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ABSTRACT

All current G1S systems assign discrete, static attribute values to geometric 
objects (vector, pixel, or voxel). This is not how the world usually works. Physical 
objects of geographic importance are heterogeneous things. The width, depth, 
and flow-rate of a river, the porosity, density, and permeability of a rock body, the 
pressure, temperature, and velocity of the air or water, all of these things vary in 
complicated, sometimes chaotic, and convoluted ways; ways that affect our experi 
ence and ways that would effect our computer models, if we took them into 
account, and knew how to deal with them. Given this fact-of-life, the next genera 
tion of G1S systems must have a mechanism to model truly continuously variable 
attribute values. Spline functions gives us one such a way.

Spline functions have long been used in CAD/CAM to represent geometric 
forms, curves and surfaces, a use that they are well qualified to perform in GIS 
applications (see for example Auerbach (1990)). But splines are a much more 
general concept than a convenient way to store geometry; they are a way to effi 
ciently approximate, to any degree of accuracy, any function. By shifting our para 
digm, we can make the dimensions of the splines simultaneously represent both 
geometry and attribute distributions.

INTRODUCTION AND BACKGROUND

Any information system must be able to model the reality of its application (Casti 
(1989)). A database designer begins with a methodology (for example, entity, 
attribute, relation modeling), that at an abstract level, uses a model of reality onto 
which he will impose his data concepts by a series of data transformations, eventu 
ally mapping the highest level abstractions by stages to a concrete storage mecha 
nism (Date (1983), LJllman (1988) and (1989), Codd (1990)). This resultant 
storage mechanism unfortunately puts restrictions back upon the scope of the orig 
inal abstract model, often restricting the attributes of a data item to the 
fundamental data types of integer, floating point, character string and variants 
thereof. In addition, the data types are usually considered independent of the 
methods needed to manipulate them, leaving the application the requirements to 
supply not only ingenious storage work arounds, but also the edit, analysis, query
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and mechanisms needed. This compounds the fundamental database manage 
ment system problems of data integrity and semantic data control (see Ozsu 
(1991)). With the advent of abstract data types (ADT), this is no longer the case 
(Gorlen (1990)). Using ADT's, the database designer can encapsulate a complex 
data storage format with the methods for its creation, manipulation, analysis, 
query, and display. This process is beginning to make its way into commercially 
available relational data bases (RDB) such as Empress, Oracle, Informix, and 
Ingres, and is the foundation of the new object oriented technology, such as 
Versant (VERSANT Object Technology), and Ontos (Ontologic) (see Khoshafian 
(1990)). This paper investigates the use of spline functions as an ADT for the 
storage of both space varying and time varying attributes.

Spline functions (see Farin (1990), Bartels (1987), Faux (1979)), often used in 
computer aided design and manufacture (CAD/CAM), are actually part of a very 
old branch of mathematics, approximation theory. Basically, splines allow us to 
approximate any function by the specification of a set of control points in the 
range of the function (called "poles", not necessarily function values) which 
control a varying weighted average based upon a set of functions (called "weight 
functions"). In CAD/CAM applications, the poles are 3-D points, and the weight 
functions map a compact subset of a Euclidean space (of dimension 1, 2, or 3) to 
the unit interval [0,1] = {xGR|0<x<l}. The resulting range of the spline is 
a geometric object (contained in the convex hull of the poles). This object is 
either a curve, surface, or solid depending upon the dimension of the domain 
space; 1, 2 or 3 respectively.

More simply put, this paper proposes that we take the CAD/CAM inter 
pretation of a spline, and extend the dimensions of the both the domain (source) 
and range (target) space; so that a CAD/CAM 3D point (x, y, z) becomes a GIS N- 
D point (x, y, z, time, density, porosity, permeability, ...). This approach basically 
generalizes the use of geometry to represent geography into the use of geometry 
to represent any measurable quantity; an old, well known and understood concept 
that most people encounter in a first algebra course.

The remainder of this paper develops the theory of splines to support this 
concept and gives examples of the type applications most likely to useful in GIS 
applications. Anyone wishing to learn about splines for their own sake is directed to 
the references, especially Farin (1990) which presents a more geometric develop 
ment than most, and Auerbach (1990) which is a good example of the use of 
splines in geographic visualization. The development presented in this paper will 
emphasize some particular aspects of splines in ways peculiar to their use in 
supporting the spatial and temporal distribution of attributes.

FUNCTIONAL REPRESENTATIONS

A functional geometric description used in CAD/CAM is a generalization of the 
algorithmic construction objects used in vector data sets (line, polyline, polygon, 
circles, ellipse, general conies, etc.). Each functional geometric object consists of a 
domain (source or parameter space) and a function mapping the domain into the
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range coordinates system, usually E\ 3-dimensional Euclidean space. Domains 
are usually some subset of a Euclidean space, the most common of which are I 
(the closed interval from 0 to 1, [0,1]) or some unit cube I" (the cartesian product 
of I with itself, n times).

Spline functions are defined as a variable weighted average, using weight func 
tions, over the domain of some specified set of points in the target coordinate 
space (poles) (see Farin (1990), Rogers (1990), Bartels (1987) or Faux (1979)). 
Formally, for a three-dimensional data set, we have a (interval) spline as a func 
tion:

f:In -» E3

where t is a vector in I", P( are points in E3 and w^) are functions from I" into I 1 
such that:

0 < w( (t) < 1 for every t = (t t , ...,tn) G I"
Y" w(t) =1Zji=i i v '

The affect of any one of the poles P is felt only where the associated weight func 
tion \v is non-zero (called the support of w().

Geometrically speaking, the weight functions are usually bell-shaped curves 
with a single maximum point (the parameter value of which is usually a "knot" asso 
ciated to the pole), tapering off to 0 in all directions away from this central peak. 
Because of this, the poles of a spline are often near critical points of the spline, 
often the value of the spline as evaluated at the knot. A spline passes through a 
particular pole, in general, only if the associated weight function is 1 at its knot 
value (which implies that all other weights are zero).

On I n, the most common splines are based upon the n'th tensor product of 
weight functions for I. Given collections of weights, w and W we can define a 
collection of w<8>W by (w<S>W) (u,v) = w.(u) W (v). This set of functions can be 
used as weights since I is closed under multiplication and

Ju (w<g)W) |j (u,v) = £ ^ w,(u) W(v) = £w(u) £\V(v) = 1X1 = 1

Splines built using such tensor product weight functions are tensor splines. Most 
commercially available packages use exclusively tensor splines for higher dimen 
sional functions due to their ease of computation, see Faux (1979).

Generalizations of these standard cubes can involve the choice of a different 
interval to support either computational convenience or added geometric inter 
pretations of the parameter; for example it is often computational advantageous 
to use time or arc length for curves (discussed below), see Farin (1990). Unless 
otherwise stated, we will assume that the parameter cubes I, I2, ... , I" can be based 
upon any intervals in Euclidean space, as needed to support interpretations.

Some earlier nontensor higher dimensional spline work used triangles in place 
of cubes producing what is called a simplical spline (see Farin (1990)). This type
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of splines has generated some interest in the GIS applications, specifically in 
contour preserving surface visualization using a simplical decomposition or triangu 
lated irregular network (TIN) based upon a constrained Delaunay triangulation, 
in Auerbach (1990).

A special case of the spline function is the B-spline. B-splines use piecewise poly 
nomial or rational functions for weight functions. Each weight function's support 
spans an interval defined by a set of knots (the number of which is the order of the 
spline). This gives the spline designer a "local control" that allows him to adjust 
pole values while only affecting the spline is a very restricted neighborhood of the 
pole's knot. Further, given a set of sample points (t, v) t e I, v e En, 1 < i < m, 
there are closed form solutions to finding m poles for which the associated spline 
exactly fit the samples, or for finding least-square "best fit" splines with a fewer 
number of poles (see Bartels (1987)). All of this discussion can be generalize to 
TIN's and to general simplical complexes (see Farin 1990).

Derivatives

It should be noted here that, while not always precisely spline functions them 
selves, the various derivative of a spline have easily calculable forms. Given a differ-

 > 
ential form D (i. e. something like   , 1 < k < n), the value of the form applied to a

spline can be expressed as (a result of simple calculus):

In all cases, this is not a spline function as it is written (the sum of the derivative 
weights would necessarily be a constant 0, since 2 D w = D (2 w) = D (1) = 0), 
but calculations of the various D f() is not significantly harder than the calculation 
of the spline values themselves. Further, for particular classes of splines, such as 
Bezier splines, there is collection of poles that will represent D f() as a spline func 
tion of a different degree (see Faux (1979)).

Curves

Curves can be represented as one-dimensional splines:

The continuity and differentiability of the curve are determined by the smooth 
ness of the weight functions. The various derivatives of the curve as a function 
have exactly what you might expect. c'(t) is a tangent vector to the curve, with 
magnitude equal to the velocity of "t" with respect to arc length (thinking of t as a 
time component). c"(t) is acceleration, with a component parallel to the curve 
(parallel to c'(t)) giving the acceleration of t with respect to arc length, and the 
remaining component vector normal to the curve pointing directly away from the 
center of curvature. The component of c"'(t) perpendicular to the c'(t), c"(t) plane is 
a binomial indicating the direction of the torsion (twisting) of the curve (tendency of 
the curve to leave a planar surface) (see Rogers (1990)).
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Using different parameterizations, gives some other interesting physical inter 
pretations to c'() and c"(). If c() is parameterized by the arc-length (usually 
written as "s") of the resultant curve, then the c'(s) is the unit tangent and c"(s) is 
in the normal with the length of c"(s), written as |c(s)||, being the local Gaussian 
curvature of the curve c(t), the inverse of the radius of curvature. The accelera 
tion vector, c"(t), will always line in the plane of c'(s) and c"(s), so that we could 
write

c"(t) = a c'(s) + b c"(s)

where "a" is the magnitude of the force of acceleration along the curve, and "b" is 
the magnitude of the force of acceleration due to change of direction (a sort of 
steering force).

Surfaces

Surfaces can be represented as two-dimensional tensor splines:

s:I 2 -E 3

The images of the domain lines in the surface give a spline grid of constant 
parameter values. The partial derivatives of a surface spline give us the tangents 
to the surfaces in the direction of the associated parameter curves. Another inter 
pretation of a surface tensor spline is as a parameterized set of curve splines. 
Assuming that we have a surface spline, s(t, u), we can define

VUG I, cu(t) = s(t,u).

Applying our knowledge of curves, we know that

And, swapping the roles of u and t, we also have

Interpreting this in terms of the geometry, we can say that the partial derivatives 
of the surface spline are tangent vectors to curves totally contained within the 
surface. Assuming that the surface spline function is well behaved, the two 
tangent vectors give us a spanning set for the plane tangent to the surface at the 
corresponding point.

Simplical splines are closely related to triangulated irregular networks (TIN). 
Based upon a triangulated domain, the most common methodology would be to 
use the underlying geographic surface as the spline's domain. The use of a general 
ized full 3D triangulation would allow the surface to fold back over itself by 
allowing multiple s values for a single (x,y).
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Volumes

Solids (volumes) can be represented in two distinct manners. The most common 
representation is as a collection of surfaces which form the boundary of the solid. In 
terms of distributions of attributes, this formulation would be useless, since it does 
not distribute the parameter space into the interior of the volume. In the second 
technique, generalizing from the above, we can always consider solids as represent- 
able as three-dimensional splines:

Such volume splines must usually be almost everywhere one-to-one to prevent 
the function from collapsing multiple points from the parameter space into single 
points in the range space (the mathematical equivalent of "spindle, fold and muti 
late"). The most common exception to this is where the boundary of the param 
eter space is collapsed to give us non-rectilinear ranges.

If we apply the same technique to the parameters of a volume as we did above 
to the surface, we can view the function as a parameterized set of surfaces or as a 2- 
parameter set of curves. The embedded surfaces are called a "foliation" of the 
volume.

The generalization of the TIN based spline uses simplices of dimension 3 (tetra 
hedrons), see Herring (1990). For geographic use, the underlying tetrahedron 
irregular network would normally be a simplical complex spanning the volume of 
interest.

Higher Order Geometries

All of the above geometric descriptions can be extended to a 4th or higher 
dimension entity using the same techniques. An interesting hybrid is to use 
temporal spline curves P(t) to describe the motion of the poles of a spline through 
time. For the tensor splines, this is simply going to a spline of one higher dimen 
sion. For a simplical spline, this forms the tensor product of the existing spline 
with the temporal curve, as opposed to forming a 4D simplical complex. Even for 
simplical splines, tensoring with time curves is probably the preferable technique, 
since this most closely matches the way in which one thinks of time and motion. 
For most applications where time can be treated as an independent dimension, 
this technique should be applicable without much difficulty.

DISTRIBUTIONS

Distributions of attribution can be addressed by spline and other functional repre 
sentations in two basic manners. The first technique includes the definition of the 
attributes with the geometry in a single spline function, The second technique 
uses multiple splines over a single parameter space. Other approaches can be 
viewed as combinations, and multiples of these first two.

In the first approach, given an attribute or a set of "k" attributes, each of which 
is expressible as a real value, and each of which is a continuous function of space,
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we can generate spline functions whose first three range coordinates (dimension 
of target geometry) represent points, and whose k trailing range coordinate values 
are for the attributes along the spline:

f: I n -»  E 3 (geometry) x E k (attributes)

This generalizes to temporal variability through the use of a space time 
geometric component, giving us:

f: 1 n -» E 3 (geometry) x E1 (time) x E k (attributes)

In the second approach, the attributes are generated by separate spline func 
tions, but sharing a common parameter domain. Thus, we have a set of functions, 
f() , fj? etc.. The first functions gives us a mapping from the parameter space to the 
geometry, and each additional function generates a single attribute or a set of 
related attributes. The value of an attribute "a" at a point is then given by an 
implicit equation:

V t G I" f (t) = value of attribute a at the point fQ(t)

In using splines or other functional geometric descriptions for the distribution 
of attribute values, we are creating a tensor sum model that makes no implementa 
tion distinction between geometry and other numerically measurable attributes 
(Herring (1990)).

Distributing Attributes Along a Line Feature

To distribute an attribute along a line feature, two pieces of information are 
needed. First, we need a parameterization of the line to use to associate spine 
values to positions on the line. Second, we need a set of sample values of the 
attribute along the line, or a mechanism to generate those values. Putting these 
pieces of information together, we now have a set of sample pairs consisting of the 
parameter values and attribute values:

S = {(t,a) t E I, a the attribute value at the point on the line associated to t}

value of attribute at point

c(t) = (x,y,z) 
geometric graph

f(D = a 
ttribute graph

parameter space parameter space 

The General Approach
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We now have to choose a set of poles P and weights w :I-»[0,1] (1 < j < m), that will 
generate a spline function

f = Y"' w (t)P
Li-i r ' j

such that:

V(t,a) eS, f(t) a a\ t > I/ ' V |/

To associate a spline function to an existing line, we have to define how the 
parameter space is mapped to positions along the curve.

The spline case: If the line is already a spline (geometric) we can use this 
geometric spline's parameterization.

If our samples are at knots in the spline's parameter space, then we can 
augment the existing geometric poles with and additional dimension for the 
attribute, adjusting the pole-attribute values (a1 ), until the sample attribute values 
are achieved. This gives a combined geometric-attribute representation, as follows:

vtei, fo(t)=^,(t)(P,a'i )

Assuming that we have n such geometrically correlated attributes, we have an 
extended spline function as follows:

Vtei, f (t) =Y m w(t) (P , a' , a' ,...,a' )
' O v ' /j\=\ i v ' v i ' l,i' 2,r n, i'

Where P [ is the original geometric pole, and each a'ki is an appropriately chosen 
value so that the k'th attribute value is achieved at the i'th knot.

If the attribute values are statistically independent of the shape of the geometry, 
or we do not have attribute values for the knots of the geometry spline, then the 
above method will not work. But using the same parameterization, we can define 
separate splines for each attribute or set of correlated attributes, using only the 
common parameter space to synchronize curve geometry and attribute distribu 
tion. Given a set of sample values (x^z^a), 1 <i<k, of the attributes along the 
line feature, using the geometry spline f0(), we solve for t( such that:

f(f) = (x,y.z)O v / v i''i i'

This gives us a set of spline functions samples (t, a), which we can use to generate 
a spline (using weights "W") that precisely fits the samples with k poles, or an 
approximation with fewer poles, giving us a spline f^) such that:

VtGl, W^wWP

and f1 (t)=2;. 1 W(t) a',

and the value of attribute "a" at fQ(t) is f^t).

Multiple attributes can be handled either in single splines (as was done with the 
geometry spline above or as separate splines.
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The Polyline and General Case: If the geometry of the line does not come with its 
own parameterization, then we can use any function, such as arc-length of a point 
from the line's beginning, as a distribution parameter. Using arc-length as a param 
eter defines the domain interval of the spline as I = [0, L] where L is the total 
length of the line feature. Using this parameter, we are essentially in the second 
case from the section above. The new equation for the t is:

t = distance along the line from start position to (x, y, Z ()

Distributing Attributes Through an Area Feature, Across a Surface

The area, or surface distribution problem revolves around a restriction on the 
types of spline functions used for higher dimension. Most common software pack 
ages use tensor product splines. This places a restriction on the types of knot spac- 
ings that can be used. If kt is the knot associated with w () and k' is the knot associ 
ated to w'Q, then the knot associated to W..() = w w'() is (k,k'). This means 
that the knots are geometrically dispersed in the parameter space in rows and 
columns (possibly nonuniformly spaced). There are three basic alternatives: 1) 
use a regular geometric grid as a spline parameter domain, 2) use a tensor spline 
geometric description of the area, or 3) use a simplical spline.

regular grid tensor spline parameter grid simplicial spline poles (TIN) 

Pole Geometries for Alternative Distibution Types

If we chose to use a regular grid parameter space, we would create orthogonal 
profiles in a coordinate block large enough to encompass the entire area, associ 
ating the grid points internal to the area to interpolated attribute values, and 
external grid points to extrapolated attribute values. Here the basic problem is 
the "regularization" of the data to the grid points (discussed below).

In either of the other two alternatives, there are two problems. First, we have to 
disperse knots and geometric poles to describe the surface (x,y,z) or area feature 
(x,y). Second, we have to obtain attribute values for the points on the surface asso 
ciated to each of the knot pole pairs. Having these, we can apply the algorithms 
described above to obtain attribute values for the poles that will give us the 
required distribution function.

Picking the Grid Points: If we already have a spline representation of the 
surface and the attribute values for the corresponding points on that spline 
surface, the simplest solution is to use the geometric knots (a direct analogy to the 
line cases).
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If we do not have a spline surface and we wish to use a tensor spline, we can 
create a pseudo grid across the feature by digitizing two sets of profile lines, cross- 
hatching the area, using the intersections of these profiles to associate to a simi 
larly set of orthogonal profiles in the chosen parameter space, creating a tensor 
spline surface that approximated the area feature. Using this method would not 
necessarily obtain a spline surface whose edge exactly matched the boundary of 
the boundary of the delineated area (splines can be made to fit a finite number of 
points, not usually an entire curve). The accuracy of the fitted surface would be a 
function of the complexity of the area boundary, and the order and number of 
poles of the chosen spline, but as long as the new surface covered the area feature, 
every point in the area would have an associated attribute value by the resultant 
spline distribution.

Alternately, if simplical splines can be used, a tessellation of the surface can be 
made using the Delaunay (or other) triangulation of the input attribute data 
samples.

Regularization of the data: In either or the grid techniques, it is probable that 
after getting a spline approximation of the area, the attribute values for the points 
on the spline surface will have to be approximated. Various such approximation 
techniques exist. Using the Delaunay triangulation of samples and either linear or 
"stolen area" interpolation (Gold (1989) and (1990)), simplical splines (Auerbach 
(1990)), kriging (Journel-78, David-76), and cokriging are good examples. The 
interpolation scheme may be chosen depending upon the particular application or 
depending on a priori assumptions about the data. Recall that the knots, or 
weights used for the geometric approximation need not be the ones used for the 
attribute approximation, as long as the parameter space is the same. In the 
simplical spline case, assuming the data points were chosen with care, little or no 
interpolation of Pole values should be necessary.

Distributing Attributes Throuuh a Volume

The volume case is similar to the area case, except that a 3-dimensional approxi 
mating spline, a 3-dimensional regularization technique, or a 3-dimensional tetra 
hedron irregular network, as appropriated, are needed.

Vector Fields, Differential Equations and Trajectories

The use of splines to represent vector fields, and the ability to take derivatives of 
splines leads to their use to represent differential equations and systems of differen 
tial equations. For example, suppose that we have a spline representation of 
current flow in a hydrologic system. Thus, we have a function 
F(u,v,w) >(x,y,z,dx,dy,dz) that maps a three dimensional parameter space into 
position and velocity. We can define a solution, or trajectory, to the differential 
equation:

(c,c') = F
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as a function c(t) -* (x,y,z) as one such that:

C(t) = 77 F(U,V,W) ^> C'(t) = 77,,, F(U,V,W) v ' x,y,z V » ' / V ' dx,dy,dz V ' ' /

where "TT" is the projection onto the subscripted coordinates.

A NOTE ON EXPERIMENTATION

Much of what is presented here can be classified as speculative, and in a normal 
situation, I would have waited for until more experimental results in specific appli 
cations could have been simultaneously reported. I choose not to delay for a 
variety of reasons. First, a great deal of work has gone into the various geometric 
aspects of spline curves and surfaces and, in a very real and meaningful way, this 
paper is simple a reinterpretation of those results. For example, Auerbach (1990) 
could be interpreted to show results on the distribution of a single attribute value 
over an area feature; its geometric representation (graph) resulting in a surface   
contours representing isoclines. Secondly, a large part of this paper is a survey of 
some simple mathematical truths, viewed from an unusual perspective. Unlike 
physical science, most mathematical papers do not require experimental results to 
be valid. Third, and most important, is the potential scope of the applications of 
this sort of technology is broad enough to require multiple efforts to validate it. 
For example, the distribution of attributes along lines may solve the dynamic 
segmentation problem in road maintenance systems. The distribution of attrib 
utes in areas has applications in any field which needs to represent heterogeneous 
dispersions; forest or soil management, ecological applications such a predator 
prey simulations, etc.. Splines have the potential of solving some of the data 
volume problems associated to grid based map algebra systems. In 3 dimensions, 
spline distributions have a great deal of potential in representing heterogeneous 
aggregate both in geology and in engineered materials.

Given the potential of spline distributions and the track record of splines in the 
geometric applications, it seemed that the probability for successful experimenta 
tion in a wide variety of potential applications is very high.

SUMMARY AND IMPLICATION

Spline functions can be used to approximate a large variety of attribute distribu 
tions, through any standard geographic feature, to any accuracy or representation 
quality required. The implications of the methods outlined here are far reaching.

They can change the way we think of attribution. Attributes need not be 
thought of as static constants, but can be set to vary of both time and space. 
Attributes can include complex mathematical structures such as vector fields, set 
of trajectories for differential equations, etc.. Such attributes can be represented 
to any degree of accuracy required via the use of standard spline functions.

They can solve some long standing storage problems. Spline functions are 
known to be extremely efficient storage mechanisms, requiring as little as a tenth
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or a hundredth of the space as compared to vector representations of equal accu 
racy and quality of representation and visualization.

B-splines and NURBS (non-uniform rational b-splines), which are a standard in 
CAD applications and deliverable as standard software packages, meet the accu 
racy and representation requirements of these geographically and temporally 
distributed attributes. As a software engineering bonus, common geometric repre 
sentations such as splines simplify system development.

Simplical splines solve some of the problems found in the standard tensor 
splines, and are a mechanism to visualize distributions from raw sample data. 
Theoretically, they should have many of the advantages of TIN based DTM's over 
grid representations.
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