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Abstract

The need for complex modelling and analysis of 3-dimensional data within a 
spatial information system (SIS) has been established in many fields. While much of the 
data that is currently being modelled seems to require "soft-edge" data structures such as 
grids or rasters, the need for certain types of complex topological modelling and analysis 
is clear. Current plane topology models such as the winged edge, widely used in 
computer aided design (CAD), are limited in the types of analysis that can be performed 
but useful because of their basis in the field of algebraic topology. This paper firstly 
reviews the neighborhood structure provided by current plane topological models. It then 
describes the derivation of a fundamental set of binary topological relationships between 
simple spatial primitives of like topological dimension in 3-space. It is intended that these 
relationships provide both a measure of modelling sufficiency and analytical ability in a 
spatial information system based on three dimensional neighborhoods.

1. Introduction

Modelling and analysis of 3-dimensional spatial phenomena has become a 
critical need in many applications, particularly the earth sciences. One of the traditional 
approaches to the modelling problem is to subset the sampled data from the 3D 
phenomena into individual spatial objects based upon theme or convenience; each spatial 
object can then be decomposed into a set of abstract geometric primitives - points, lines, 
faces and volumes; and a set of spatial relationships describing how the object may be 
reconstructed from these primitives. Analysis of the spatial phenomena requires not only 
the spatial relationships between the primitives required to reconstruct individual spatial 
objects, but also those relationships describing how the individual spatial objects interact. 
Such an approach is one method by which spatial objects may be modelled and analyzed 
according to theme or view in a larger model of the real phenomena.

1 From April 11th, 1991, author's address will be: Centre for Spatial Information 
Studies, University of Tasmania, GPO Box 252C, Hobart, Tasmania, Australia, 7001. 
Internet email address: pigot@sol.surv.utas.oz.au
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Topology is useful in both modelling and analysis because it provides simple 
and very useful spatial relationships, such as adjacency and connectivity. Topology can 
be thought of as the most primitive layer in a hierarchy of spatial relationships, where the 
next level of refinement is provided by the addition of familiar concepts based on a metric 
(ie. distance, direction etc.). Recent work by (Greasley 1988),(Kainz 1989) and (Kainz, 
1990) in lattice theory seems to suggest that order relationships may exist at a similar 
level to topology.

Current topological models are either loosely or strongly based on a structure 
from algebraic topology known as the cell complex. The cell complex (in conjunction 
with graph theory) provides rules to govern the decomposition of a continuous 3D object 
into a finite number of points (0-cells), lines (1-cells), faces (2-cells) and volumes (3- 
cells). In governing the decomposition, the cell complex allows for the explicit 
description of three fundamental topological concepts: adjacency, connectivity and 
containment. Other relationships between individual objects such as whether two objects 
are disjoint or apart, may be provided by embedding individual cell complex(es) within a 
single cell or world cell and using the explicit relationships in combination to derive the 
particular relationship required. For example, it may be possible to analyze the explicit 
relationships to determine if two faces meet at a point (compare node connectivity of 
surrounding lines) or share a line (directly from adjacency). However, some relationships 
cannot be derived from these explicit relationships and may violate some of the rules of 
the cell complex, e.g. in 2-space (R^) overlapping polygons (Egenhofer et. al. 1989); in 
3-space (R^), intersecting volumes or a face meeting another face at a point are all known 
to violate the rules of the cell complex governing the decomposition. In (Molenaar 1990) 
it is suggested that other relationships such as a line internal to a volume, also do not fit 
easily within the cell complex. From other work in 3D SIS (Youngmann 1988) and CAD 
(Weiler 1986), it appears that at least some of the modelling and analysis problems could 
be solved by combining the solid, surface and wire frame modelling approaches of CAD.

In this paper, the limitations of the cell complex are described by analyzing 
the direct and indirect topological relationships between cells that it provides. A layered 
set of fundamental binary topological relationships between simple lines, faces and 
volumes in R^ based on point-set topology and extended from the work of (Egenhofer et. 
al. 1990) and (Pullar et. al. 1988) will be derived and presented. This paper and future 
research will attempt to integrate these intuitive yet powerful topological relationships and 
concepts with cell complex theory from algebraic topology since the power of the cell 
complex lies not in the nature and type of topological relationships that it allows, but in 
the ability to pose and solve topological problems as algebraic problems. It is expected 
that this approach will yield advantages both in modelling and analysis. For modelling 
purposes, the new topological relationships are intended to be used to ascertain the 
sufficiency of a cell complex based on 3D neighborhoods and provide insight into other 
useful structures such as lattices. Compactness and efficiency could be maintained by 
modelling only the coarsest topological relationships. For analysis purposes, a detailed
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set of basic topological relationships should provide either direct answers or at least the 
starting point of an answer, to complex spatial questions about the objects being 
modelled. In addition, enhancements to the fundamental modelling capability based on a 
complete set of topological relationships should allow boolean operations to be closed, i.e 
boolean operations may occur without the problem of not being able to model the result.

Sections 2 and 3 of this paper are concerned primarily with the cell complex. 
Section 2 introduces the necessary theory from algebraic topology and section 3 describes 
the current application of cell complex theory and the topological relationships which can 
be modelled. Section 4 introduces the necessary theory from point-set topology and 
presents the derivation of the new and richer set of topological relationships for R.3. 
Finally, section 5 concludes this paper with a summary of the results and the directions 
that will be taken in future research.

2. Topology

Topology is defined as the set of properties which are invariant under 
homeomorphisms (Alexandroff 1961) - one-to-one, continuous and onto 
transformations. Intuitively, it is easier to think of a homeomorphism as a kind of elastic 
transformation which twists, stretches and otherwise deforms without cutting. From the 
definition of topology as the study of those properties which remain invariant under 
homeomorphism, two objects are topologically equivalent if either can be transformed 
into the other using this type of elastic transformation. Clearly, metric properties such as 
distance, angle and direction are affected by homeomorphism and hence are not 
topological properties. It is the notion of homeomorphism which provides a fundamental 
or primitive set of spatial relationships (Chrisman 1987).

About Neighborhoods

The neighborhood of a point is any open set (ie. a set that does not include its 
boundary) that contains the point. Neighborhoods can be defined in any abstract manner, 
but the most common are those that have a metric interpretation. For example in 2D, the 
neighborhood of a point can be considered as any 2D "flat" disk containing that point.

About Manifolds

A manifold is an n-dimensional surface of which every point has a 
neighborhood topologically equivalent to an n-dimensional disk.This property is usually 
defined as local flatness. Manifolds are of interest because of their useful topological 
properties (in particular, the notion of orientation) which are inherited by the cells of a cell 
complex.

About Simplexes. Cells and Complexes
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An n-simplex is the n-dimensional simplest geometric figure eg. a 1-simplex 
is a line, a 2-simplex a triangle and a 3-simplex a tetrahedron - in essence, an n-simplex 
has n+1 vertices and may be viewed as the smallest closed convex set containing the 
given vertices (Alexandroff 1961). An n-simplex is the homeomorph of an n-cell. eg. any 
closed polygon which does not have an internal boundary (ie. genus 0) is homeomorphic 
to a triangle or 2-simplex. Because of this topological equivalence all results for 
simplexes generalize to cells.

An n-simplex is a composite of n-l,n-2,...,l simplexes. eg. a 2-simplex or 
triangle, is bounded by three 1-simplexes, which meet at three 0-simplexes. In 
(Egenhofer et. al. 1989) this property is termed "Completeness of inclusion".

An n-simplicial complex or more generally an n-cell complex is the 
homeomorph of an n-dimensional polyhedron whose faces are all (n-l)-cells, no two of 
which intersect except at a cell of lower dimension. In (Egenhofer et. al. 1989) this 
intersection restriction is termed "Completeness of incidence". With this restriction, an n- 
cell complex may inherit the properties of an n-manifold, thus accessing the topological 
properties of manifolds, the most important of which is orientation. The notion of 
orientation is usually applied to the 1-simplex by defining one of the bounding 0- 
simplexes or points as a point of origin and the other as a point of termination. Relative 
orientations can then be assigned to all higher simplexes according to the traversal of 
bounding 1-simplexes.

About Duality

Two dual operators which arise from these completeness axioms are termed 
boundary and coboundary, originally attributed to Poincar6 (Corbett 1985). The 
boundary of an n-simplex is the incident set of n-1 simplexes. For example, a 3-simplex 
(tetrahedron) has 4 incident 2-simplexes, 6 incident 1-simplexes and 4 incident 0- 
simplexes. The coboundary of an n-simplex is the set of n+1-simplexes incident to the 
given n-simplex. For example, a 1-simplex may have two 2-simplexes cobounding it 
(one either side). The following table shows each cell and its dual, for R^;

Primal Dual
0-cell 3-cell
1-cell 2-cell
2-cell 1-cell
3-cell 0-cell

An important and powerful implication of duality is the fact that a primal may 
be represented and manipulated algebraically using its dual state. For example, 3-cells or 
volumes in a 3D SIS can be manipulated and represented by their dual state, the 0-cell or 
point.
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3. Current Topological Models

Current topological models used either explicitly or implicitly in SIS and 
CAD fields are rather similar, despite the fact that CAD models are more generally used 
for 3D modelling and SIS are predominantly concerned with 2D models.

In SIS, 2D phenomena are assumed to be a connected set of points and lines 
(or a graph) which can be embedded in a 2-manifold - thus creating a set of connected 
and unconnected (or internal areas) (Corbett 1975),(Corbett 1979),(White 1983) and 
(White 1984). The application of the dual concepts of boundary and coboundary as 
described in the last section, provides connectivity and adjacency. Internal areas are 
described by simple application of homology theory. The data structures employed in 
such models are abstracted from graph theoretic concepts. Examples of systems built 
around these principles include DIME (Corbett 1975), ARC/INFO, TIGRIS (Herring, 
1987), TIGER (Boudriault 1979).

In CAD and SIS surface modelling, even though 3D phenomena are being 
modelled, the current assumptions and resulting models are the same. The planar face of 
a 3D polyhedron is embedded in a 2-manifold and the embedded faces exist in 3D space 
resulting in a set of connected and unconnected (or internal) faces and volumes. The same 
application of the dual concepts of boundary and coboundary provides connectivity and 
adjacency e.g. (Corbett 1985) is a 3D extension of (Corbett 1975) and (Corbett 1979). 
Internal faces and volumes can be described by application of homology theory similar to 
that used for 2D SIS. The data structures employed in such models, such as the winged- 
edge model of (Baumgart 1975) and its later variants, e.g. (Braid et. al. 1978), (Woo 
1985) and (Weiler 1985) are also based on graph theory and have been used extensively 
in CAD.

Both of these topological models can be described as vector, edge or 
boundary data structures and the particular topological relationships which are modelled 
can be classified using a system of relationships between 0,1 and 2D primitives specified 
in (Baer et. al. 1979) - see figure 1. Analysis of figure 1 shows that the main topological 
models in use, the winged-edge model in (Baumgart 1975) and the 2D map model in 
(Corbett 1975) and (Corbett 1979), both model the same set of relationships - EV and EF 
(from EV can derive VE, VV and EE, from EF can derive FE and FF, and from EF and 
EV together can derive VF and FV). Note that EV and EF give connectivity and 
adjacency corresponding with the boundary/coboundary principles of the cell complex - 
both models are basic applications of the cell complex. Most practical models do allow 
useful extensions that would normally be excluded by pure cell complex theory. For 
example, "dangling" lines - lines which are not connected at one or both ends to any other
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line.

The algebraic structure provided by cell complex theory has been 
reinvestigated in (Egenhofer et. al. 1989) and (Frank and Kuhn 1986) using concepts 
specified in (Giblin 1977) and (Moise 1977). This work has been applied to geological 
layers in (Carlson 1986) and to algorithms for editing triangular irregular networks in 
(Jackson 1989). The stated approach to the construction and maintenance of the cell 
complex is different to that taken previously because the construction and maintenance 
operations on the complex use topological concepts only - distance and other metric 
notions are not required.

W VE VF

EE

VF EF FF

Figure 1-9 Relationships of (Baer, Henrion & Eastman 1979)

The intention is to avoid or at least minimize any inconsistency between the metric 
geometry and the topology that may be introduced by the limited precision arithmetic of 
computing devices (Franklin 1984). The other interesting aspect of (Egenhofer et. al.
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1989) is that the construction and maintenance techniques are dimension independent.

In all models the necessary topological descriptions of faces with internal 
faces and volumes with internal volumes are described by the application of another 
branch of algebraic topology known as homology theory, e.g. (Corbett 1975), (Corbett 
1979), (White 1983) and (Weiler 1985). Homology provides methods by which these 
internal faces and volumes may be detected by analysis of bounding cycles in cell 
complexes. In a wider sense homology groups give an indication of the connectivity 
present - internal faces and volumes may be regarded as homology group generators. In 
(Saalfeld 1989) other homology groups and additional homology theory are described 
and used in an attempt to determine the number of polygons resulting from the overlay of 
two maps.

4. Topological Relationships

What topological relationships may exist between abstract geometric 
primitives in euclidean 3-space? To answer a detailed question about the nature and type 
of all topological relationships is an attempt to classify the types and situations of 
manifolds. This is possible for R* (1-space) and R^ (2-space) however, R3 (3-space) 
has a number of quite difficult and unexpected situations which make general 
classification very difficult. See (Zeeman 1961) and (Alexandroff 1961). Fortunately, it 
is not necessary to attempt this. A number of assumptions about the nature of the 
relationships and the geometry of the n-cells involved can be made without limiting the 
power and application of the derived relationships. Specifically, only binary topological 
relationships between closed, connected (genus 0 - no internal holes) n-simplexes will be 
considered. The use of simplexes rather than cells is intuitive; simplicial complex theory 
is the starting point for the more generalized and advanced cell complex theory. Cells can 
be decomposed into simplexes in what is termed a simplicial decomposition, thus the 
results derived using simplicial complex theory can be generalized to cell complex theory 
via the decomposition.

In section 3, it was shown that cell complex theory as it is currently 
implemented in plane topology models allows a number of useful topological 
relationships such as adjacency and connectivity. In effect, cell complex theory allows n- 
dimensional adjacency (= connectivity in Rl), containment and the complement 
relationship of disjoint existing where no adjacency can be found. In essence, the main 
function of the cell complex is to allow specification of topological problems using 
algebraic methods, the definition of the algebraic operations being confined by the 
intersection rules (the set of allowable topological problems).

Point-set topology (classical topology) provides a much more intuitive view 
of topological relationships. In this paper, point-set binary topological relationships 
between 1-simplexes in R^, 2-simplexes in R^ and 3-simplexes in R^ are based on 
consideration of the fundamental boundary, interior and exterior point-sets of any n-
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simplex in Rn. Additional point-sets are formed generically by embedding the n-simplex 
and its fundamental point-sets for Rn , within Rn+l. Consideration of the possible 
intersections of these point-sets with the boundary point-set of a second n-simplex then 
gives the fundamental topological relationships. The relationships are point-set 
topological relationships because they are derived from the intersection of these 
fundamental point-sets only.

The resulting binary topological relationships are very detailed. A number of 
methods can be chosen to aggregate or subdivide them into a hierarchy of detail. The 
method of aggregation chosen in this paper is consistent with the topological notion of 
homeomorphism. Each of the resulting binary topological relationships is considered to 
be the union of the two n-simplex point sets involved. Some topological relationships are 
then homeomorphic and can be replaced by a single homeomorph. The resulting tree 
structure then provides two levels of detail, the most descriptive relationships being 
found at the "leaves" of the tree. Further subdivision and grouping could also occur by 
considering the dimension of the spatial intersection between the two n-simplexes in each 
relationship as proposed in (Egenhofer et. al. 1990).

In all of the following discussion, a 1-simplex is called an interval, a 2- 
simplex is called a face and a 3-simplex is called a volume.

Theoretical Background

All results used and derived in this section are for metric topological spaces 
since metric topological spaces are most commonly used for modelling purposes. Metric 
topological spaces are a subset of general topological spaces.

An n-simplex in Rn divides Rn into three useful and intuitive point-sets, well 
known in point-set topology; eg. (Kasriel 1971)

Interior ° set of an n-simplex C: a point x is an interior point of C provided 
there exists an open subset U such that x is an element of U and U is strictly contained 
within C. The union of all such points is the interior set

Boundary set 3 of an n-simplex C: C -

Exterior set of an n-simplex C: Complement of C.

A simple and complete method can be found for finding all topological 
relationships between two closed, connected n-simplexes. In (Pullar et. al. 1988), 
(Driessen 1989) and (Egenhofer et. al. 1990) only the intersection of the boundary and 
the interior point-sets of the two n-simplexes is used to derive topological relationships. 
In this paper, a more powerful and fundamental method is used which is based on the set
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intersection of the boundary, interior and exterior point-sets of an n-simplex nj and the 
boundary, interior and exterior sets of another n-simplex n2 in Rn . In practice, the 
derivation of relationships can be simplified by considering the possible set intersection 
of the boundary point-set of n^ and the interior, exterior and boundary point-sets of n^ 
since the boundary set of n^ naturally defines the interior and exterior point-sets of nj 
and governs their possible relationships with the sets of n^- Further detail can then be 
added to each relationship if required by considering the set intersection of the interior 
and exterior sets of n ̂  with those of n2-

Up till now the definitions of the fundamental point-sets of an n-simplex have 
been given in terms of an n-simplex in Rn, however in order to analyze intersections 
between n-simplexes in Rn+l it is necessary to consider what happens to the simplex and 
its point-sets in Rn when they are embedded in Rn+l. This is of particular importance to 
this research, since the aim is to derive topological relationships between 1-simplexes, 2- 
simplexes and 3-simplexes in R^.

The closed boundary and open interior and exterior point-sets of an n- 
simplex in Rn are all closed point-sets when considered relative to Rn+l since the union 
of these point-sets is an n-manifold equivalent to Rn, and Rn itself is a closed point-set in 
Rn+l. Since the intersection process is reliant upon the existence of these three point-sets 
then we have a problem, the solution to which can be found by considering the 
dimension of the n-manifold created from the union of these point-sets and the dimension 
of the space in which they to be embedded. In Rn, we are considering the intersection of 
the boundary, interior and exterior point-sets of two n-simplexes in the same n-manifold 
which is equivalent to Rn. In Rn+l, we consider not only the situation in Rn where both 
n-simplexes are in the same n-manifold, but also the complement situation which occurs 
when both n-simplexes are in different n-manifolds. Clearly any intersection between the 
boundary, interior and exterior point-sets of the two n-simplexes will always occur where 
the two n-manifolds meet, hence if the open/closed point-set properties of the interior, 
exterior and boundary point-sets of an n-simplex are considered strictly relative to the n- 
manifold formed by their union, then their open/closed point-set properties are preserved 
and can be used without loss of generality regardless of the dimension of the space in 
which the n-manifold(s) created from their union are embedded.

It is now necessary to find a simple and comprehensive way of analyzing the 
intersection possibilities between two n-simplexes in Rn+l excluding the subset formed 
specifically for Rn when both n-simplexes are in the same n-manifold. This can be done 
by choosing a specific embedding of such an n-manifold or equivalently Rn, in Rn+l. If 
Rn and Rn+1 are metric spaces with standard orthogonal basis vectors (or coordinate 
system axes) then if we choose the embedding such that the n orthogonal basis vectors of 
Rn are coincident with n of the n+1 orthogonal basis vectors of Rn+ l, then Rn 
disconnects Rn+ l into two open point-sets corresponding to the opposing directions of
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the n+lth orthogonal basis vector of Rn+ l. Using this fact the derivation method for 
possible intersections between n-simplexes in Rn+ * can be extended simply by 
considering those intersection combinations involving either or both of the two new 
point-sets resulting from the embedding.

In the summary of the theory and the rest of this paper, the generic term set is used in 
place of point-set. The theory can now be summarised in five steps as follows;

1. Formulate the boundary, interior and exterior sets of an n-simplex n j in Rn.
2. Derive basic relationships based on all possible set intersections of the boundary 
set of a second n-simplex ^2 anc^ ^e interior, boundary and exterior sets of the n- 
simplex nj from step 1.
3. Consider the union of the interior, exterior and boundary sets of any n-simplex 
in Rn as an n-manifold equivalent to Rn with the definition of the open/closed 
properties of these sets strictly relative to Rn.
4. Disconnect Rn+ l into two new open sets by choosing an embedding of Rn 
(created in step 3) in Rn+ l such that the n orthogonal basis vectors of Rn are 
coincident with n of the n+1 orthogonal basis vectors of Rn+l.
5. Derive additional relationships based on the possible set intersections of the 
boundary set of an n-simplex ^2 w^ *e boundary, interior and exterior sets of the 
a second n-simplex nj with the boundary set of n2 intersecting either or both of the 
two new sets predicted in step 4.

Intervals (l-simplexes)

The boundary, interior and exterior sets of an interval ij in R 1 are shown in 
figure 2.

D

Figure 2 - The exterior, boundary and interior sets of an 
interval in Rl

Note that there are two distinct closed boundary sets (B and D), two distinct open exterior 
sets (A and E) and a single open interior set (C). The union of the sets A,B,C,D and E is 
a 1-manifold equivalent to R*. All possible binary topological relationships between two 
intervals in R* can then be derived by choosing any two points x and y forming the 
boundary set of a second interval i^ either from the same set or each from a different set, 
and making these the boundaries of an interval joining them. The created interval \i will 
then either intersect interval \\ in some way or be disjoint from it. e.g. If both points x 
and y are chosen from set A (the left exterior set) then the created interval \i will not
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intersect ij. The unique combinations and their spatial interpretations are shown in figure 
3.

X •

Figure 3 - Possible choice combinations of the two boundary points x,y from the 
boundary, interior and exterior sets of an interval in Rl

From figure 3, it is possible to distinguish those choices which give distinct relationships 
and name these distinct relationships as follows; (8 = element of a set)

x £ boundary set B or D, y £ boundary set D or B -> ij equals \2
x,y £ exterior set A or E -> il and \i are disjoint
x,y £ interior set C -> ij contains 12
x £ exterior set A or E, y £ interior set C -> ij and \2 overlap
x £ exterior set A or E, v £ boundary set B or D -> \\ meets \i
x £ boundary set B or D, y £ interior set C -> i\ and \2 share

	common bounds

Note that these six relationships are the same as those derived in (Pullar et. al. 1988). The 
names given to the six distinct relationships are also taken from (Pullar et. al. 1988).

If we define the open/closed properties of these sets strictly relative to R1 
then these sets and the set relationships in R.1 are preserved when the five sets A,B,C,D 
and E whose union comprises R.1 are embedded in R.2. As for the new sets created by the 
embedding; if the embedding of R^ in R^ is chosen such that the basis vector of R^ 
corresponds to one of the two orthogonal basis vectors of R^, then R^ will be divided 
into two open sets F and G, separated by a third set corresponding to Rl. The situation is 
shown in figure 4. R! is represented by the line L.
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F 
D

X̂C

G

R2 
If

-4-

Figure 4 - New point sets F & G obtained by embedding Rl in R2

All possible binary topological relationships between intervals in R^ can be 
derived in the same way as for Rl, by choosing two points either from the same set or 
from a different set and making these the boundary of an interval. Since those 
relationships derived in R! apply without modification in R^, only the new combinations 
where x,y are elements of either or both sets F and G will be considered.

The set relationships can be divided into groups by examination of figure 4. 
The first group occurs when both boundary points are in the sets A,B»C,D or E which 
comprise R* (the line L) and has already been considered above. The second group 
occurs when either one or both of the boundary points of \^ are contained within either F 
or G. The spatial situation corresponds to the interval \^ being either left or right of the 
line L. The possible combinations and their spatial interpretations are shown in figure 5a.

B D
Figure 5a - Intersection between the boundary point y of interval i2 and

the boundary, interior and exterior sets of interval il when boundary 
point x of i2 is always chosen from the point set F (or equivalently, G).

The following set relationships may be distinguished based upon which sets the 
boundary points x and y intersect;

x£ set F, y£ setF OR
x£ set G, y£ setF OR
x e set F or set G, y e exterior set A or E ij and \i disjoint
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x£ set F or set G, y £ boundary set B or D 
* £ set F or set G, y £ interior set C

-> 11 meets 12
-> ii intersects \i

The third group occurs when one of boundary points of \2 is an element of F and the 
other is an element of G, indicating that the interior set of interval \2 intersects the line L 
(the boundary, exterior and interior sets of ij) at a point. The possible combinations and 
their spatial interpretations are shown in figure 5b.

D

Figure 5b - Intersection between the interior set of interval 12 and
the boundary, interior and exterior sets of interval il when x and y 
are chosen from the point sets F and G respectively.

The three resulting relationships are distinguished according to which set of ii that the 
interior of \2 intersects (in fact, the three possible relationships between a single point and 
the interior, boundary and exterior sets of an interval);

x 6 set F, y £ set G, intersect exterior set A or E
x £ set F, y £ set G, intersect boundary set B or D
x £ set F, y £ set G, intersect interior set C

-> ij and \2 disjoint
-> ii intersects \2
-> ii and \2 cross

By consideration of both these groups, the only new relationships which result are 
intersect and cross, making a total of 8 relationships between intervals in R^. For R^ 
also, no new relationships result because embedding the scheme for R^ shown in figure 
4, in R3 produces two new sets as a result. The same process of reduction for R^ reveals 
no new relationships - hence there are eight relationships between intervals in R^.

To reduce these 8 relationships in detail, the union of the boundary and 
interior points-sets of ii and \2 is considered. Relationships can then be eliminated which 
are homeomorphic. For intervals, this results in relationships; meet, overlap, contains, 
equal, common-bounds all being homeomorphic to a single interval. Thus, the complete 
two layer hierarchy of binary topological relationships between intervals (1-simplexes) in 
R3 is shown in figure 6.
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disjoint cross intersect

meet commonbounds concur overlap equal

Figure 6 - The eight unique binary topological relationships between 1-cells 
inR3

Faces (l-simplexes)

The boundary, interior and exterior sets of a face (or 2-simplex) a i in R^ are 
shown in figure 7.

A
B

Figure 7 - Exterior (A), Boundary (B) and Interior (C) point-sets of a face in R2

Note that there is a single closed boundary set (B), a single open exterior set (A) and a 
single open interior set (C). The union of sets A,B and C is a 2-manifold equivalent to
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R.2. All possible binary topological relationships between faces in R^ can then be derived 
from the possible set relationships between the boundary, interior and exterior sets A, B 
and C of a\ and the boundary set X of &2- e.g. if the boundary set X of a2 is contained 
within the interior set C, then the face a% will be contained within aj. The combinations 
matrix showing the possible relationships between the boundary of the face &2 and the 
exterior, boundary and interior sets A,B, and C of aj is shown in table 1.

Exterior A

Boundary B

Interior C

X

X

X

X

X

X

X

X

X

X

X

X

Table 1: Set intersection relationships between the boundary set of a2 
and the interior, exterior and boundary sets of al in R2

Note that the seventh relationship in the last column of table 1 is not possible 
in R~ because of the restriction to closed, connected faces.

The six distinct relationships and their names are the same as those in 
(Egenhofer et. al. 1990). The spatial interpretations are shown in figure 8.

af

equal

overlap meet commonbounds

Figure 8 - Six possible relationships between faces based on the intersection of 
the boundary set of face a2 and the exterior, boundary and interior sets 
of face al in R2
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Figure 9 - New point sets D & E obtained by embedding the union 
of the boundary (B), exterior (A) and interior (C) of a face 
al in R3 (A U B U C = R2).

If we define the open/closed properties of these sets strictly relative to R2 
then these properties and the set relationships in R2 are preserved when the 2-manifold 
(equivalent to R2) formed by their union is embedded in R^. If the embedding is chosen 
such that any two orthogonal basis vectors of R2 are coincident to two of any three 
orthogonal basis vectors of R3 then R2 disconnects R3 into two open sets with the third 
open set corresponding to R2 itself. The situation is shown in figure 9.

All possible binary topological relationships between faces in R3 can be 
derived in the same way as for R2, by considering the possible set relationships between 
boundary set of a face &2 and the boundary, interior and exterior sets of the face aj plus 
the two new sets D and E which result from embedding R2 in R3 . Since all set 
relationships derived for R2 are preserved in R3 , only the combinations involving the 
new sets D and E will be considered.

By examination of figure 9, the set relationships can be divided into two 
groups. The first group represents the situation where the boundary set X of a2 is 
contained within the plane P formed from the union of the interior, exterior and boundary 
sets of aj. This situation corresponds to faces in R2 and was considered above. The 
second group corresponds to the situation where the boundary set X of &2 intersects 
either D or E but not both. This corresponds to the spatial situation where &2 *s 
completely on one side of the plane P formed by the boundary, interior and exterior sets 
A,B and C of aj. In this situation, the boundary set X of &2 may intersect the plane P and
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hence the boundary, interior and exterior sets A,B and C or not at all. All combinations 
are shown in table 2.

12345678

Exterior A

Boundary B

Interior C

Above D

Below E
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 2: Set intersections between the boundary set X of a2
and the interior (A), exterior (B) and boundary (C) sets of al in R3 when al
intersects only one of the sets D or E.

Figure 10 - Relationships formed by the intersection of the boundary set X of a face a2 
with the boundary, interior and exterior sets (A3 and C) of a face al when 
the boundary set of of the face intersects the point-set D (or E). a2 is shown 
shaded, however only the black outline is the boundary set of a2
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Since the topological relationships are the same no matter which set D or E on 
either side of the plane P the boundary set of &2 intersects, the combinations are shown in 
the table with the marker offset between D and E. Note that relationship 7 is not possible 
between two closed connected simplexes. The other seven relationships are shown 
spatially in figure 10.

The third group of relationships occurs when the boundary set X of &2 
intersects both D and E and hence must intersect the sets A,B and C of a j at an interval 
whose boundaries correspond to two points from the boundary set X of &2 and interior 
corresponds to the interior set Y of &2- The possible combinations between the boundary 
set X of &2 and the boundary, interior and exterior sets A,B and C of aj when the 
boundary set X intersects both D and E as well, are shown in table 3.

10 11 12 13 14 15

Exterior A

Boundary B

Interior C

Above D

Below E

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 3: Set Intersections between the boundary of set X of a2 and the 
exterior (A), boundary (B) and interior(C) sets of al in R3 when the 
boundary of a2 intersects both of the sets D and E.

The spatial interpretations are shown in figure 11. Note that for relationship 
10 in column two, the interior set of the face &2 mav be used to derive a second 
possibility. These relationships are marked lOa and lOb in the spatial interpretations of 
these relationships, shown in figure 11. In addition, relationship 14 is not possible 
between closed, connected faces.

By examination of all relationships in figures 8, 10 and 11, the number of 
unique relationships between faces in R^ is fourteen since relationships 1,4 and 11 are 
particular types of the disjoint relationship shown in figure 8 and relationships 3, 6 and 
13 are particular types of the meet relationship shown in figure 8.
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Figure 11 - Relationships formed by the intersection of the boundary set X of a face a2 
with the boundary, interior and exterior sets (A3 and C) of a face al when 
the boundary set of of the face intersects both point-sets D and E (passes through! 
the plane P formed from the union of the boundary, interior and exterior sets of al. 
Although a2 is shown shaded, only the black outline is the boundary set

To reduce these fourteen relationships in detail, the union of the boundary 
and interior points-sets of aj and a2 in each relationship is considered. Relationships 
which are homeomorphic can then be reduced to their homeomorphs. Thus, the complete 
two layer hierarchy of binary topological relationships between faces (2-simplexes) in R^ 
is shown in figure 12.

Volumes (3-simplexes)

The boundary, interior and exterior sets of a volume (or 3-simplex) v^ in R^ 
are the same as for a face in R2 (Figure 7). There is a single closed boundary set (B), a 
single open exterior set (A) and a single open interior set (C) just as there was for faces in 
R2 in the previous section. The union of sets A,B and C is a 3-manifold equivalent to 
R^. All possible binary topological relationships between volumes in R^ can then be 
derived from the possible set relationships between the boundary, interior and exterior
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Figure 12 - Hierarchy of 
topologicalrelationships between 
faces in R3.
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sets A, B and C of v\ and the boundary set X of \2- e-S- ^ ̂ e boundary set X of \2 *s 
contained within the interior set C, then the volume \2 will be contained within \\. The 
combinations matrix showing the possible relationships between the boundary of a 
volume \2 and the exterior, boundary and interior sets A,B, and C of v^ is shown in 
table 4.

Exterior A

Boundary B

Interior C

X

X

X

X

X

X

X

X

X

X

X

X

Table 4: Set intersection relationships between the boundary set of v2 
and the interior, exterior and boundary sets of vl in R3

Note that the seventh relationshi p in the last column of table 4 is not possible 
in R.3 because of the restriction to closed, connected volumes. Not surprisingly the 
relationships are the same as those between closed, faces in R .

The six distinct relationships and their names are the same as those used in 
(Egenhofer et. al. 1990). The spatial interpretations are shown in figure 13.

overlap meet

commonbounds

Figure 13 - Six fundamental relationships between the boundary
set of a volume v2 and the boundary, exterior and interior 
sets of a volume vl
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Note that is also possible to use the sixteen different boundary-interior set 
intersection combinations and the theory shown in (Egenhofer et. al. 1990), to derive the 
same eight relationships between volumes or 3-simplexes. The only change in the theory 
required is the use of an extension of the Jordan-Brouwer separation theorem to Ry, 
given in (Alexander 1924).

To reduce these 8 relationships in detail, the union of the boundary and 
interior sets of vj and \2 m each relationship is considered. Relationships which are 
homeomorphic can then be eliminated. For volumes in R^, this results in meet, overlap, 
contains, equal and common-bounds all homeomorphic to a single volume.

5. Conclusions and Future Research

The final aim of this research is a compact and powerful spatial information 
system for 3D modelling and analysis. Since topological situations in 3-space are 
complex and difficult, a natural starting place for the development and investigation of a 
3D neighborhood topological model is to limit the types of relationships to those that may 
occur between simplexes since they may be generalized to complex problems via a 
simplicial decomposition. The topological relationships limiting the cell complex as 
currently used in 3D topological models for SIS and CAD have been described. To 
provide a better theoretical basis for 3D situations, a generic and reusable method for 
deriving fundamental point-set topological relationships between two closed, connected 
n-simplexes (genus zero) in Rn+ l (and higher dimensions) has been developed. The 
generalized method of derivation can be summarised in two steps;

1. Consider the set intersection of the boundary set of a single n-simplex r\2 
with the boundary, interior and exterior sets of a second n-simplex nj in Rn.

2. Extend these relationships by including either or both of the two additional 
sets created by embedding the n-manifold created from the union of the boundary, 
interior and exterior sets of nj in Rn+1.

Using this method, the derived sets of binary topological relationships for R^ 
have been presented as a two-layer hierarchy. Relationships in the first layer are created 
by considering the union of the boundary and interior sets of the two n-simplexes and 
replacing those relationships in the second layer which are homeomorphic with a 
homeomorph. The results are as follows;

Second Layer - Fundamental First Layer - Aggregated 
o

1-simplexes in RJ 8 4
**

2-simplexes in R-3 14 4
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3-simplexes in R^ 6 2

It is interesting to note that the relationships between 3-simplexes verify the 
correctness of the extended set of relationships between faces or 2-simplexes in R.3. Each 
relationship between faces or 2-simplexes implied by the eight 3-simplex relationships is 
predicted within the extended set of 2-simplex face relationships. Similarly, the 
relationships between 2-simplexes verify the extended set of 1-simplex relationships in 
R3.

Future research will concentrate on the development of a 3D neighborhood 
topological model for SIS, the basis for the modelling sufficiency and analytical power of 
this model will be the relationships derived in this paper. In addition, other hierarchies of 
these relationships based on set and order theory will be investigated.

6. References

Alexander, J.W., 1924, On the Subdivision of 3-Space by a Polyhedron, Proceedings of the National 
Academy of Science, vol. 10, pp. 6-12.

Alexandroff, P., 1961, Elementary Concepts of Topology (Dover Publications: USA).

Baer, A., C. Eastman, and M. Henrion, 1979, Geometric Modelling: A Survey, Computer Aided 
Design, vol. 11, no. 5, pp. 253-272.

Baumgart, E.G., 1975, A Polyhedron Representation for Computer Vision, American Federation of 
Information Processing Societies (AFIPS Conference), Proceedings of the NCC, vol. 44, pp. 589-596.

Boudriault, G., 1987, Topology in the TIGER file, Proceedings of the Eighth International Symposium 
on Computer Assisted Cartography (AUTOCARTO 8), pp. 258-263.

Braid, I.C., R.C. Hillyard, and LA. Stroud, 1978, Stepwise Construction of Polyhedra in Geometric 
Modelling, Mathematical Methods In Computer Graphics and Design (K.W. Brodlie ed.), pp. 123-141, 
Academic Press.

Carlson, E., 1986, Three Dimensional Conceptual Modelling of Subsurface Structures, Technical 
Papers of the ACSM/ASPRS Annual Convention, Baltimore, Maryland, USA, vol. 3, pp. 188-200.

Chrisman, N.R., 1987, Challenges for Research in Geographic Information Systems, International 
Geographic Information Systems (IGIS) Symposium, vol. 1, pp. I-101 to 1-112.

Corbett, J.P., 1975, Topological Principles In Cartography, Proceedings of the International 
Symposium on Computer Assisted Cartography (AUTOCARTO 2), pp. 61-65.

390



Corbett, J.P., 1979, Topological Principles in Cartography, Technical Report No. 48, US Bureau of 
Census, Washington, D.C.

Corbett, J.P., 1985, A General Topological Model For Spatial Reference, Spatially Oriented 
Referencing Systems Association (SORSA) Workshop (J.P. van Est ed.), Netherlands, pp. 9-24.

Driessen, R.J., 1989, A Model for Land Parcels in a LIS, Master of Surveying Thesis, School Of 
Surveying, University Of Tasmania.

Egenhofer, M.J., A.U. Frank and J.P. Jackson, 1989, A Topological Model for Spatial Databases, 
Design and Implementation of Large Spatial Databases (A. Buchmann, O. Gunther, T.R. Smith and Y.- 
F. Wang eds) SSD 89, vol. 409, pp. 271-286, Springer-Verlag.

Egenhofer, M.J. and J.R. Herring, 1990, A Mathematical Framework for the Definition of Topological 
Relationships, Proceedings of the Fourth International Symposium on Spatial Data Handling, Zurich, 
Switzerland, vol. 2, pp. 803-813.

Frank, A.U. and W. Kuhn, 1986, Cell Graphs: A Provable Correct Method for the Storage of 
Geometry, Proceedings of the 2nd International Conference on Spatial Data Handling, Seattle, 
Washington, USA, pp. 411- 436.

Franklin, Wm. R., 1984, Cartographic Errors Symptomatic of Underlying Algebraic Problems, 
Proceedings of the First International Symposium on Spatial Data Handling, Zurich, Switzerland, vol. 
1, pp. 190-208.

Giblin, P.J., 1977, Graphs, Surfaces and Homology, (Chapman and Hall: U.K.).

Greasley, I., 1988, Data Structures to Organize Spatial Subdivisions, Report 79, University of Maine at 
Orono, Dept. Surveying Engineering.

Herring, J.R., 1987, TIGRIS: Topologically Integrated Geographic Information System, Proceedings of 
the Eighth International Symposium on Computer Assisted Cartography (AUTOCARTO 8), Baltimore, 
Maryland, USA, pp. 282-291.

Jackson, J.P., 1989, Algorithms for Triangular Irregular Networks Based on Simplicial Complex 
Theory, Technical Papers of the ACSMIASPRS Annual Convention, Baltimore, Maryland, USA, vol. 
4, pp. 131-136.

Kainz, W., 1989, Order, Topology and Metric in GIS, Technical Papers of the ACSMIASPRS Annual 
Convention, Baltimore, Maryland, USA, vol. 4, pp. 154-160.

Kainz, W., 1990, Spatial Relationships - Topology Versus Order, Proceedings of the Fourth 
International Symposium on Spatial Data Handling, Zurich, Switzerland, vol. 2, pp. 814-819.

391



Kasriel, R., 1971, Undergraduate Topology, (W.B. Saunders Company: USA). 

Mendelson, B., 1968, Introduction to Topology, 2nd Edition, (Allyn & Bacon: USA). 

Moise, Edwin E., 1977, Geometric Topology In Dimension 2 and 3, Springer-Verlag.

Molenaar, M., 1990, A Formal Data Structure For Three Dimensional Vector Maps, Proceedings of the 
Fourth International Symposium on Spatial Data Handling, Zurich, Switzerland, vol. 2, pp. 830-843.

Pullar, D.V. and M.J. Egenhofer, 1988, Toward Formal Definitions of Topological Relations Among 
Spatial Objects, Proceedings of the Third International Symposium on Spatial Data Handling, Sydney, 
Australia, pp. 225-243.

Saalfeld, A., 1989, The Combinatorial Complexity of Polygon Overlay, Proceedings of the 9th 
International Symposium on Computer Assisted Cartography (AUTOCARTO 9), Baltimore, Maryland, 
USA, pp. 278-288.

Spanier, E.H., 1966, Algebraic Topology, McGraw Hill Book Company.

Weiler, K., 1985, Edge-Based Data Structures for Solid Modelling Environments, IEEE Computer 
Graphics and Applications, vol. 5, No. 1, pp. 21-41, IEEE, USA.

Weiler, K., 1986, Topological Structures for Geometric Modelling, Ph.D. Thesis, Rensselaer 
Polytechnic Institute, Troy, New York, USA.

White, M., 1983, Tribulations of Automated Cartography and how Mathematics Helps, Proceedings of 
the 6th International Symposium on Computer Assisted Cartography (AUTOCARTO 6), Canada, vol. 
1, pp. 408-418.

White, M., 1984, Technical Requirements and Standards for a Multipurpose Geographic data system, 
The American Cartographer, vol. 11, No. 1, pp. 15-26.

Woo, T.C., 1985, A Combinatorial Analysis of Boundary Data Schema, IEEE Computer Graphics and 
Applications, vol. 5, No. 3, pp. 19-27.

Youngmann, C., 1988, Spatial Data Structures for Modelling Subsurface Features, Proceedings of the 
Third International Symposium on Spatial Data Handling, Sydney, Australia, pp. 337-341.

Zeeman, R., 1961, The Topology of the Brain and Visual Perception, Topology of 3-manifolds and 
Related Topics (ed. M.K. Fort), (Prentice-Hall: USA).

392




