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ABSTRACT
 

The proposed hybrid thinning approach consists of 
preprocessing, distance-transform based skeleton extraction, 
sequential thinning and post-processing . The preprocessing 
smooths line edges fills holes . The Euclidean distance 
transform is then performed, and skeletons are extracted via 
established lookup tables to produce unbiased center lines . 
Sequential thinning, which deals with nearly-thinned lines 
better than other approaches, is then applied to thin 
skeletons to single-pixel width . The post-processing removes 
spurs, connects disconnected lines caused by skeleton 
extraction, and extends eroded line tips . Large data sets can 
be handled . Experiments on contour, parcel and land use data 
are presented . 

INTRODUCTION 

Line thinning is important to data compression, raster to 
vector conversion and pattern recognition . The general 
requirements of line thinning include the quality of results, 
speed and ability to handle large images with limited memory . 
The quality of results include the preservation of geometric 
and topological properties [Lam et al, 1992], and visual 
acceptance for problem domains . To preserve the geometric 
properties the thinned lines should be the median axes of the 
original line features, maintain the original line lengths, 
and be clean without additional spurs . To preserve the 
topological properties, the thinned lines must preserve the 
connection of the original lines without disconnection and 
additional loops . The visual acceptance is highly dependent 
on applications, and may include line smoothness and junction 
appearance . 

Various thinning algorithms (Peuquet, 1984, Lam et al, 1992) 
have been developed to satisfy these requirements with some 
requirements being emphasized for a particular problem 
domain . Thinning algorithms can be divided into the iterative 
and the distance-transform based . with the iterative further 
divided into sequential and parallel classes . The speed of 
iterative approaches, which iteratively peel the contours of 
thick lines based on the local properties within a moving 
window, are generally dependent on line width, and its 
performance in geometric preservation depends on scan 
direction . The sequential algorithms, which do peeling based 
on the line patterns in the current iteration, are generally 

396 



faster on sequential machines and preserve connection better 
than the parallel algorithms, but their results are often 
biased away from the scan directions . Parallel algorithms, 
which peel contours based on patterns of the previous
iteration, makes using parallel processors possible, and are
less sensitive to scan direction than the sequential . But to 
maintain connection, they are forced to use sub-iterations or 
a large moving window . The distance transform based 
approaches, which normally perform Euclidean distance
transformation on line network and extract skeletons based on 
the global information of distances from edges, may produce
well centered thinned lines of width of one or two pixels at 
once . The resulted skeletons, however, may not preserve
connection, and are sensitive to noise . 

Hybrid approaches may be adopted to take advantages of
different approaches . Arcelli and Sanniti (1985) combined 
distance transform and sequential thinning, with capability
of reconstruction of original features .In this study, a hybrid
thinning approach, uses lookup tables for skeleton extraction 
based on the Euclidean distance transform and perform
sequential thinning and extensive post-processing to solve 
the problems inherent to the distance-transform based
approaches, is described . 

OVERVIEW OF THE HYBRID APPROACH, 

In the hybrid approach, the Euclidean distance transform is 
performed first to produce x and y displacements of pixels
from line edges . Skeletons are identified using lookup tables 
by checking the x and y displacements of pixels . Because the 
distance transform is sensitive to noise, a morphological
dilation/erosion filter is optionally used before distance
transform to smooth ragged edges and remove small holes within 
lines . Sequential thinning is followed to further thin 
skeletons to single-pixel width . The thinned lines are further 
processed by removing spurs, connecting broken skeletons,
extending eroded line tips within the boundaries of the
original line, and removing some false junction pixels . The 
program allows the control of the output line type being
either smooth lines or lines with sharp corners . Large images
are processed in strips with proper overlap between stirpes . 
The maximum thickness of input line features, as an input
parameter, is used to determine the length limit of spurs and 
overlapping size of image strips . We will refer to line
features in the context of a foreground consisting of black
pixels, and a background consisting of white pixels . 

DISTANCE TRANSFORM 

In the distance transform, the white pixels in the
background are used as the source, and the proximity of the
black pixels on line features to source pixels are measured . 
The Euclidean distance transform calculates for each black
pixel its X and Y displacements to its nearest source pixel . 
Actual distance calculation is avoided to reduce computation . 



Danielson's algorithm [Danielsson, 1980] is used in the 
distance transformation . Two passes are required in distance 
mapping and five neighbors need to be visited in each pass . 
According to Danielsson, the errors from the true Euclidean 
distances with eight neighbors is sparsely distributed, and 
errors are bounded to be less than 0 .076 pixel . 

SKELETON EXTRACTION 

We first briefly explain what we mean by the skeleton of a 
raster feature . In the raster domain, the disk of radius R 
centered at a pixel is the set of all pixels whose centers are 
within the distance R from the center of the pixel . Pixels 
that are exactly at distance R from the disk center are 
excluded from the disk . From the center of each feature pixel, 
there exists a disk of maximum radius among all disks which 
lie within the feature . The skeleton of a feature consists of 
those pixels whose maximum disk within the feature can not be 
covered by the maximum disk of another pixel in the feature . 

For a disk of distance R, perform the Euclidean distance 
transform . Since the skeleton of the disk is its center pixel, 
it can be assumed the maximum disk of the neighbors of the 
center pixels is covered by that of the center pixel . If a 
pixel in the input image has X and Y displacements that match 
those of one of neighbors of the center pixel in the disk, we 
may assume the pixel is not a skeletal pixel in the input 
image . By checking the X and Y displacements of each black 
pixel and its neighbors it is possible to identify if the 
black pixel is a skeletal pixel of a line feature . Danielsson 
[1980] shows that the error by using this local neighborhood 
checking of X and Y displacements is extremely small due to 
raster points available . 

To quickly identify skeletal pixels with this approach, a 
set of look-up tables with a pair of X and Y displacements as 
inputs, and the X and Y displacements of pixels, whose disk 
are covered by the disk in the diagonal or orthogonal 
direction, as outputs are established . To build those look-up 
tables, distance transform is performed on each of the disks 
with integer squares of radii from 1 to N, where FN is the 
width of the thickest line the program is capable of 
processing . The quadrants of possible X and Y displacements 
of the disk of squares of radii 1 to 25 are shown in Fig . 1 . 
The X and Y displacements of the disk centers become the input 
to the look-up tables and the X and Y displacements of its 
orthogonal or diagonal neighbors becomes the output of the 
orthogonal or diagonal look-up tables, respectively . Given 
the X and Y displacements of a pixel and its neighbors, the 
pixel can be identified as a non-skeletal pixel if its X and 
Y displacements are the outputs of either the orthogonal or 
diagonal look-up table with the X and Y displacements of one 
of its neighbors as the inputs . 

To make the extracted skeletons adapted for line thinning, 
attention has been given to the following four situations in 



building these look-up tables . 

a . At a radius, the X and Y displacements may have multiple
pairs of values, excluding the swap of X and Y displacements . 
For instance, at radius 5 (Fig . 1), both X and Y displacements
(5,0) and (4,3) are valid, and may result from different scan 
directions . All multiple pairs of X and Y displacements at a 
radius should be identified . 

b . A few pair of X and Y displacements at a disk center have 
different pairs of X and Y displacements at their diagonal
neighbors . For instance X and Y displacements (6,0) at the 
disk center may have both pairs of X and Y displacements (5,0)
and (4,3) at its diagonal neighbors depending on scan 
directions . For some pairs of input X and Y displacements is 
may be necessary to have two pairs of X and Y displacements 
as their outputs . 

c . Border pixels (1,0 or 0,1) need special handling in order 
to maintain connection of thin lines . As shown in Fig . 2 the 
border pixel of (1,0), marked by a thick box, is not normally 
a skeletal pixel, but should not be removed in order to 
maintain necessary connection . Those border pixels, which 
have no neighbor pixel with X and Y displacements (1,1) or 
(2,0) on one side and another neighbor pixel with X and Y 
displacements (0,0) on the opposite side, should be removed . 

d . To further reduce the disconnection caused by skeleton 
extraction, the disk of X and Y displacements (2,0) is made 
not being covered by that of X and Y displacements (3, 0) . This 
pixel of (2,0), marked with a thick box in Fig . 2, together
with the pixel of X and Y displacements (1, 0) , also marked 
with a thick box, maintain the connection in a line with a 
narrow portion (Fig . 2) . Further modifications in look-up
tables may improve connection, but tends to increase noise and 
blur the major line features in skeletons . 

It is well known that the skeleton of a line feature 
extracted using the median axis transform in the discrete 
space may be of two-pixels width and disconnected, and may
have spurs at turns and line ends . For the purpose of line 
thinning, the erosion of line ends during skeleton extraction 
need to be recovered . The following four sections describe the
processing steps to solve these problems . 

SEQUENTIAL THINNING 

The major purpose of the step is to further thin the
resulted skeletons into thin lines of one-pixel width . In 
addition single black pixels resulted from skeleton 
extraction are dropped, and gaps of one-pixel width between 
disconnected skeletons are filled . The basic idea of the 
sequential thinning algorithm by Greenlee [1987] is used since 
the algorithm takes into account of complete 256 junction
patterns and is flexible in adjusting the rules of pixel
elimination . First the resulted skeleton image is encoded . 



Each neighbor of a pixel are assigned an direction number of 
N2 where (1 <= N <= 8) depending on the direction of the 
neighbor . The code of a pixel is the sum of the direction 
numbers of its black neighbors . Black pixels of code 0 is 
single pixel and are dropped during encoding . Decision rules 
for pixel filling and peeling are developed based on the 
coding . When a pixel is filled or removed, the codes of its 
neighbors are updated . The procedure is iterated until no 
change occurs . Peeling rules are set differently for smooth 
and sharp-turned output lines . Since the skeletons are of no 
more than two pixel width, the bias of thinned lines that may 
be caused by sequential thinning are negligible . One pass is 
enough to thin all skeletons to one-pixel width . At least four 
passes are required in the step, one for encoding, one for 
filling, one for thinning and one for checking code changes . 
Approaches based on contour processing [Kwok, 1988], 
[Naccache, 1984] may be used for those nearly thinned lines 
to improve efficiency . 

SPUR REMOVAL 

Before spur removal, all black pixels are encoded using the 
number of its black neighbors, and white pixels are labeled 
0 . A Pixel of code 1 is a tip of a line, a pixel of code 2 is 
generally the intermediate line pixel, and a pixel of code 3 
or larger generally is a junction pixel . Sometimes, a pixel 
of code 2 may be a spur pixel (Fig . 3(d), and a pixel of code 
3 may forms a false junction, as shown in Fig . 3(e) . 

There are two types of spurs often occur in the resulted 
skeletons, 1) middle spurs that occur in the middle of a line 
when the line direction or thickness changes and 2) end spurs 
that occur at the line ends (Fig . 3) Middle spurs can be 
processed individually . End spurs, however, appear as pairs, 
and each pair must be processed simultaneously . Otherwise, 
after the first spur is removed, the second spur becomes a 
portion of a line, and can no longer be recognized . The spurs 
may also be classified as code 1 spurs whose tip pixels are 
coded 1, and code 2 spurs whose tip pixels are coded 2 and 
whose length is one pixel . We will discuss the removal of code 
2 spurs in the next section . 

To identify code 1 spurs, the resulted output is scanned to 
find pixels of code 1 (tips) . From a line tip the next black 
pixel along the line is searched . When a pixel of code 2 is 
found, its another black neighbor is searched . The search is 
restricted in a limited sector without visiting the neighbors 
of the preceding black pixel . Searching ends when reaching a 
junction pixel (code > 3), or an end pixel (code 1 or 0), or 
the defined maximum spur length are reached . The maximum spur 
length can be defined as 0 .8 times the maximum line thickness . 
When a search ends at a pixel of code 3 or larger, we call the 
pixel the junction-end pixel of the search or the spur that 
is identified . The major difficulty is to identify false 
junctions in Fig . 3(e) . 



Removing spurs that does not end at a junction-end pixel is 
to simply to remove all pixels visited during search . When a 
spur ends at a junction-end pixel and spur is identified, 
however, one must to decide if the junction-end pixel of the 
spur should be removed . When the junction-end pixel 
constitutes a necessary connection for the remaining line, it 
should not be removed . On the other hand, leaving an extra 
pixel at a junction means that the spur is not completely 
removed . 

To identify false junctions and determine the removal of 
junction-end pixels of spurs, all possible patterns when 
search reaches a pixel of code 3 or larger (a true or false 
junction) are studied. 

Fig . 4 shows the all possible junctions patterns when 
reaching a junction pixel of code 3 from the upper-left and 
from the top . For reaching junctions of codes larger than 3, 
the pattern can be obtained similarly . Based on the analysis 
of those patterns the following rules are developed to 
identify spurs and to handle the junction-end pixels . In 
pattern 1, 2, 3, 5 and 7 of Fig . 4 true junctions are reached, 
and spurs are identified . The junction-end pixel J should not 
be deleted, because the other two neighbors of pixel J, 
(except for the neighbor preceding pixel J in the search) are 
not contiguous, i .e . at least a white neighbor is between 
those neighbors . 

In pattern 4, 6 and 8, the other two neighbors of pixel J 
are contiguous, and among them one and only one is the direct 
(orthogonal) neighbor of pixel J (labeled D in Fig . 4) . The 
following rules are developed to detect false junctions . If 
the code of D is less than 3, a false junction is detected ; 
if the code of D is larger than 3, a true junction is 
identified . When the code of D is 3, J and D form a false 
junction if the rest of neighbors of D are not contiguous, and 
J reaches a true junction otherwise . Whenever a true junction 
is reached, the junction-end pixel J can be removed . 

When the code of a junction-end pixel is larger than 3, a 
true junction is always reached, and a spur is identified . To 
determine if the junction-end pixel is to be removed, the 
rules for junction end pixels of code 3 can be similarly
applied . If the rest of neighbors of a junction-end pixel are 
not all contiguous, the junction-end pixel is not removed, 
otherwise, it can be removed . 

Although some junction-end pixels, such as in pattern 5 of 
Fig . 4, can be removed without creating disconnection, it is 
better to maintain them for the simplicity of rules, and for 
better junction handling by considering the rest of junction 
pixels and different junction handling requirements . 

When a spur is removed, the codes of neighbors of the last 
pixel of the spur should be updated . when the code of one of 
its neighbor becomes 1, a new line tip is created and the need 



to be extended 

REMOVAL OF EXTRAPIXELS OF CODE 2 

After the previous processing some pixels of code 2, which 
are actually spurs of one-pixel length or the corners of sharp 
turns that are redundant for smooth line requirement, need to 
be removed . There are two types of pixels of code 2 that need 
to be removed, as shown in Fig . 3(d) and (e) . The one in Fig . 
4(e) has two adjacent direct neighbors, and is not subject to 
removal when sharp turns are demanded . The spur in Fig . 4(d) 
can be easily identified since this type of pixels of code 2 
always has two adjacent neighbors . The code 2 spurs may also 
appear as pairs at line ends (Fig . 3(c)), and each pair needs 
to be handled together . In all other cases pixels of code 2 
form necessary line connections, and should not be removed . 
When a pixel of code 2 is removed, the codes of its neighbors 
should be updated . When the updated code of a neighboring 
pixel becomes 2, the pixel needs to be examined for removal, 
and the process becomes recursive . When the updated code 
becomes 1, the new line tip is to be extended, as shown in the 
next section . 

EXTENDING LINE TIPS 

The purpose of this step is to extend the tips of the thinned 
lines, to the boundaries of the original lines, or to connect 
to other lines . In the first case, we try to recover the line 
length eroded in the previous processing, and in the second 
case, we try to link the disconnected skeletons . The extending 
directions are determined in increments of 22 .5 degrees by 
using the last 3 pixels from the line tips . Extending in the 
directions of angles 22 .5+45*N (n=0,7) is realized by 
alternatively extending in the orthogonal and diagonal 
directions . Sixteen extending directions makes extended lines 
coincide with the original line direction better than eight 
extending directions do . The process that extends line ends 
are embedded in the process of spur removal and is invoked 
when the updated code of any pixel becomes 1 . 

HANDLING LARGEIMAGES 

To be efficient many processing steps require the input and 
output images to be entirely held in memory . When a large 
image can not be held in memory, it can be processed strip by
strip . Each strip spans the width of the image, and overlaps 
its adjacent strips by a number of rows, which is no less than 
the maximum thickness of line features . No significant 
problems have been found in the output by processing in 
strips . Only a shift of one pixel may be found when some 
vertical lines cross the border between strips . 

CONCLUSION 

The paper proposes a hybrid thinning approach, in which the 
distance-transform based approach is combined with the 



sequential approach . The hybrid approach takes the advantages
of both approaches : the speed independent of line width and 
fine median axes from the Euclidean distance transform, and 
flexibility to handle the fine detail of nearly thinned lines 
from the sequential approach . The look-up tables for skeleton 
extraction enable skeletons to be quickly and properly
extracted for further processing . The lookup tables have been 
established to be able to handle thick lines of width up to 
60 pixels . To solve the problems left mainly by the skeleton 
extraction based on distance transform, such as spurs and 
disconnection, extensive post-processing procedures are 
developed . Simultaneously handling of pairs of spurs, and 
recursively processing new spurs are essential to ensure the 
quality . Extending line tips in proper directions not only 
restores the line length, more importantly, re-links the 
disconnected line skeletons . 

The approach performed well on contour lines, parcel map,
roads and various land-use and land-cover data, where the 
range of line widths may not be regular, features may be 
relatively noisy, and sharp-turned or smooth lines may be 
required . Some of the results are show in Fig . 5 . The major
problems with the approach exist at junctions of thick lines,
where it produces dimples at T junctions, and creates two 
junctions at a X junction . These junction problems can be 
better handled in vector structures if vertorization is 
performed after thinning . 
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Fig . 1 X and Y Displacements of Disks (The numbers 
in parentheses are the squares of radii of disks) 
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Fig . 2 Modifications to Normal Skeleton Extraction . 
Normal skeleton pixels are marked with thin boxes, 
Pixels with thick boxes are put into skeletons . 
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Fig . 3 Types of Spurs . (a) and (b) : code 1 ; (c), (d) 
and (e) code : 2 . (a) and (b) : end spurs ; (b) and 
(d) : middle spurs . (e) middle spur in smooth lines . 
Pixels surrounded by boxes are spur pixels . 
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Fig . 4 Patterns When Search from Tips Reaches Pixels 
of Code 3 (Labeled J) from the Upper-Left (1)-(6),
and the Top (7)-(8) . D is a direct neighbor of J . 

(a) contour 

(c) land use 
(b) parcel 

Fig . 5 Thinning Results of Line Features 
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