
UGIX: A GIS INDEPENDENT USER INTERFACE ENVIRONMENT

J.F. Raper and M.S. Bundock 
Dept. of Geography,
Birkbeck College, 

7-15 Gresse St., London W1P 1PA

ABSTRACT

Work has begun on the design and specification of a Standard User 
Interface Environment for use with Geographic Information Systems. 
The work was prompted by the recognition that many of todays 
commercially available GIS products are firstly difficult to learn and 
use, secondly are difficult and time-consuming to customise, and 
thirdly the knowledge gained in using one product is not readily 
transferable or applicable to another. Consequently the aims of the 
research are to produce a prototype environment which is independent 
of the underlying GIS, provides high level analysis, design and 
customisation facilities, and presents the user with an adaptable, 
extensible, easy to learn and easy to use interface. In order to 
satisfy these aims, the research has the following specific 
objectives:

- to identify the common functional components that must be 
supported within a generic spatial language for GIS operations

- to define the form of a generic spatial language processor to 
support the functions while permitting input from a variety of 
sources such as voice, WIMP and command line interfaces

- to build a prototype generic user interface environment with 
interfaces to a number of commercially available GIS products

- to test user response to the interface.

This paper outlines the work performed to date and discusses in 
more detail the architecture of the user interface environment, the 
conceptual model proposed within the graphical user interface, the 
identification of a "standard" set of common GIS functions and the 
approach taken for interface customisation.

INTRODUCTION

Expansion of the Problem
The Use Environment The user environment is a vital element of 

any GIS. Long ignored as an esoteric aspect of GIS design while GIS 
development was driven by the need to extend functionality, the user 
environment is now beginning to attract its due attention. The 
development of the Universal Geographic Information executive (UGIX) 
(Rhind, Raper and Green 1989) is a response to the widely expressed 
need to improve the usability of GIS, especially through the 
improvement and extension of the user interface. However, the 
implementation of a GIS user environment involves considerably more 
than the improvement of the human-computer interaction (HCI) process. 
Since GIS are conceptually complex and involve diverse operations 
ranging from data modelling to geometric transformations, improving 
the HCI cannot be a complete solution to the improvement of GIS use.

275



A number of general problems afflict many commercially available 
GIS which can be characterised as failings of the user environment. 
One of the most pervasive is the blurring of the distinction between 
goals, tasks and system functions in the language and process of 
interaction with the system. This means that the user cannot easily 
comprehend the structure of the user environment. In the design of 
UGIX the following definitions are used, and the concepts implemented 
in the interface:

GOAL a user target for spatial data manipulation expressed in
terms of application-specific outcomes
e.g. finding which stands of trees in a forest will come
to maturity in each of the next 5 years 

TASK a spatial data manipulation procedure expressed in terms
of system implementable steps
e.g. searching for certain spatially referenced items in
a database and displaying the results in a map 

FUNCTION a low-level system operation to manipulate spatial data
e.g. plotting a symbol at specified X,Y coordinates on
an output device.

In this scheme tasks and functions refer to system operations, 
while goals apply to conceptual operations which are conceived of 
without reference to a computing environment.

Using this terminology, most GIS offer a command language composed 
of functions which are spatial tools and algorithms of various kinds. 
These commands are often modifiable with arguments and the complete 
expressions used are complex and often obscure. As part of a general 
movement to improve this situation a number of commercial systems have 
begun to offer graphical user interfaces (GUI's) built using window- 
icon-mouse-pointer (WIMP) techniques. However, these developments 
have illustrated the difficulties inherent in assigning icons or menu 
items to functions i.e. while the range of options available is now 
stated, the system structure is still no easier to understand. In 
particular, it is difficult to convert a goal into a task made up of 
the appropriate functions. Added to these implicit difficulties are 
the problems of overfilling the screen with icons or creating very 
long menus, the use of inappropriate screen metaphors and the lack of 
activity indicators to indicate the status of an operation to the 
user.

A further problem is that there are many different user languages 
for space in use, such as those defined by professionals working with 
spatial data (see examples in table 1) . The table (with reference to 
two contrasting applications) shows how the relationship between 
objects in the application domain, user descriptions of space and the 
basic spatial data types supported by GIS products can be complex and 
difficult to understand.

The process by which the user links the concept and implementation 
can lead to confusion and to users making errors in they way they 
specify operations. A well designed user environment requires an 
interface which permits the customiser or expert user to link the 
appropriate user language for space to the system architecture in a 
way which is transparent to the end users. In other words the 
interface should allow the user to manipulate objects that are 
meaningful in terms of the application, like sub-divide a parcel 
rather than split a polygon.

276



Application
Entity Types

Land surveyino/
Monument
Centroid
Mates
Bounds
Strip
Abuttal
Easement
Parcel
Aliquot
Tract

Ml T* Surveyincr
Face
Entry
Cross-cut
Pillar
Room

Spatial
Data Type

Point
Point
Line
Line
Line
Line
Line/polygon
Polygon
Polygon
Polygon

Line
Line/polygon*
Line/polygon*
Polygon
Polygon*

Comment

Fixed point located by physical mark
Centre point to which reference code is linked
Boundaries of parcel defined by distance & direction
Boundaries defining position of adjoining parcels
Corridor of fixed width either side of a centreline
Boundary of a parcel on an adjoining parcel
Corridor or area of land parcel set aside
Unit of land ownership
Subdivision of parcel
land segregated by resurvey

Section of mine boundary used for excavation
Centreline/section of tunnel forming access to face
Centreline/section of tunnel at right angle to entry
Area of unexcavated material within mine
Section of tunnel ending in face

* Polygon defined by closure of an open polygon in specified 
circumstances e.g across end of a tunnel

Table 1 
Examples of user language for space for land and mine surveying

User environments of all forms have long lacked good visualisation 
tools for the spatial database data model. Ideally the user should be 
able to see the entity types and their interrelationships graphically 
expressed so that they can formulate queries more easily. Finally, 
the poor quality of help systems for many GIS has also become a major 
drawback for many use environments. Frequently the help is simply a 
formal statement of the command syntax and arguments, and not an 
explanation of its wider usage.

Customisability Commercial GIS software packages are normally 
designed to be fairly general purpose in nature - they are not 
designed for a specific well-defined application within a particular 
organisation. Consequently, they need to be adapted to fit the 
specific application and user requirements of the organisation within 
which they are implemented. This adaptation of the as-supplied system 
is termed customisation. The term customisability is used to describe 
the ease and extent to which a system may be customised.

The objectives of the customisation process are to provide a system 
for the user that supports both the data model and functionality 
demanded by the application requirements, that presents to that user 
an interface specific to the user's application, language and 
experience, which is uncluttered by non-required functions, icons and 

menus, is easy to learn and easy to use.

At present the base products delivered by GIS vendors are little 
more than a box of low-level spatial tools. These general purpose 
tools do not directly satisfy the user's functional requirements which 

are determined by organisational and application specific objectives. 
Furthermore, the tools will often have little meaning or applicability 
to the end user who must be educated in the language, interface and 
conceptual model supported by the product. The customisability of 
existing GIS products is poor, especially in the areas of database

277



design and implementation, task definition and user interface design 
and development. The result is that effective customisation of a CIS 
product to satisfy corporate CIS requirements involves enormous 
expense and effort. This problem is so acute that it is not unusual 
to see organisations struggling to use a system that is uncustomised 
and uncustomisable with the available resources. Effectively, the 
application requirements are largely discarded so that the functions 
the CIS supports become the application.

The customisation process incorporates all the normal stages of the 
familiar systems development life-cycle, including planning, analysis, 
design, construction, implementation and operation. The analysis 
stage incorporates both data analysis (resulting in the development of 
data models) and function analysis which involves both process and 
event analysis. The design phase incorporates logical and physical 
database design, task design and user interface design. Construction 
refers to the actual development of the physical database, tasks and 
user interfaces, while implementation is concerned with delivering the 
working system to the user environment.

Non-Transferability of Skills. Each CIS product on the market 
today incorporates its own distinctive environment, being 
substantially different from virtually all other available products. 
Each system tends to have its own unique command language, icon set, 
menu organisation and form layouts. The methods of interaction with 
the system vary considerably, even for such simple actions as 
selecting an object, obtaining help information or indicating 
confirmation of an action. Each vendor tends to use their own set of 
jargon, often in a manner which is inconsistent with other GIS 
vendors.

Even worse, the underlying system architectures show through and 
must be understood by the user before effective system usage is 
possible. In the absence of any other strong conceptual model for the 
system (as might be presented in a fully customised environment), the 
underlying architecture (files, layers, coverages, points, lines and 
polygons) forms the basis of the mental model developed by the user. 
The application problem (e.g. forest resource management) becomes 
mapped to the problem of manipulating the components of the CIS 
architecture (i.e., the coverages, polygons etc.). Consequently the 
skill set acquired by a user is specific to the jargon and 
architecture of a particular product. Since each GIS uses different 
jargon and different architectures, the user's knowledge of one system 
is not readily transferable to another.

Expansion of the Objectives
Identification of Common Functional Components The first phase of 

the research involved identification of a set of common (generic) 
functions that should be supported within the UGIX interface. These 
functions must be independent of any underlying GIS implementation 
strategy (e.g. object, relational or sheet based) and dependent rather 
on the goals of the user. These functions will be accessed via a set 
of icons, menus and forms within the GUI, and as a set of commands, 
operators and procedures within the command language. A "standard" 
set of icons and command names will be provided for the generic 
functions which may be modified (when required) within the customised 
environment. It should be noted that the generic functionality will 
not be implemented within UGIX, but rather, it will be accessible

278



through UGIX. This distinction is important, since it restates the 
concept of separating the application from the user interface.

By identifying the functions required to satisfy tasks, and tasks 
to satisfy generic goals, and providing access to these via icons and 
commands, the interface should become more consistent and less 
dependent on the underlying CIS data structures and architecture. It 
is believed that this will make the system easier to learn and use, 
and once learned will provide the user with knowledge that should be 
more readily transferable to other systems.

Definition of a Generic Spatial Language Processor A command 
language for interaction with the GIS database that supports the 
generic functions is being developed. It is intended that the spatial 
language will be embedded within both 3GL and 4GL languages which will 
provide the program logic and control structures. A spatially 
extended form of SQL (SQL-SX) has been designed to provide a standard, 
transportable language suitable for database definition, query, 
insertion, deletion and update. SQL-SX is to be supplemented by the 
set of generic CIS functions identified above. The overall 
architecture for the spatial query processor has now been sketched 
out. It includes layers for SQL-SX, an equivalent iconic query 
language, an inter-process communications interface and a 
customisation environment.

Development of a Prototype Generic Use Environment To test the 
feasibility of the concepts described here and the usability of such 
an interface, a prototype use environment must be developed. Further, 
it must be interfaced to a number of commercially available GIS 
products to prove that the user interface can be detached from the 
underlying GIS product architectures. The more difficult aspects of 
the development are likely to be:

- creating an efficient system to map between the functions 
supported within the generic spatial language and the matching 
functions supported by the underlying GIS,

- hiding the user interface supplied with the underlying GIS.

Testing User Response The resulting prototype must be evaluated 
to determine that it does indeed provide a superior user interface 
environment to the standard interfaces provided by each of the 
underlying GIS products. To test the acceptability of the UGIX 
environment, a number of trials are proposed. Methods for evaluation 
of user interfaces include:

- formal analytical methods where the interface is evaluated in 
isolation from users (Grudin 1989)

- empirical methods where users are requested to perform the same 
tasks using different interfaces, and the performances measured 
and compared

- ethnographic methods where actual users are observed and the 
context and users observations are elicited (Crellin, Horn and 
Preece 1990).

During design of the graphical user interface we propose to 
explicitly adopt accepted guidelines (e.g. proposed ISO guidelines 
Williams 1989, Strijland 1990) as an aid to user interface 
specification. Analytical methods, operating on data gathered by 
automated monitoring of user interaction, may be used subsequently to 
determine interface effectiveness, identify frequent command usages,

279



common errors and the relationships between use patterns and error 
occurrences. Chen (1990) describes the use of monitoring facilities 
built into the Xt toolkit to automatically gather appropriate 
information. Empirical studies are also proposed to compare the 
effectiveness of the new environment in direct comparison to the 
interface provided by the underlying GIS. Finally, user acceptability 
will be evaluated based on user interviews. It is intended that this 
evaluation will lead to suggestions for improvement for subsequent 
developments.

Background to UGIX
System Overview The UGIX system design as described by Rhind, 

Raper and Green (1989) contains 3 main modules, viz. (A) containing 
the screen interfaces, dialogues and command processor; (B) containing 
a help and information system for a GIS; and (C) an expert system 
shell or high level system access module. The structure of UGIX is 
illustrated in figure 1. This section describes the approach taken in 
the UGIX project, through first and second generation implementations. 
The major distinction between the generations is that the first aims 
to improve the usability of a specific GIS implementation, while the 
second aims to provide a generic user environment supporting transfer 
of skills between GIS and allowing easier customisation.

Figure 1. The three primary modules of the UGIX architecture.

UNIVERSAL GEOGRAPHIC INFORMATION EXECUTIVE
u

INTERFACE
A

SER

GUI

CUSTOMISATION

COMMAND

COMMAND

^ 
G

LANGUAGE

MAPPING

— *
*4 ——

——— *
•4- ——

rEs

HELP
B CONCEPTS

SYS ENVIR.

DIRECTORIES

EXPERT SYSTEMc MAP DESIGNER

MODEL MAKER

The first generation approach to interface design within the UGIX 
project has been to prototype using HyperCard for the Apple Macintosh, 
where the HyperCard application (complete with in-built communications 
software) acts as a client to a host processor running the GIS 
application software (Raper, Linsey and Connolly 1990). This approach 
is similar to the one used by Cowen and Love (1988) to create an 
interface to the South Carolina Historic Preservation Office GIS 
database. HyperCard with its standard set of buttons, scrolling boxes 
and cards makes use of the GIS less daunting for the less technically- 
aware user. In addition, with the rich graphics environment available 
in HyperCard it is possible to show a graphic to illustrate the effect 
of various options available at any one point. It is also desirable 
to display all the commands available to the user in one place, with a 
pop-up explanation for each option.

280



Screen design has involved the standardisation of button and text 
field formats as well as card and background layout for different 
areas of activity such as:-

- Introduction and explanation (using a map guide);
- Map and file selection (using standard Macintosh file selection 

dialogue);
- Session screens for command processing;
- Help environment (UGIX (B) based on GISTutor version 2) ;
- A Gallery for maps and images generated in the GIS (along with 

button to redraw them).

Screen metaphors have been developed for each of these areas to 
make location in the system a graphical attribute. The interface also 
displays an activity index to give continuous feedback to the user on 
the status of the session. Currently this system interface 'shell' is 
being implemented for the GIS ARC/INFO, and is known as 'HyperArc': it 
is currently under test with users at 'novice 1 and "competent 1 levels 
of expertise. In addition to feedback on the use of the system, the 
aim of the evaluation phase is to define a core area of functionality 
in common use to help optimise the UGIX system structure.

An important early objective in the development of HyperArc was the 
creation of file handling procedures to harmonise the user's concept 
of maps with that of ARC/INFO. This establishes that maps are both 
'views' of spatial data and sheets within a series i.e., spatial 
tiles. Thus, search routines to find maps with particular names, to 
sort maps by type (e.g. point or polygon based), to access the map 
tiling system and to select the part of the sheet to view have all 
been created. In the first generation of the UGIX project the user 
specifies spatial queries using these system implementation concepts 
which are made comprehensible to the user diagrammatically (user 
testing is helping to refine this aspect). Hence HyperArc forces the 
user to work with ARC/INFO concepts, but tries to connect them with 
the user's view of the problem under study. This is ultimately 
restrictive to the user since the data structure is fixed, and maps 
are files which the user needs to manipulate in some way.

A basic principle of the UGIX design is that in order to make a GIS 
easy to use the process of making a database selection, displaying a 
map or carrying out spatial analysis must be broken down into a series 
of logical parts, linked by a pathway for the user to follow. 
Following such a path and gaining experience with the alternative 
options is an excellent way to improve a user's end-to-end 
understanding of the components of spatial data processing. 
Appropriate information needed for a user to make a decision is also 
retrieved before indicating the command options, for example only maps 
with the correct specifications are presented (e.g. with topological 
relations already created), when this is necessary for the operation.

Another UGIX design principle is that improving access to existing 
GIS can be achieved by converting the current function-orientation of 
the native system interface (primitive and implementation-specific 
operations) to a task-oriented interface (sequences of high level 
spatial operations) usable by a spatially aware user. The second 
generation of the UGIX project aims to build on the experience of 
constructing such task-oriented interfaces to create generic 
interfaces capable of communication with any GIS.

281



However, in order to implement such an interface in a generic way 
requires a new form of software architecture which is independent of 
specific implementations, does not enforce a particular data model, 
and adheres to the standards in the user community which are most 
crucial to the success of GIS in heterogeneous computing environments. 
To achieve this a layered model is suggested that protects the user 
interface from the actual implementation mechanisms provided by each 
GIS vendor. Each layer within the model will perform a particular 
task and have a well defined interface to the layers both above and 
below. Some of the layers within UGIX will be able to communicate 
directly with the underlying GIS at a matching level.

UGIX (A)

Design Overview
Separation of the user interface from the application is not a new 

concept. Early work resulted in what is often known as the "Seeheirti 
model" (Green 1985) developed during a 1983 workshop on architectures 
for interactive systems at Seeheim. Subsequently, the identification 
of components of the overall system corresponding to semantic, 
syntactic and lexical aspects, and the relationships between them has 
lead to various alternative architectures. The development of general 
purpose software for managing the user interface as a separate process 
has lead to the comcept of the user interface management system (DIMS) 
(Pfaff 1985). Here the application and the user interface software 
are quite separate and communicate via a well-defined protocol.

Figure 2. The Seeheim model

Use Presentation

i l

Dialogue 
Control

Switch •4 ———————

Application 
Interface 
Model

••Application

The overall architecture for UGIX (A) is similar to the Seeheirr 
model in many aspects. The requirement for a high bandwidth 
communications channel from the GIS application is supported to allovv 
efficient graphics display and manipulation. Figure 3 illustrates 
the overall structure proposed for the UGIX environment.

Figure 3. Overview of UGIX(A) architecture

User

User

•^ '•! ^Application

interface

282



Description of Components
The presentation layer incorporates a standard user interface 

toolkit (e.g. Motif, OpenLook etc.) a widget design facility, a screen 
design facility and a screen execution facility. The widget and 
screen design facilities operate within the constraints of the 
toolkit, and will be inplemented as a set of executable screens. The 
customisation environment itself and the actual resulting end-user 
application, will also simply be a set of screens with which the user 
may interact.

The screens will be designed in terms of a set of windows, a set of 
widgets within each window and a set of forms. The behaviour of the 
windows, widgets and forms will be described in terms of the 4GL 
command language. Interaction with the screens will cause the widgets 
to react in the predefined manner and the execution of CIS tasks in 
terms of the spatial command language embedded within the 4GL.

Equivalent commands may be issued directly via a command line 
interface, via widget interaction or using voice input. Each method 
should result in the execution of the same generic functions within 
the dialogue control component. The voice recognition facility issues 
either individual spatial command language tokens which may be used to 
build a complete command, or entire commands. Entire commands may be 
abbreviated into a spoken shorthand consisting of just a few words 
rather than requiring the user to speak the full command syntax for a 
particular task.

The application interface module accepts generic spatial language 
commands and maps them onto the command language of the underlying 
CIS. It then issues these commands to the GIS via an inter-process 
communications mechanism. The GIS responses may include alphanumeric 
information (which may be used to fill a form), status information 
(error and function status) and/or graphics. To support a highly 
interactive graphics environment requires that a high speed channel be 
provided to display the graphical data. However, alphanumeric and 
status data may be routed through the dialogue control module for 
further processing and display.

Figure 4 illustrates the proposed architecture of UGIX(A) in more 
detail.

The Graphical User Interface
Wilson (1990) reviews the use of graphical user interfaces within 

GIS and the applicability of the desktop metaphor. He suggests 
guidelines for building suitable user interfaces. The GUI is described 
as having three components:

- an underlying conceptual model,
- a command structure comprising codes, function keys, buttons etc. 

with which to create a syntax, and
- the visible screen graphics, such as command lines, menus and 

icons.

To date, within the GIS world, most emphasis has been placed on the 
development of a command syntax and the design of menus, icons and 
screens. However, as yet there are no agreed standards for 
interaction with the interface unlike the PC world where techniques 
such as double clicking on an object to activate it, Fl function key 
for help etc. are commonly adopted.

283



Figure 4. More detailed breakdown of UGIX architecture 

Graphical User Interface Environment

WIMP 
Interaction: K

4̂

Presentation
1 ———— ̂ | Widget Design

1 ————————— 1

— M Screen Design

V
Window Layout

Widget Layout

Form Layout

-ifr- Standard Interaction. 
UI toolkit ^ —————— ̂
fMotif 1 ^ ^

^ *F^Widget
1 Library I

Sh^w— — — -*1
screen 
Defn

1 Library

U

Screen Execution

\ Screen control ^ k 
\ Error, warning
\ and status
\ r ^ reporting /T\ \ Command I :: .-. I ,, . T
\ Dialogue >/ V°1CC InPut 

KeyboardX // >. 
input \ \J ^*N^

Graphics

\| 1 r
Dialogue
Control Dialogue Contro1 

generic functions
&4GL

GIS^ 
Status 

Messages

Application 
Interface 
Model

k 4GL 
Command 
Dialogue, r

•""^ v

Reco
1

^
4GL dl

Dialogue

oice recognition]

;nised 
okens^ f

Token to 
alogue mapping

k Error 
Status 
Messages

1 Function Mapping

GIS
Command 
Language r

er Process Communications

^ n GIS
,, , . Status Graphics 

Messages

External GIS

GIS 
Commands

This lack of standardisation has lead to a lack of transferability 
of knowledge, long learning periods and generally difficult system 
usage.

Initial attempts at improving usability concentrated on reducing 
the number of interactions, menus, forms and icons that the user had 
to deal with. This approach either reduced the available

284



functionality or produced menu hierarchies that were difficult to use. 
An alternative approach is to use existing knowledge of a related 
field that may be applied to the new problem domain.

The Underlying Conceptual Model A major contributing factor 
towards the non-standardisation of the CIS user interface is the lack 
of an underlying conceptual model for the interface. It has been 
suggested (Gould & McGranaghan 1990) that the primary mechanism by 
which a user learns to use GIS is by metaphoric learning. Here the 
user is able to treat the unfamiliar environment like another familiar 
one thus reducing the overall learning period. The general cognitive 
process may be partitioned into metaphoric, analogical and modelling 
processes. The differences between the three processes and their 
implications for computer systems design are reviewed by Wozny 
(1989). The concepts of metaphor and analogy are closely related: 
analogy implies that one domain behaves like another, whereas with 
metaphor, the target domain is more directly mapped onto the other and 
hence becomes the other. Consequently, the use of metaphor within the 
user interface is preferable since it allows a user to interact with 
an unfamiliar system as if it is an environment with which they are 
familiar. This effectively reduces the learning time, reduces stress 
caused by unfamiliarity (i.e. makes for a happy user) and provides a 
conceptual framework for the new environment which may be built upon. 
For infrequent users, the use of metaphor may be more important, since 
they may never progress beyond the metaphor presented to develop a 
mental model of there own (Wozny 1989).

Existing graphical user interfaces for non-GIS applications have 
often been developed using the desktop metaphor as the underlying 
conceptual model. The desktop metaphor is suitable for many business 
related applications since the activities performed by the computer 
based application have direct equivalents with the manual methods. 
However, it may not be readily applicable to many GIS applications due 
to the lack of spatial and mapping related activities that normally 
occur on and around a desk.

The wide variation in GIS applications and the variation in 
experience of GIS users indicates that a single conceptual model is 
unlikely to satisfy or be applicable to all situations. If we 
perceive GIS to be an enabling technology for the integration of 
spatial and aspatial data, we must then consider it to be equivalent 
to a DBMS in generality, and hence not suited to a single model. In 
contrast, a GIS customised to suit a particular narrow application 
(e.g. mains fault analysis in the Water industry) may provide a 
situation where an applicable underlying conceptual model may be 
utilised.

Wilson (1990) pointed out that some GIS applications may have no 
equivalent manual method. However, this does not imply that a 
conceptual model on which to base the user interface cannot be found. 
Rather it implies that analogy or metaphor may be suitable techniques 
for development of the conceptual model.

Current GIS technology imposes on the user a conceptual model of 
geographic space that is a function of the internal structures 
supported by the GIS (e.g. layers, points, lines, polygons). What we 
should be aiming for is a user interface that permits the system 
customiser to present a conceptual model to the user that is relevant 
and applicable to the both the user's background and the application 
in hand.

285



The strength of the desktop metaphor as used within the Macintosh 
and other PC environments for the underlying conceptual model, is that 
it provides an organising framework within which other operations and 
metaphors may exist. Gould and McGranaghan (1990) have extended this 
idea to suggest the need for an organising metaphor within, which there 
may be other nested metaphors (which may themselves be organising 
metaphors). This approach has promise since it provides a structure 
within which applicable and relevant metaphors may be applied, rather 
than trying to apply a single metaphor to all situations.

The Organising Metaphor within UGIX The current thinking for the 
UGIX GUI is to develop an environment supporting nested metaphors. 
The proposed overall organising metaphor is a building, within which 
there are a set of rooms, each accessible via a door. It should be 
noted that the idea of using the room/building metaphor has been 
independently conceived by a number of different groups including 
researchers at Xerox Palo Alto Research Center and University of 
Waterloo (Chan and Malcolm, 1984), and even built into a number of 
existing products (e.g. Rooms from ENVOS and even Xll rev 4 attempts 
to provide a Rooms-like system).

Within UGIX, each room may possess its own organising metaphor. 
Most rooms will be directly accessible from the entrance hall although 
some special-purpose rooms may require access from within another 
room. On entering the system the user is located in the entrance 
hall, a neutral, public space through which the user moves to 
particular environment. Doors provide access to the environments the 
user has access to. The door metaphor is a strong metaphor for access 
into and out of different environments (Catedra 1990) and provides 
features such as locks, opening and closing. These features may be 
used directly for access control, entering and leaving. Within each 
room, a single type of activity occurs, and a single lower-level 
organising metaphor is employed.

For example, one room provides an environment where the desktop 
metaphor is supported. Here general filing, correspondence and 
interfacing to external non-GIS packages (e.g. word processing, 
spreadsheets) takes place. Access to the aspatial part of the GIS 
database is available via card indexes, file folders etc. and 
alphanumeric reports can be created and printed.

A second room contains the drafting office where the map, drafting 
table, map cabinet and light table are the principle metaphors. Now 
access to the GIS database is via the map. Maps may be taken out of 
the filing cabinet, updated, viewed and copies taken for development 
proposals etc. Eventually these may be replaced in the map cabinet 
following approval by the chief draftsman/engineer. Note that 
operations not consistent with the map metaphor may not be applied 
here.

A third room contains a library. Within the library books are kept 
providing reference material, reports, archives and documentation. 
Updating of system documentation is performed here.

A fourth room contains the development and customisation 
environment. A workstation metaphor »is supported which provides 
direct access to the 4GL development and customisation environment.

There is one special door that leads off the entrance hall - an 
external door. Through the door, blue sky and clouds may be glimpsed,

286



and on entering this environment the real world metaphor is used for 
access to the CIS database. Here there are no seams, maps or files - 
only a continuous world containing objects. This is where the 
experienced GIS user works and it is also the environment in which 
virtual reality may one-day be accessible (Jacobson 1990).

Users are provided with keys that are able to unlock only some 
doors. It is feasible to consider more specialised rooms leading off 
of others. For example the database administrator and system manager 
may be in their very own room accessible from the development and 
customisation area.

The concepts of buildings, rooms and doors are internationally and 
culturally neutral, providing an almost universally understood 
concept. A further advantage exhibited by this metaphor is that it 
provides an easy facility for extension. To add new environments 
involves simply adding another room (with door!) to the building. 
Within each new environment a different organising metaphor may be 
used to support functions not supported elsewhere. The possibilities 
of this metaphor are seemingly endless - e.g. leaving the system may 
simply be performed by turning off the light switch in the entrance 
hall, or alternatively going through the door that leads out into the 
night.

The Iconic Query Language Access to the functionality provided 
within each environment (room) will be predominantly via icons, menus 
and forms. The icons should fit the organising metaphor for that 
environment so that they have relevance and preferably direct 
applicability. Consequently, the drafting office might be designed 
specifically for experienced cartographers and hence might support map 
cabinets from which maps may be extracted, drafting boards on which 
map updates and viewing may be performed and light tables on which map 
overlay operations may be carried out.

Consistency and simplicity are key considerations when attempting 
to design a user interface, be it for a GIS or for a dishwasher. A 
concise and simple syntax for manipulating the icons and database 
objects is required which is both consistent and meaningful in terms 
of the metaphors used. Existing GUIs such as that used on the 
Macintosh are not fully consistent. Consistency between applications 
has been encouraged since Apple provide a set of guidelines for 
developers to follow (ref Apple Mac developers guide). Consequently 
most packages available for the Mac have a similar look and feel so 
that knowledge of one application/package provides useful knowledge on 
the use of others.

Certain other aspects of the Mac interface are far less consistent. 
In particular the order in which the objects and the operators are 
selected varies from one type of operation to another. Objects to be 
manipulated are usually selected first, and then the operation to be 
applied is selected (e.g. discarding data by moving it to the 
wastebasket, applying a different font and ruler to a section of 
text). However, sometimes the operation to be performed is selected 
first and then the objects to which it is to be applied are identified 
(e.g. select the print function and then indicate which pages to 
print). Hence, even though operations that are common between 
applications are normally presented in a very similar manner the 
syntax for different operations may vary within an application.

287



A further level of inconsistency, most frequently observed by 
novices, is the use of the wastebasket. Why is the trash can used to 
eject the disk when it is normally used for deleting data? Most 
novices are unable to find a method for ejecting the disk, since the 
use of the wastebasket for deleting documents and folders implies that 
if the diskette is moved to the wastebasket, all folders and documents 
on the disk will be deleted. This latter example indicates where the 
use of a metaphor has been extended beyond its applicability and used 
in an inconsistent manner.

The impact of the English language on the syntactic ordering of 
operations, parameters and objects (verbs, modifiers and nouns) may 
not have relevance to the iconic interface. Although it is known that 
language structures our concept of space (Talmy 1990), it is not 
thought that language will adversely impact the syntactic structure 
of the iconic interface. In English we generally use a noun-verb- 
modifier ordering to state facts (e.g. Jack closed the door), but a 
verb-noun-modifier ordering for instructions or commands (e.g. close 
the door quietly please) . Most of the operations performed within the 
CIS tend to be instructional in that the user is commanding the system 
to perform some action (e.g. modifying, deleting, reporting), 
supporting the adoption of a verb-noun-modifier ordering.

However, most iconic interfaces require that the objects are 
selected prior to identification of the action (i.e. noun-verb- 
modifier, or object-action ordering). Even though this ordering is 
not common within the English language for instructional sentences, it 
does feel natural for English speaking users of the iconic interface.

Perhaps the most important aspect of this ordering is that object 
selection and the operations to be performed on those objects are 
effectively separated. They have become two discrete instructions 
issued by the user. Furthermore, object selection is common to 
virtually all operations and becomes independent of those operations, 
meaning that a single set of object selection techniques can be 
applied throughout.

One significant disadvantage to the use of object-action syntax 
ordering is that the selection process may select objects for which 
the operation may be invalid. If the operation to be performed is 
identified first, the object selection process can use knowledge of 
the operation to ensure that only appropriate (valid) objects are 
selected. Within existing GUIs, this problem is partially overcome by 
disabling functions for which the selected data is inappropriate. 
However, if it is not obvious which of the selected objects is causing 
the function to become unselectable, much operator frustration is 
likely to ensue.

Within the UGIX GUI, we recommend the use of object-action ordering 
as the basic syntactical construct for icon interaction. Object 
selection will be performed first. Subsequent identification of an 
action will apply that action to the selected set of objects.

The Command Level Interface
The command level interface incorporates a 4GL command language, a 

function mapping facility and an inter-process communications 
facility. It accepts commands from the GUI and the voice recognition 
system in terms of 4GL command sequences. It can also be accessed 
directly to perform ad hoc functions and applications development.

288



Srtallworld Magik, an object-oriented (OO) development facility from 
Smallworld Systems has been selected for the development of the 
prototype.

Smallworld Magik: An object-oriented development environment. The 
objective is to support a single command line and development 
environment in which application development, database definition, ad 
hoc queries, menu, form and icon commands, database access and 
graphics are all available. It is also desirable that the full power 
of the underlying CIS, DBMS and UIMS are available. An object- 
oriented development language has been selected since it offers the 
opportunity for high programmer productivity and a structured 
development approach. The use of 00 techniques such as code re 
usability, inheritance and encapsulation can reduce the overall 
development effort for a complex system. The Magik language (Chance, 
Newell and Theriault 1990) is a hybrid of the procedural and 00 
approaches and supports its own interactive development environment. 
It is fairly readable (certainly more so than 3GLs such as C and C++), 
comes with a comprehensive set of standard object classes, methods and 
procedures, and provides the ability to transfer applications between 
hardware and operating system platforms with a minimum of effort. It 
utilises the X-Windows standard for all interaction with the 
workstation.

For the UGIX development, we are extending Magik by adding a new 
set of language constructs to support a spatially extended version of 
SQL.

SQL-SX: A spatially Extended version of SQL The relational 
language SQL (Date 1989). forms a suitable base on which to develop 
spatial extensions due to:

- its widespread acceptance by database users
- its availability within a large number of commercially available 

DBMS (relational and non-relational)
- its acceptance as an international standard
- its ongoing development, thus ensuring a long-term future.

The use of relational database management system (RDBMS) technology 
within the existing GIS user community is virtually universal. 
Further, it is likely that RDBMS will be the major data management 
technology for at least the 1990s, and that SQL will be the major 
language for interaction with those databases. The investment by user 
organisations in training staff in the use of SQL is significant so 
there is consequently a sizeable body of expertise available both 
within GIS user organisations and in the general computing industry. 
The use of a non-standard query language for GIS implementations does 
not appear commercially viable, nor practical in the near future.

A number of GIS vendors are already developing spatially extended 
versions of SQL and have reported their work in the research 
literature including Kork (Ingram & Phillips, 1987), Intergraph 
(Herring, Larsen & Shivakumar, 1988), Wild Heerbrugg (now Prime) 
(Charlwood, Moon & Tulip, 1987) and GeoVision (Westwood, 1989) . Each 
has attempted to provide facilities supporting spatial predicates and 
spatial data manipulation facilities within SQL (or SQL-like query 
languages). Unfortunately, the basic query language in each case has 
been an incomplete implementation of the ANSI/ISO SQL standard (ISO 
1987, ISO 1989), and the spatial extensions were fairly minimal and

289



elementary. To make matters worse, the extensions in general do not 
maintain consistent syntactic and semantic constructs with the rest of 
SQL. For example, spatial predicates are not in general supported 
within the WHERE clause, but rather within a separate clause.

Other researchers including Pong-Chai Goh (1989), Sacks-Davis, 
McDonell and Ooi (1987) and Egenhofer (1987) have also provided useful 
contributions towards the development of spatial extensions to SQL. 
However, until recently there has been no proposal for a standard set 
of extensions put forward for discussion. In our recent paper (Raper 
and Bundock 1990) we proposed a set of spatial extensions for SQL that 
could form the basis for an agreed standard between CIS vendors and 
the GIS user community. The spatial extensions are based on the 
existing proposals for SQL2 and SQL3 being studied by the combined 
ISO-ANSI SQL standards working group (ISO-ANSI 1989). These proposals 
include a number of object-oriented concepts, including support for 
abstract data types, methods, operators and functions. In particular, 
the detailed proposal in support of abstract data types (Kerridge 
1989) if implemented, would provide the framework in which to develop 
spatial data types, spatial operators and spatial functions, while 
remaining completely within the SQL standard.

The extensions necessary to make SQL usable within GIS applications 
for query of both spatial and aspatial data include:

- spatial data type(s) e.g. point, node, line, polygon
- spatial operators (predicates) e.g. at, inside, encloses, 

connected_to
- spatial functions e.g. area_of, length_of
- long transaction management statements
- report specification facilities - both textual and graphical

In addition, functional requirements demand that:

- the spatial data types should be displayed graphically as a 
result of being SELECTed

- the data dictionary and DDL support the extensions
- spatial access control (protection) may be provided by inclusion 

of spatial data types, predicates and functions within VIEW 
definitions

- spatial integrity maintenance may be provided by support of 
spatial data types, predicates and functions within the 
CONSTRAINT clause.

The Function Mapping Facility. This facility accepts UGIX commands 
in the form of function specifications and data selection 
specifications, and transforms these to the command language of the 
underlying GIS. For functions supported by both UGIX and the 
underlying GIS, the mapping should normally be moderately 
straightforward. Using 00 techniques, the function mappings become 
methods for the function objects. It is hoped that this technique 
will provide a straightforward approach to allow the support of 
multiple underlying GIS products.

Functions in UGIX not supported by the GIS However, not all 
functions known to UGIX may be available in the underlying GIS. 
Consequently, there will be holes in the UGIX interface for those 
unsupported functions. Icons representing unsupported functionality 
will be displayed in grey, and the matching command level functions 
will possess a method that reports on the function unavailablity.

290



Functions in the CIS not supported by UGIX Where the underlying 
GIS supports functions unknown to UGIX, a general purpose facility 
will be provided that allows UGIX to send the system dependent command 
string directly to the underlying GIS. The command string will be 
explicitly declared and may be associated with icons, menus and forms 
in the normal way. In this way, special purpose functionality may be 
readily included in the UGIX GUI, even if it is not considered generic 
enough to warrant inclusion in the generic function list.

SYSTEM CUSTOMISABILITY

The Requirement for Customisation
Customisation of any GIS is required to allow the system to manage 

and manipulate the entity types that exist in the problem domain. The 
system customiser or database administrator, must be able to describe 
to the system the object classes/entity types that are to be modelled 
within the resulting system. They must define the names of the object 
classes, the names and types of attributes the objects possess, the 
behaviour of the objects with respect to operations on the objects and 
the inter-relationships between objects. The object class names, 
attribute names and operation names should each be assigned in terms 
of the language normally used within the application (i.e. the 
application specific jargon - e.g. the land surveying examples of 
table I) not in terms of the language used by the GIS. Defining the 
objects, attributes and operations in terms of the user's language 
allows interaction with the system to use that language.

The user interface may be customised to reflect the names described 
above and the symbols used by the application. Consequently, the 
standard icons representing the object classes, attribute types and 
operations of the application domain must be generated and associated 
with the names of the matching elements. This permits interaction 
with the GUI to be performed with icons recognised by the user as 
being part of the application domain.

The graphical user interface may also be customised to provide a 
conceptual model using metaphors which inexperienced users may 
recognise from previous experience - either application experience or 
experience from other domains. This conceptual model must be 
appropriate to both the application and the user's background.

The customisation facilities must be continually available, rather 
than being used just once to create a fixed, static system. Business 
(research, education, . ..) requirements change, resulting in either 
changes to existing applications or entire new applications being 
created. The user interface must also remain adaptable to match 
individual user preferences, and user-specific tasks.

Integration of Task Analysis Methodologies
A variety of methodologies and associated tools are available today 

to assist system designers and customisers determine the requirements 
for a new information system. User-centered requirements analysis 
methodologies provide a structured approach to performing both data 
and task analyses.

Data analysis results in a detailed description of the object 
classes, their attributes and the inter-relationships between object 
classes that might be managed within the final system. It also 
identifies integrity constraints and any other special behaviour

291



exhibited by objects when a change of state occurs. Although this 
information may be recorded on paper in a descriptive manner, it is 
also possible to save it in a database - often refered to as the data 
dictionary. Tools that assist the data analysis task will nearly 
always save this meta-data in a form that may be used at a later date 
for automating the creation of the target database.

Task analysis results in the development of a detailed description 
of the goals, processes and user interaction that must occur for the 
goals to be met. Tools that assist this process may also store the 
task descriptions in a database in a structured form. Formal 
mechanisms have been developed to structure this information in such a 
manner that it may be used later for automating the creation of the 
user interface. For example Extended Task Action Grammar (ETAG) 
(Tauber 1990) may provide such a mechanism, although it is likely that 
the level of detail required to define the target system may be 
significant.

It is intended that UGIX(A) incorporate tools to assist both data 
and task analysis. These tools will be used to gather and structure 
information describing the target environment in such a manner that it 
may subsequently be used to automatically generate the database 
definition and the user interface. Further, the information should be 
in a form to provide input to the help facility supported by UGIX(B) 
since descriptions of the data, the low level functions and the tasks 
will all be available in a structured form.

COMMON FUNCTIONAL CIS OPERATIONS

A Methodology for Identification of Key GIS Functions
Analysis of the functions to be supported directly within the 

interface is based on goal analysis and hierarchical decomposition 
(top-down) techniques rather than task analysis techniques since the 
interface, as delivered, must retain its generality. Task analysis 
might provide a more detailed definition of requirements for a 
particular (well defined) application but is considered too specific 
when attempting to define general requirements. Abstraction of the 
general functionality from a task based analysis might be possible 
given sufficient access to a wide range of actual users in a wide 
range of applications. However, operating within a tight set of time 
and resource constraints, requires the analysis to be performed 
quickly with minimal contact with real users.

To overcome this limitation, the study initially involved :

- a review of existing research literature,
- a review of a number of GIS tenders,
- a review of the functionality supported by a number of 

commercially available GIS products.

A number of authors have reported attempts at classifying GIS 
functionality, including Dangermond (1983) and Maguire and Raper 
(1990). However, Dangermond based his analysis firmly in terms of the 
map concept which partitions the world into discrete tiles. 
Consequently, much of the functionality described is concerned with 
managing these discrete units, to allow queries across multiple map 
sheets, to join multiple maps to form a new composite map, and to 
perform edge matching. This functionality is quite distinct from the 
goals of the user, being the functionality necessary to support a map-

292



sheet based GIS implementation. Maguire and Raper describe the 
functional components of a GIS in a more generic manner. Below each 
identified high level function they separate the functionality that 
applies to the spatial data, from that which applies to the attribute 
(aspatial) data. In the current study we attempt to retain the user's 
concept of objects within their application domain which may possess 
spatial and/or aspatial components. This suggested set of generic 
functions will be presented with the first UGIX prototype.

CONCLUSIONS

The development of a GIS independent user interface environment 
capable of interfacing with a number of commercially available 
products while still providing an adaptable, consistent, easily 
learned and easy to use interface, appears at first sight a difficult 
task. A structured approach to this problem is however beginning to 
indicate the feasibility of the project.

Incorporating structured analysis tools into the environment is 
expected to simplify system customisation while improving the 
resultant interface. In particular, it should help provide a user 
interface that incorporates the terminology, icons and conceptual 
models specific to the application and user's background while 
developing the interface in terms of a set of standard guidelines.

The usability of the prototype system will be evaluated and 
compared to the interfaces offered by the underlying GIS products. 
The comparison will eventually prove or disprove the viability of this 
approach. If successful, we would like to promote the concepts 
incorporated within UGIX to initiate discussion between users and 
vendors on the development of standards and guidelines for GIS user 
interface design and construction.

ACKNOWLEDGEMENTS.

The authors of this paper acknowledge the help of ESRI in the 
funding of work leading to the prototyping of HyperArc, the first 
generation of UGIX. Apple Computer (UK) have also assisted in this 
work by establishing a laboratory of Macintosh computers which form 
the Apple Mapping Centre at Birkbeck College. Receipt of an ESRC/NERC 
grant from the collaborative programme in GIS is acknowledged by MSB. 
Smallworld Systems have assisted the project with hardware and 
software tools. We would also like to thank Lesley Bundock for her 
efforts in reviewing and commenting on various drafts of this paper.

REFERENCES

Apple Computer (1987). Human interface guidelines. Addison Wesley, 
Amsterdam

Catedra M. (1990). "Through the Door": A view of space from an
anthropological perspective. Proceedings of NATO AST Cognitive and 
Linguistic Aspects of Space, Las Navas, Spain

Chan P.P. and Malcolm M.A. (1984) . Learning considerations in the 
Waterloo port user interface. Proceedings IEEE First International 
Conference on Office Automation, IEEE, New York

Chance A., Newell R.G. and Theriault D.G. (1990) . An Overview of
Magik, Technical Paper 9/1, Smallworld Systems Ltd, Cambridge, UK.

293



Charlwood, G. Moon, G. and Tulip, J. (1987). Developing a DBMS for 
Geographic Information: A Review, Proceedings Auto-Carto 8, 
Baltimore, Maryland.

Chen J. (1990). Providing Intrinsic Support for User Interface
Monitoring, Proceedings Human-Computer Interaction - INTERACT '90, 
Cambridge, UK.

Cowen D.J. and Love S.R. (1988). A HyperCard based workstation for a 
distributed CIS network. Proceedings GIS/LIS '88, San Antonio, TX, 
USA.

Crellin J., Horn T. and Preece J. (1990). Evaluating evaluation: A 
case study of the use of novel and conventional evaluation 
techniques in a small company. Proceedings Human-Computer 
Interaction - INTERACT '90, Cambridge, UK.

Dangermond J. (1983). A Classification of Software Components
Commonly used in Geographic Information Systems. Proceedings United 
States/Australia Workshop on Design and Implementation of Computer- 
Based Geographic Information Systems, Amherst, New York

Date C.J. (1989) . A Guide to the SQL Standard, Second Edition, 
Addison-Wesley, Reading, Massachusetts

Egenhofer M.J. (1987). An extended SQL syntax to treat spatial 
objects, Proceedings 2nd International Seminar on Trends and 
Concerns of Spatial Sciences, New Brunswick.

Green M. (1985). Report on Dialogue Specification Tools. In Pfaff, G.E 
(ed) User Interface Management Systems. Springer Verlag. pp 9-20.

Gould M.D. and McGranaghan M. (1990) Metaphor in Geographic
Information Systems, Proceedings 4th International Symposium on 
Spatial Data Handling, Zurich, Switzerland.

Grudin J. (1989). The Case Against User Interface Consistency, 
Communications of the ACM, 32, 10.

Herring J.R. Larsen R.C. and Shivakumar J. (1988). Extensions to the 
SQL Query Language to Support Spatial Analysis in a Topological 
Data Base, Proceedings GIS/LIS '88.

Ingram K.J. and Phillips W.W. (1987). Geographic Information
Processing Using a SQL-Based Query Language, Proceedings Auto-Carto 
8, Baltimore Maryland.

ISO (1987). Report ISO 9075 Information Processing Systems-Database 
Language SQL

ISO (1989). Report ISO 9075 Information Processing Systems-Database 
Language SQL

ISO-ANSI (1989). Database Language SQL2 and SQL3 (ISO-ANSI working 
draft) X3H2-89-252 and ISO DEL FIR-3, J Melton (editor), July 1989

Jacobson R. (1990). Virtual Worlds, Inside and Out. Proceedings NATO 
AST Cognitive and Linguistic Aspects of Space, Las Navas, Spain

294



Kerridge J.M. (1989). A Proposal to add User Defined Datatypes to SQL, 
ISO report ISO/TC97/SC21/WG3-DBL-FIR-3.

Maguire D.J. and Raper J.F. (1990). Design Models and Functionality in 
CIS, Proceedings GIS Design Models, Leicester, UK.

Pfaff G.E. (ed) (1985) . C7ser Interface Management Systems, 
Eurographics Seminars, Springer-Verlag, Berlin

Pong-Chai Goh (1989). A GQL for Cartographic and Land Information
Systems, International Journal of Geographic Information
Systems, vol. 3, no. 3, 245-255.

Raper J.F. and Bundock M.S. (1990) UGIX: A Layer Based Model for a GIS 
User Interface. Proceedings of NATO ASI Cognitive and Linguistic 
Aspects of Space, Las Navas, Spain

Raper J.F. and Green N.P.A. (1989). Development of a Hypertext Based 
Tutor for Geographical Information Systems. British Journal of 
Educational Technology.

Raper J.F., Linsey T. and Connolly T. (1990). UGIX: A Spatial Language 
Interface for GIS : Concept and Reality. Proceedings of EGIS '90, 
Amsterdam, The Netherlands

Rhind D.W., Raper J.F. and Green N.P.A, (1989). First UNIX then UGIX, 
Proceedings of AutoCarto 9, Baltimore, MD, USA.

Sacks-Davis R., McDonell K.J. and Ooi B.C. (1987). GEOQL - A Query 
Language for Geographic Information Systems, Internal Report 87/2, 
Dept of Computer Science, Royal Melbourne Institute of Technology.

Strijland P. (1990). Icons for use on screens Part 1: Specifications. 
ISO/IEC JTC 1/SC18/WG9 Working Document (4 July 1990).

Talmy L. (1990). How Language Structures Space. Proceedings of NATO 
ASI Cognitive and Linguistic Aspects of Space, Las Navas, Spain

Tauber M.J. (1990) ETAG: Extended task action grammar. A language for 
the description of the user's task language. Proceedings Human- 
Computer Interaction - INTERACT '90, Cambridge, UK.

Westwood K. (1989). Toward the Successful Integration of Relational 
and Quadtree Structures in a Geographic Information System. 
Proceedings National Conference - GIS - Challenge for the 1990's., 
Ottawa, Canada

Williams J.R. (1989). Menu Design Guidelines. ISO TC159/SC4/WG5 WD 
9241-14 (17 March 1989)

Wilson P.M. (1990) Get your Desktop Metaphor off my Drafting Table: 
User Interface Design for Spatial Data Handling. Proceedings 4th 
International Symposium on Spatial Data Handling, Zurich, 
Switzerland.

Wozny L.A. (1989) The Application of Metaphor, Analogy and Conceptual 
Models in Computer Systems. Interacting with Computers: The 
Interdisciplinary Journal of Human-Computer Interaction, vol.1 no. 
3 pp 273-283

295




