, polymorphism and dynamic
binding (Meyer, 1988).

5. Discussion and Further Work

Based on the specification of the requirements of the knowledge
representation scheme for representing the knowledge of cartographic
symbolization concerned with GIS's output, it is argued that the
conventional knowledge representation schemes such as rules, semantic
networks, conceptual graph, object-attribute-value and frames are not rich
and powerful enough to meet the requirements. Then it is suggested to use
the object-oriented knowledge representation scheme to represent the
spatial knowledge concerned with cartographic symbolization. Discussions
show that the object-oriented approach meets the specific requirements and
overcomes the major problems of the conventional schemes.

The flexibility and the power of the OOKR scheme are only partially
illustrated with examples. The work reported in this paper is still far from
fully structuring the comprehensive knowledge of cartographic
symbolization. However, as an approach, the object-oriented knowledge

258

representation scheme offers greater potentials for capturing, organizing,
processing the knowledge and applying it in the digital domain.

Once a reasonable amount of knowledge is specified and structured with
the scheme, the knowledge base and inference engine can be implemented
by a suitable media (e.g. a suitable knowledge-based system shell supporting
object-oriented knowledge representation). Our opinion is that the object-
oriented approach in general is a whole paradigm, in which object-oriented
analysis, object-oriented design and object-oriented programming can be
distinguished (see e.g. Coad and Yourdon, 1990). As far as only analysis and
design (in this case high level knowledge structuring) are concerned, the
object-oriented knowledge representation scheme is regarded as a high
level construct.

To fully structure the knowledge of cartographic symbolization, a number
of issues are still subject to further investigation.

Firstly, further investigation on the object-oriented knowledge
representation scheme itself is still necessary, for example, multiple
inheritance, and semantics to ensure correctness and robustness. These are
the particular interests of the author and will be investigated in the near
future.

Secondly, the interpretation of spatial information from a GIS should be
addressed in detail as it is the fundamental step for the subsequent
symbolization. Several issues are concerned with this aspect, for example,
the encapsulation of knowledge in spatial database (this is effected through
methods in the OOKR scheme), the rules for the interpretation of the
spatial information, and the relationships between the two. These issues are
currently under investigation.

Thirdly, much work needs to be done to use the scheme to structure the
comprehensive knowledge of cartographic symbolization. To address this,
the comprehensive knowledge concerned should be specified first. After
sufficient knowledge is specified and captured, the knowledge then can be
abstracted into classes by using the object-oriented knowledge
representation scheme. The complicated relationships can be represented by
'is-a' relations, 'has-a' relations and messages. New knowledge can be
captured gradually, and added to the knowledge base by defining new
classes and/or subclasses of existing classes. A full scale knowledge-based
system for cartographic symbolization then can be eventually achieved.

6. Acknowledgements

I sincerely thank Prof. Dr. Ir. M.J.M. Bogaerts for his stimulating discussions
and guidance, and for his arrangement which made this investigation
possible. Almost all of our colleagues in the Group of Land Information
and Cartography, Faculty of Geodesy, Delft University of Technology, read
an earlier version of this paper and gave their comments; I wish to thank
all of them. Valuable comments from the anonymous referees are
gratefully acknowledged.

259

7. References

Coad, P. and E. Yourdon, 1990, Object-Oriented Analysis, Yourdon Press
Computing Series.

Egenhofer, M.J. and A.U. Frank, 1990, LOBSTER, Combining AI and
Database Techniques for GIS. Photogrammetric Engineering and Remote
Sensing, Vol. 56, No. 6, pp. 919-926.

Leung, K.S. and M.H. Wong, 1990, An Expert System Shell Using Structured
Knowledge - An Object-Oriented Approach, IEEE Transactions on
Computer, Vol. 23, No. 3, pp.38-47.

Luger, G.F. and W.A. Stubblefield, 1989, Artificial Intelligence and the
Design of Expert Systems, Benjemmin/Cummings Publishing
Company, Inc.

Mackaness, W.A. and P.P. Fisher, 1986, Towards a Cartographic Expert
System, In Proceedings of Auto Carto London, pp.578-587.

Mark, D.M. and B.P. Buttenfield, 1988, Design Criteria for Cartographic
Expert System, In Proceedings of the 8th International Workshop on
Expert Systems, Avignon, France, Vol.2, pp.413-425.

Meyer, B., 1988, Object-Oriented Software Construction, Prentice-Hall.

Muller, J.-C. and Wang Zeshen, 1990, A Knowledge Based System for
Cartographic Symbol Design, The Cartographic Journal, Vol. 27, No. 2,
pp. 24-30.

Smith, J.M. and D.C.P. Smith, 1977, Database Abstractions: Aggregation and
Generalization, ACM Transactions on Database Systems, Vol. 2, No.2,
pp.105-133.

Townsend, C, 1986, Mastering Expert Systems with Turbo Prolog, Howard
W. Same & Company.

Wang, Z.S., 1990, A Representation Scheme for Cartographic Information,
In Proceedings of the 4th International Symposium on Spatial Data
Handling, Zurich, pp. 782-791.

Weibel, R. and B.P. Buttenfield, 1988, Map Design for Geographic
Information Systems, In Proceedings of GIS/LIS'88, San Antonio, Texas.

260

