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Abstract

This paper describes the construction, properties and potential 
applications of a cartographic projection recently developed by the 
author, called the Zenithial Orthotriangular (ZOT) projection of an 
Octahedron. ZOT maps a planet to a plane by modelling it as an 
octahedron (a regular solid having 8 equilateral triangular facets), 
which is then unfolded and stretched to fit within a square. As 
described below, ZOT is developed from a regular octahedron 
mapped in North polar aspect, by cutting octant edges of the 
southern hemisphere from pole to equator, and stretching all 
octahedral facets to occupy eight identical right triangles 
(extensions to the ellipsoid are described). The North pole lies at 
the center of projection, while the South Pole occupies all four 
corners; points along map borders are mirrored across the central 
axes. After discussing its cartographic properties, ZOTs relation to 
the Quaternary Triangular Mesh (QTM ) global tessellation is 
explored. The use of ZOT is shown to facilitate recursive definition 
of QTM's geodesic graticule of nested triangles. Computationally, 
this structure is handled as a quadtree, even though its elements 
are triangular in shape. Basic procedures for mapping geographic 
coordinates to QTM quadtree addresses via ZOT are presented and 
discussed, and suggestions given for standardizing how QTM tiles 
are addressed in ZOT space.

1 The author gratefully acknowledges encouragement and support for this 
work from Prime Computer, Inc.
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Polyhedral Maps

There is a family of maps called polyhedral projections that 
apportion regions of Earth to coincident facets of some concentric 
polyhedron. If the polyhedron is one of the five platonic solids, 
these facets will be either square, pentagonal or most likely, 
triangular, and all the same size and shape. While these figures 
may be torn apart and unfolded in a number of ways, no regular 
polyhedron beyond the tetrahedron can be unfolded to lie on the 
plane in a maximally compact way; there will always be concavities 
whatever arrangement of facets is used. As a consequence, 
polyhedral maps tend to have convoluted, lobed shapes, rather 
than fitting neatly into a rectangle, as do most projections. This 
apparently frustrates cartographers, who often seem to feel that 
polyhedral projections involve excessively complicated 
computational procedures. This is only partly true: however odd 
and enigmatic such constructions may be, they are at least regular 
and enumerable.

Mapping regions of the Earth to facets of a polyhedron can 
involve any of a number of map projections, the most natural of 
which is the gnomic. This is one of the few projections in which all 
coordinates relate to a single point of reference (the center of the 
planet). Although gnomic projections are not suitable for large 
areas, their distortions are quite minor when limited to the facets 
of enclosing polyhedra. Most azimuthal projections (such as the 
stereographic) require multiple reference points in order to portray 
the entire globe. This paper describes an azimuthal mapping of of 
an octahedron to a square in North polar aspect.

Projective Properties

The ZOT projection is zenithial (azimuthal) because meridians 
remain straight and of constant radial spacing; longitudes may be 
measured directly with a protractor. There is, however, more than 
one azimuthal origin, as longitudes are only true within a 
hemisphere. As the South pole is separated into four locations, 
meridians in the southern hemisphere originate at each of the four 
corners of the projection. ZOT also has the equidistant property; 
distance between parallels is constant throughout the map. The 
projection has been named orthotriangular because it maps spherical 
triangles to right triangles in its domain. These properties are 
evident in the world map in Figure 1. ZOT is also doubly periodic; 
that is, it may be repeatedly tiled in two directions to fill a plane, as 
Figure 2 illustrates.
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ZOT is neither equal-area nor conformal. Along parallels, map 
scale varies inversely with latitude, with the error factor growing 
from unity at the pole to V3 at the equator. This occurs because the 
equilateral facets of the octahedron are mapped to right triangles, 
causing their equatorial bases to expand. Along any given 
meridian, map scale is constant. However, the scale varies linearly 
from one meridian to the next, from unity (at 45, 135, -135 and -45 
degrees) to V2 (at 0, 90,180 and -90 degrees longitude), cycling four 
times around the equator. In general, there is no scale error at the 
poles, a small amount in the vicinity of the 8 octa face centers and 
more near their edges, being greatest along the four equatorial 
edges, and increasing toward the four equatorial vertices (which 
occupy the midpoints of ZOT map margins).

Despite this variability, all meridians map to straight lines 
which flex at the equator, and parallels to straight lines which flex 
at each 90th meridian, due to the piecewise continuous (polyhedral) 
nature of the projection. In most polar azimuthal projections, 
parallels map to circles or ellipses. In the orthotriangular 
projection, they map to diamonds (squares). This derives from the 
distance metric ("Manhattan") employed, and reflects the fact that 
the projection maps a sphere to the planar facets of an octahedron. 
This rectalinearity and modularity makes the projection very easy 
to compute, as it permits geographic coordinates to be mapped to 
the plane using linear equations, without recourse to trigonometric 
formulae, square roots or, under restricted conditions, real 
arithmetic.

One obvious, even disturbing, property of ZOT is the 90e 
change in direction of parallels at every 90th meridian. This causes 
strange distortions in the shapes in all major land masses other 
than South America and Australia. Likewise, the flexing of 
meridians at the equator distorts Africa and South America. The 
former effect can be minimized by offsetting meridional octant 
edges roughly 25Q to the West, which bisects land masses at more 
natural locations. The latter effect cannot be mitigated, as the 
equator cannot be shifted in any useful way. For computational 
purposes ZOT's orientation is rather immaterial, but should be 
standardized (see suggestion below).

Computing ZOT Coordinates

When a point is to be projected, its colatitude is multiplied by 
the map scale; the product is multiplied by the point's longitudinal 
displacement from the left edge of the octant and divided by 7i/2. 
The result is either an x or y offset from the pole's location, 
depending on the octant within which the point lies. We compute
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the other offset by subtracting the first one from the scaled 
colatitude; this fully determines the point's x,y location on the 
map.The procedure's simplicity derives from using "city block" 
distances (Manhattan Metric), in which distance between points is the 
sum of x and y displacements, instead of Pythagorean distances. In 
other words, all points along a given ZOT latitude are equidistant 
from the pole closest to them (the sum of x and y is constant and 
proportional to colatitude). The locus of all points along a given 
latitude is a straight line cutting through the octant at 45Q (parallel 
to its equatorial base); a given distance traversed along a parallel 
has a size proportional to longitude, another simple linear function. 
The ZOT projection for the North polar aspect may be derived as 
follows:

Derivation of ZOT x.v coordinates from eeoeraphic Locations

double Plat 
double Plon 
double Diam 
double S 
double P2

Parameters:2

int OCT
double R[l]
double R[2]
double C[l]
double C[2]
int FLOPS[8]

Set uv Octant:

int
int
int
int
int
double
double
double
double

ORG
OCT
XI
X2
HS
R[X1]
R[X2]
C[X1]
C[X2]

Latitude being projected ~ In Radians
Longitude being projected - In Radians
Map diameter - Cm, inches or other linear unit
Diam / TC -- Absolute scale factor
T: / 2 - Constant for right angle

Octant occupied by point - 
X-coordinate Scale factor - 
Y-coordinate Scale factor - 
X-coord origin for octant - 
Y-coord origin for octant - 
{1,1,-1,-1,-1,1,1,-D

in N, 5-8 in S Hemi
- Sign only varies by octant
- Sign only varies by octant
- Center, left or right side
- May be center, top or bottom
- Meridional edge orientations

: (P2 - Plat) div P2 
= (ORG + 1) * (Plon 
= 2 - ((OCT + ORG -
= 3 - XI

= 1 - (2 * ORG) 
: S * FLOPS[OCT] 
: - S * HS * FLOPS[9 
= - ORG * R[X1] 
= - ORG * R[X2]

- Map origin (0 = center, 1 = corner) 
div P2) -- Octant occupied (1-8) 
1) mod 2) - 1 if Lat maps to X, 2 if to Y

~ 2 if Latitude maps to X, 1 if to Y
-- Hemisphere Sign (1 in N, -1 in S)
-- X or Y factor (-R left, +R right) 

- OCT] -- Y or X factor (-R top, +R bot)
- X or Y Center (Zero in N hemi) 
~ Y or X Center (Zero in N hemi)

2 The parameters and variables in this algorithm are typed according to 
their basic cardinalities. Certain int parameters are also used in floating point 
expressions (performed in double precision, we presume); ints to can be 
converted to real as one's programming environment may require.
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Project Point:

double CLP = P2 - (HS * Plat) -- Absolute Colatitude of point
double OLP = CLP * (Plon mod P2) / P2 - Long offset (prop, to Colat)
double PX = R[X1] * abs(CLP - OLP) - Relative X or Y offset
double PY =R[X2]*OLP --Relative Y or X offset
PX = C[X1] + PX - Projected X Coordinate
PY = C[X2] + PY - Projected Y Coordinate

After initial octant setup calculations (which involve computing 
only 9 numbers and, in most cases, need be done but a few times for 
a given set of coordinates), the above algorithm uses 4 additions, 4 
multiplications, 1 division and 2 rational function calls to map one 
point from the sphere to the plane. In situations where the octant 
points occupy changes frequently, setup can be table-driven based 
on an octant number, just as table FLOPS provides signs of scale 
factors and axis origins.

Note that while the above algorithm assumes a spherical 
Earth, its principle can also be applied to ellipsoids, at the expense 
of some additional arithmetic. Table FLOPS represents lengths 
(unity) and orientations (sign) of edges of an octahedron enclosing 
the planet. Were this object to have non-uniform semiaxes, the 
entries in FLOPS would have values differing slightly from unity; 
this data could be used to anchor the projection to any specified 
ellipsoid. In the spherical case, one computes Y coordinates along a 
line having its intercept at Plat and a slope of unity, scaling X from 
Plon; for ellipsoids, the procedure involves slopes differing slightly 
from unity, but is otherwise handled identically to those more 
complex cases.

Related Antecedents

The ZOT is not the first world projection into a square domain 
having double periodicity, nor is it the first to exploit the geometry 
of the octahedron. It apparently is the first to employ a Manhattan 
distance metric, and one of the few which can be constructed 
without trigonometric functions (such as the Peters or 
equirectangular). One of its more interesting predecessors is the 
Quincuncial projection, developed in the 1870's by Charles Sanders 
Peirce. Based on elliptic integrals, this remarkable and elegant 
construction is conformal and doubly periodic,3 Despite its obvious 
octahedral symmetry, Peirce apparently never related his projection 
to polyhedra. Although widely appreciated, it fell into disuse, 
although the Coast and Geodetic Survey used it in a 1947 world 
navigation map (Eisele, 1963).

3 Quincunx is a Latin word meaning "arrangement of five things." Peirce's 
Quincuncial projection is just that, as it places the South pole at the corners of 
a square and the North pole at its center.
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Also related to ZOT is Cahill's Butterfly projection (Fisher and 
Miller, 1944), an interrupted conformal projection of the globe onto 
eight triangular facets arranged in a butterfly-like shape. In each of 
its octants, the equator and central meridian are straight and all 
other meridians and parallels bow outward. As a result, assembly 
of the Butterfly results in a lumpy shape somewhere in between an 
octahedron and or a sphere. Also, indexing map locations is 
complicated both by the mathematics required for the Butterfly 
projection and the arrangement of its facets.

Buckminster Fuller's Dymaxion projection dates from the 1940's 
and seems to have undergone a metamorphosis from an initial 
cuboctahedron basis4 to the icosahedral form of the version 
currently marketed (Life, 1943; Fisher and Miller, 1944; Fuller, 
1982). Fuller's and Cahill's motivations seem to have been similar 
in producing these projections; to minimize scale errors and to 
exploit polyhedral geometry to produce a globe that can be folded 
from a single sheet of paper. Fuller was keen on using his 
projection to convey thematic data about "Spaceship Earth", (he 
envisioned a large Dymaxion geodesic globe studded with 
computer-controlled miniature lamps to depict global statistical 
data, but seems never to have done this). Most versions of the 
Dymaxion employ gnomic projections.

The "polygnomic" world projection onto an icosahedron may 
have first been realized by Fisher (Fisher, 1943), even though Fuller 
enjoyed taking credit for it. Indeed, the idea (if not its execution) 
can be traced back to the work of Albrecht Diirer in the sixteenth 
century (Fisher and Miller, 1943, p. 92). This invention suited 
Fuller's purposes perfectly, as it represents chords of great circles 
with straight lines, like the struts of one of his geodesic domes. 
ZOT, however, is not polygnomic; it is oriented to the poles, not to 
the center of the Earth. Consequently, most great circles are not 
straight lines in ZOT space (but the equator and all meridians are).

4 A cuboctahedron is a 14-sided polyhedron having 8 triangular and 6 
square facets. Unlike the five regular polyhedra, the facets are tangent to two 
concentric spheres, complicating construction or calculation of features that 
cross facet edges.
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Error Adjustment

Nearly any area or distance measured from an ZOT projection 
will be incorrect by as much as a factor of two. As it is almost as 
simple to calculate the scale error at any point as it is to compute 
coordinates, and only slightly harder to derive the error involved 
when distances between points or polygonal areas are computed 
(with cases involving more than one octant presenting the most 
complexity). This means that size and distance calculations may be 
corrected as required; the greater the precision, the greater the 
cost. Tables can be developed to facilitate such corrections.

Polyhedral Addressing

ZOT is not esthetically pleasing, especially in comparison to the 
sweeping curves of Peirce's Quincuncial. ZOT generates angular 
discontinuities at octant boundaries, violating a number of 
cartographic precepts. No claim is made for it as an optimal visual 
matrix for presenting global spatial data. Still, ZOT projection may 
have considerable computational utility when applied to tessellated 
polyhedra embedded in a well-defined spherical manifold, as the 
following section explains.

The best uses for ZOT may be those which capitalize on its 
computational simplicity. In particular, there is a strong affinity 
between ZOT and the geometry of the Quaternary Triangular 
Mesh (QTM) global location coding model (Dutton, 1989; 
Goodchild and Yang, 1989). Figure 3 and Figure 4 illustrate how 
QTM's recursive subdivision of octahedral facets into four tiles 
each is mapped to a completely regular mesh of right triangles 
when projected via ZOT. This mesh densifies in the same manner 
as a rectangular quadtree does, but also includes diagonal elements 
(parallels of latitude). Note how each triangle's edges split in half, 
and how its hypotenuse follows a particular latitude. This may be 
exploited to derive QTM facet addresses from latitude and 
longitude, as Figure 5 shows.

The arithmetic used in this procedure consists of testing sums 
and differences of x and y displacements against one parameter 
(s/2 in fig. 5) that is constant for all QTM tiles at a given level of 
detail. In addition, the algorithm needs to know the '"basis number" 
of each node (vertex) in the QTM network in order to assign a 
QTM ID to every tile in the hierarchy; each vertex is identified with 
a 1-node, 2-node or 3-node (its basis number), and all higher-level 
nodes at a particular location continue to manifest its original basis 
number. This digit is common to all four QTM cells surrounding 
each octa vertex, and all six cells that surround the nodes that 
appear in subsequent subdivisions. Central (0) cells are associated
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with no node, but their vertices (and subsequent cells that surround 
them) themselves have node identifiers.

To map geographic coordinates to QTM identifiers, an 
additional procedure is therefore needed: one which identifies the 
"pole node"5 (the right-angled vertex) of each QTM cell, and also 
assigns correct basis numbers to all three nodes (pole nodes can 
have IDs of 1, 2 or 3). This is a property not of the ZOT projection 
itself, but of the sequencing of 1- 2- and 3-cells at each level in the 
tessellation, which may be done as specified here, as Goodchild and 
Yang (1989) describe,6 or in some other way. Another aspect of 
navigating QTM which must be parametrized is the geometric 
orientation of principle axes with respect to the pole node of each 
facet, which can be either of two arrangements per octant, one for 
ID's 1, 2 and 3, the other involving ID's of zero. When a point 
occupies a central (0) facet, the facet's orientation inverts, rotating 
180 degrees. This new arrangement persists until a zero ID recurs, 
at which point the facet shrinks by 50 percent and flips into the 
other orientation. The rule is: all facets within a given octant share 
its orientation unless their QTM codes contain an odd number of zeros; 
in such cases the current x and y scale factors interchange and change 
sign.

When a 0-tile comes into being, its pole node is a reflection of, 
and has the same ID as its parent QTM facet's pole node. What 
had been half of its parent's x-extent becomes the 0-tile's y-extent, 
and vice versa. In cases where the child tile is in the triangle 
dominated by the parent's pole node, its ID will be the same as its 
parent's. In either of the remaining two (nonzero) cases, the ID of 
the child's pole node flips from that of the node to which it is 
closest to that of the other non-pole node. Once embedded in the 
ZOT plane, transitioning to certain QTM ID's involves horizontal 
displacement, while vertical movement is used to reach others (x 
and y in ZOT space; see Figure 5). Three of the six possible 
arrangements of nodes within an octant are enumerated in Table 1 
and diagramed in Figure 6.

5 This is the local origin of each facet, the vertex in the QTM mesh that, as 
projected via ZOT, has edges that all meet at right angles. Local ZOT distances 
are measured with respect to this origin, which moves each time a QTM ID 
assumes a new value.

6 Goodchild and Yang number the tiles their mesh from 0 to 3 in one of 
two patterns that spiral out from the the central (0) tile first either North or 
South (1), then Southwest or Northwest (2), then East (3). While this scheme 
may simplify trilocation (generating tile IDs), it lacks one important property: 
There is no correspondence between tile ID's and vertex basis numbers; this 
makes it more difficult to relate tiles to the nodes they surround (their QTM 
Attractors).



One derives QTM code digits 
recursively by, at each level, 
identifying which of four tiles 
encloses a point occupying 
latitude (0) and longitude (x). 
This position is referenced to a 
local origin ("pole"), yielding 30 
and dx (angular displacements 
within a QTM cell). The number 
returned identifies the closest 
QTM attractor (node).

s = 90.; side length in degrees 
s/2 = 45.; half side length 
dy = 30; latitude change from origin 
dx = 3x - dy; other coordinate 
If (dx+dy) < s/2 then return (1); 
If dy> s/2 then return (2); 
if dx > s/2 then return (3); 
else return (0);

Get s; the length of triangle legs. 
Get s/2; half of s. 
Get dx; point x-offset from origin 
Get dy; point y-offset from origin 
{s is angular; := 180 / (2 A level), 

as measured from pole} 
{dx & dy are also angular offsets}
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Table 1

Basis numbers of nodes of children of an octa facet 

(3 of 6 orientations)

OTM Tile

Parent
0
1
2
3

OTM Tile

Parent
0
1
2
3

OTM Tile

Parent
0
1
2
3

Pole

1
1
1
3
2

Pole

2
2
3
2
1

Pole

3
3
2
1
3

- Figure 6

- Figure 6c

- Figure 6d

Note how in each case, if a point lies nearest the parent's pole 
node, the child will have the same pole, but the x-node and the y- 
nodes interchange ID's.

Computational Properties

Because planar geometries are generally much more straight 
forward than spherical ones, it is almost always easier to compute 
relations such as distances, azimuths and polygon containment on 
the plane rather than on the sphere. The former may involve 
square roots and occasional trig functions, but rarely to the degree 
demanded by geographic coordinates, where spherical 
trigonometry must be used no matter what ranges may be involved 
(unless approximations will suffice). Polyhedral geometry, being 
closed and faceted, is globally spherical but locally planar. The 
maximum practical extent of localities varies, both in cartesian and 
faceted cases, according to the projection employed (for cartesian 
coordinates) or the type and level of breakdown (for hierarchical 
polyhedral tessellations).

One essential operation that ZOT can facilitate is computing 
polyhedral facet addresses (geocodes) from geographic coordinates. 
Called trilocation (Dutton, 1984), it recursively identifies the ID's of
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tiles containing a given location, generating a sequence of L 2-bit 
codes, where L is the depth of recursion. The simplest general 
algorithm for trilocating a point in QTM determines which of four 
tiles it is in by comparing squared distance from the specified point 
to the centroids of the central QTM tile and each of the three outer 
ones to find the closest one; this requires 1 to 3 squared distance 
computations and comparisons per level, or O (2L) comparisons per 
point. If performed in global space, great circle distances are 
needed, but in the plane cartesian distances will suffice (in neither 
case need square roots be extracted, as we need only order 
distances, not measure their absolute magnitudes). In ZOT space, 
computing a QTM ID requires only one addition, one subtraction, and 
one, two or three tests of inequality, as demonstrated in Figure 5.

ZOT casts trilocation into a well-defined planar geometry 
where triangular cells can be efficiently identified. Moreover, one 
may compute facet ID's to 15 levels of detail using coordinates 
stored as 32-bit integers (attempting greater precision would cause 
overflows and aliasing of IDs beyond the 15th level). Projecting 
candidate points from longitude and latitude into ZOT coordinates 
only involves solving several linear equations per point. ZOT 
distances order themselves the same as geodesic distances, and as 
just described, are much easier to compute.

Orientation Options

The ZOT projection has been shown in a specific orientation 
throughout this paper. As mentioned above, it is trivial to rotate 
the Prime Meridian to cross any point on the equator. This 
relocates four QTM cardinal points and all octant boundaries; one 
may be tempted to do so to avoid spreading areas of interest over 
more than one or two octants. Such schemes are always to the 
advantage of certain territories at the expense of others. Such 
suboptimizations are probably self-defeating, and in any case 
violate the spirit of the model: QTM can best identify locations on 
a planet if its mesh is embedded in a particular manifold 
(topological reference surface) in an agreed-upon way. Differently- 
oriented manifolds generate different QTM codes for the same 
location; this complicates spatial analysis, as codes from QTM 
model variants that do not share a common orientation are not 
commensurate, even when they represent identical locations.

QTM isn't very useful unless it is standardized, as are latitude 
and longitude. If nothing else, QTM is a coordinate system, 
designed to recursively encode (at some specified precision) 
locations on planets into unique triangular facets. It is therefore 
desirable that all QTM codes having a given address map to the 
same location on a planet, no matter who specified the address,
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where they came from or for what purpose. This implies that 
certain areas will always be inconveniently split by octant 
boundaries. Such situations can be handled by methods which knit 
facets together along octant edges, such as associating them with 
QTM attractors7 (which as figure 3 shows, follow the same pattern 
in all eight octants). Were everyone who used the framework to 
agree on how to orient it, all their QTM codes would also agree. 
Little additional data (mainly an ellipsoid model) is required beyond 
a common definition of the octahedron's orientation to the planet 
concerned.

Table 2 proposes a standard way to orient QTM to ZOT, used 
in illustrating this essay. It is defined by three parameters that 
relate QTM nodes to ZOT space: (1) The projection's aspect (North 
polar); (2) the longitudinal offset, if any, for the prime meridian (0Q); 
(3) the cardinal direction from the central axis along which the 
prime meridian runs (-Y). If the geographic North and South poles 
are assigned ID's of 1, and the intersection of the equator with 
longitude 0Q and 180e are labeled 2, the remaining two octahedral 
nodes (where the equator and longitudes -90Q and 90Q cross) 
therefore have ID's of 3. This fully defines the basis number of 
every node in the entire QTM hierarchy. The ZOT coordinates for x 
and y nodes are given in terms of the map radius (which is the 
length of octahedral edges as projected). These are either zero, or 
plus or minus unity.

7 QTM nodes are also called attractors because all coordinates in the vicinity 
of a node alias to it, hence can be thought of as being attracted to that location. 
All QTM nodes beyond the original six octahedral vertices propagate their ID 
to six surrounding tiles, and all coordinates falling within those tiles are 
associated with the attracting node.
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Table 2a

Proposed QTM Orientation Standard for Octa Vertices

(Octa vertices define 3 orthogonal axes 
upon which all QTM codes are based)

Latitude Longitude Pole

90 N
90 S
0 N/S
0 N/S
0 N/S
0 N/S

(0)
(0)
0 E/W

180 E/W
90 E
90 W

1
1
2
2
3
3

0
 1
'0

0
1

-1

0
 1
1

-1

0
0

Table 2b

Proposed QTM Orientation Standard for Octa Facets

(-x = left; +x right; -y up; +y down w.r.t. Pole node, 
Signs are descriptive only; node IDs are positive)

Octant N/S Pole X-ID Y-ID

1
2
3
4
5
6
7

N
N
N
N
S
S
S

1
1
1
1
1
1
1

3
3

-3
-3
-2
-2

2

2
-2
-2

2
-3

3
3

8 S 1 2 -3

Projected Implications

It is not foreseen that zenithial orthotriangular projection will 
ever be widely employed in published maps. ZOT is too peculiar to 
serve as an aid to navigation or to be used to convey thematic data 
(unless its double periodicity can be exploited) 8. What it offers, 
however, is a computational shortcut for spatially indexing 
locations on a planet. This approach follows the lead of Lucas 
(1979), Diaz and Bell (1986) and others in attempting to define 
special arithmetics for tessellated spatial data in order to take 
advantage of properties of particular tessellations. Although the 
spaces in which most such arithmetics operate cannot be visualized 
as readily as ZOT space can, tessellar methods can have 
considerably higher computational efficiencies than standard 
geometric calculations.

8 One might convey bivariate (or even trivariate) attribute data using a 
tiling of ZOT maps (as Figure 2 shows). For example, a thematic variate, such 
as population densities, could be displayed in a grid of M maps across, each 
column representing a different date in history (e.g., 1950,1970 and 1990); each 
of N rows of the grid might display a different spatial resolution (one could 
display densities computed over the areas each nation, province or canton, 
one row for each scale).
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ZOT can greatly simplify repetitive geometric operations in a 
quaternary triangular mesh, as we have tried to describe. QTM 
facets are optimally arrayed in ZOT space, and their addresses are 
highly tractable to compute. Deriving QTM ID's from geographic 
coordinates via ZOT is algorithmically inexpensive, growing more 
or less as O(L logL). So, ZOT may prove to be a useful cartographic 
abstraction, at least to the extent that QTM is a felicitous 
framework for spatial data.
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