
CONSEQUENCES OF USINGA TOLERANCE PARADIGM
 
IN SPATIAL OVERLAY
 

David Pullar
 
Environmental Systems Research Institute
 

380New York Street
 
Redlands . CA 92373
 
dpullar@esri .com
 

ABSTRACT
 

Geometrical algorithms for spatial overlay incorporate a fuzzy tolerance to remove spurious 
polygons . This fuzzy tolerance may be related to numerical limits for calculating 
intersections, or related to the variation in the geometry of objects they represent. When the 
distance between two objects is below the tolerance they are classified as coincident and 
moved to the same location . Yet using a tolerance as a heuristic to handle decisions of 
approximate coincidence has some undesirable consequences . Some of the problems 
encountered are that objects creep outside their allowable tolerance, or the objects geometry 
is corrupted so that proper topological relations cannot be reconstructed . This paper 
examines the flaws with applying a tolerance paradigm in spatial overlay, and describes the 
conditions needed to safely evaluate point coincidence. 

INTRODUCTION 

Spatial overlay is an analytical tool used to integrate multiple thematic layers into a single 
composite layer. This involves intersecting all the geometrical objects from each layer and 
filtering the geometry to remove spurious polygons in the output . This geometrical filtering 
process relates to techniques for automated scale changing called epsilon filtering 
[Chrisman 1983]. The two geometrical criteria it imposes on the output are; i) creep - no 
point is moved more than epsilon, and ii) shrouding - no points are left within a distance 
epsilon. The epsilon distance in map overlay is the geometrical tolerance. 

The basis of the filtering process is to resolve point coincidences . That is, if two points are 
found to be within the geometrical tolerance to one another they are merged and identified 
as a single point. Most commercial GIS's use a single tolerance as an input parameter to the 
overlay program for classifying incidence and coincidence relations between objects. Yet 
there is a need to distinguish between objects that have a well defined geometry with a 
small tolerance, and objects that have an imprecise geometry. That is we need to distinguish 
between multiple cases in the same layer where; i) two points are distinct objects separated 
by a small distance, and ii) two points are meant to represent the same object when they are 
a small distance apart. This is the rationalization for multiple tolerances . 

Most algorithms employ some tolerance paradigm to detect coincident points . The 
tolerance paradigm is a heuristic that says if two quantities are near enough in value then 
treat them as the same . A simple example will demonstrate the problem with this reasoning 
paradigm for geometrical algorithms . Figure 1 shows a set of points and their tolerance 
environments . Each point, called an epsilon. point, is given by a tuple (x,y,£) representing 
an x,y-coordinate and a tolerance radius c. We arbitrarily chose one epsilon point and begin 

288 



testing for point coincident based on the tolerance regions overlapping . When overlapping 
epsilon points are found they are shifted to coincide exactly . If the points are tested and 
moved in the sequence shown in figure 1 then it is apparent points will creep from their 
desired location . One also could imagine the epsilon points as connecting line segments, 
and the segments degenerating to a point . 

The flaw in our reasoning for the tolerance paradigm is in the transitivity of point 
coincidence . That is, we cannot naively assume that if (P 1 = P2) and (P2 = P3) implies (P 1 
= P3) when the test used to evaluate equality is approximate. 

Figure 1 . Testing point coincidence 

Applying the tolerance paradigm naively causes algorithms to fail or give an incorrect 
result. And even if applied judiciously the tolerance paradigm has some severe 
consequences. Recent research in the field of solid modelling has discussed this topic at 
length. Robust algorithms for intersecting polyhedral objects are known, but it is admitted 
in a worst case scenario the algorithms will allow objects to collapse to a point [Milenkovic 
1989] . This degenerate behavior for computing intersections has even worse consequences 
when the tolerances become larger and there are multiple polygons intersected . The cause 
of the problem is in the way points are tested for approximate coincidence before moving 
them . 

CONDITIONS FOR POINTCOINCIDENCE 

The conditions for resolving coincidences between epsilon points with multiple tolerances 
is similar to the conditions stated for epsilon filtering . Namely, two geometrical criteria are 
imposed on the output; i) creep - no point is moved more than epsilon, and ii) shrouding ­
no points are left within a distance epsilon. The question arises as to the conditions to be 
fulfilled when dealing with multiple tolerances? 

We can define the first criteria creep with respect to multiple tolerances in a straight forward 
way. A point cannot be moved a distance greater than its epsilon tolerance . What is not 
straight forward is how to apply the shrouding criteria and make sure points are separated 
by some minimum distance . This raises two questions when dealing with multiple 
tolerances ; 

1 . What tolerance will be used to compare two epsilon points? 
2. How is the tolerance updated when merging epsilon points? 

One obvious way to deal with the first question is to say points are coincident if their 
tolerance regions overlap . Another way is to say epsilon points maintain a minimum 



���

separation distance . We explore both possibilities. 

Overlapping Tolerance Regions 
Lets assume the shrouding criteria is based on a geometrical condition, namely the tolerance 
regions for two points must not overlap . This answers the first question by stipulating that 
if the sum of the radii for the epsilon regions is greater than the distance between their point 
centers then they need to be merged . Figure 2 shows this situation. 

Figure 2. Tolerance environments for two points overlap 

To answer the second question we need a way to update the tolerances for two epsilon 
points. Some different scenarios for updating the tolerance CAB after merging two points 
`A' and ̀ B' are; 

1. CAB =maximum(CA,CB), i.e . the maximum tolerance. 
2. CAB =minimum(CA,CB), i.e . the minimum tolerance. 
3. CAB = 2/[(CA)-1+(CB)-1], i.e. the weighted sum of the two tolerances . 
4. CAB =CA U£B , i.e . the smallest enclosing sphere within their union. 
5. CAB =CA nCB , i.e. the smallest enclosing sphere within their intersection . 

a) Maximum b) Minimum c) Average 

d) Union e) Intersection 

Figure 3. Updating the tolerance regions for point coincidence 

Figure 3 shows each of the above methods. By examining some specific point 
configurations we can easily show that none of the methods are adequate. For instance, 
consider the three epsilon points `A', `B', and `C' and their associated tolerance 
environments in figure 4a. Points `A' and `B' are found to be close and are merged to form 

290 



�

`AB'. The first four methods of updating the tolerances for `A' and `B' - e.g. maximum, 
minimum, average, and union - all cause overlap with the tolerance region for `C'. This is 
illustrated in figure 4b. But if `C' is merged with `AB' this will contradict the creep criteria. 
That is the new point will likely be outside the tolerance region for `C'. The fifth method, 
e.g . intersection, is also inappropriate because when the tolerance regions for two points 
are just overlapping then the updated tolerance will converge to zero . This would easily
lead to instability in determining the coincidence between points. 

a) minimum 
b) maximum 

c) average
d) union 

e) intersection 

a) Comparing points `A','B', and 'C' b) Point ̀ A' and ̀ B' are merged 

Figure 4. Coincidence Test 

Therefore our first approach for defining the shrouding criteria has some basic flaws. None 
the less, some researchers in the field of computational geometry have used approaches
similar to this in their work . Segal [1990] uses the union of tolerance regions to analyse
point coincidence, but does so at the expense of relaxing the creep criteria. Fang and 
Bruderlin [1991] use a combination of computing both the union and intersection of the 
tolerance regions for detecting ambiguities when analysing point coincidences . The 
algorithm is re-run when an ambiguity is discovered using different estimates for the 
tolerances. 

Minimum Se aration 
From simple reasoning we have shown the flaw in merging points with overlapping
tolerance regions to enforce the shrouding criteria. An alternative to is base the shrouding
criteria on maintaining a threshold separation between two points . The separation distance 
must be related to the tolerances of the points . An obvious possibility is to use any one of 
the first three criteria for updating clusters discussed in the last section, namely the 
minimum, maximum or average tolerance for the points . Therefore an alternative test for 
shrouding is that the separation dAB between two points `A' and `B' be less than ; 

1 . dAB <maximum(EA,BB), i.e . the maximum of the two tolerances. 
2. dAB <minimum(EA,EB), i.e . the minimum of the two tolerances . 
3. dAB < 2/[(EA)-1+(EB)-1], i.e . the weighted average of the two tolerances . 

It is natural to assume the updated tolerance for an output point is also computed from the 
respective maximum, minimum, or average of the tolerances . One could easily expect the 
first possibility of using the maximum of the two tolerances is violated by inspection of 
figure 4. Less obvious is the fact that using a weighted average as a shrouding criteria and 
then updating the tolerances also will violate the creep criteria for certain input data . We do 

29 1 



������

notprove this, but have found this to be the case from running several tests with randomly 
generated data sets . Rather, we will set out to prove that a lower bound using the minimum 
tolerance as a separation criteria may be achieved . From empirical testing we could find no 
test case that violated this condition when merging epsilon points in the most compact way. 

Thus, this paper proposes that coincidence of epsilon points may be solved in a consistent 
way to satisfy the following geometrical criteria; 

1 . An input point cannot be moved more than its epsilon tolerance to merge with an 
an output point, i.e . if `A' is moved to `B' then the distance d(A,B) <EA . 

2. Epsilon points in the output set are separated by a minimum distance, this lower 
bound is determined by pairwise comparisons to be the minimum epsilon
tolerance, i.e . output epsilon points `A' and `B' are separated by at least the 
distance minimum(F-A ,F-B) . 

3. When two epsilon points are merged a new point center is located at their mean 
position, and a new tolerance is computed as the minimum of the two epsilon
tolerances, i.e . if epsilon points `A' and `B' are merged then 
£AB=minimum(EA,EB) . 

We have found that these are the only feasible conditions that may be met for 
unambiguously solving point coincidence . To show this, we first re-state the point 
coincidence problem in a more formal way. We use concepts from graph theory to solve 
for point coincidence as a graph location problem. We then prove that the three conditions 
stated above are satisfied . 

A MODELFORPOINTCOINCIDENCE 

To prove the minimum separation criteria is valid for all inputs we need to define the 
properties of output points that satisfy the point coincidence relations. The best way to 
describe this problem, and its solution, is as a point clustering problem. Hartigan [1975] 
describes clustering as the `grouping of similar objects' . In our case the objects are points 
with their associated tolerance, and they are grouped to new centers that satisfy the 
coincidence relations. The clustering is also chosen to maximize the separation criteria by 
stipulating that point coincidences minimize some measure of dissimilarity . Hartigan 
describes several dissimilarity measures, one popular method is to group the elements in a 
way that minimizes the spread of points in each group. Minimizing the spread is interpreted 
as minimizing the sum of the squared lengths from cluster points to their center . This is 
called a sum-of-squared-error clustering [Duda and Hart 1973] . 

The P-median Location Problem 
The sum-of-squared-error clustering is closely related to finding the medians of a graph, 
this is called the p-median problem [Christofides 1975] . The Euclidean p-median problem 
is described in the following way. Given a set X={pl, P2>.., Pn} of n points (x,y), find a 
set X' of mpoints ' ' pm} so as to minimize the expression ;{P1~ p2 , . ., p'MI 

min {
<m l l pr - pill } (1) 

where ILII designates the metric distance between point centers . 

Intuitively, we wish to minimize the sum of the radii that enclose points of X by circles 
located at centers ofX' . We also refer to the points ofX' as cluster centers. 



������

Thep-median problem has some nice set-theoretic implications . The set of points from X 
associated with a cluster center define a set-covering of X. The points of X are grouped 
into sets X1,..,Xm according to way the circles located at cluster centers ofX' cover points 
in X. These are called the covering sets, such that ; 

m 
U Xr=X (2)
i=1 

In addition the sets X1, ..,Xm are pair-wise disjoint . This is called a set-partitioning of X, 
such that ; 

Xi n Xj =0, 'Vi,jE { l, . .,m } 

These set-theoretic properties are used to define point coincidences in a consistent way. We 
will adapt the p-median problem to deal with epsilon points . We now re-state the problem, 
and call it a distance constrained p-median problem. 

Constrained Clustering 
The distance constrained Euclidean p-median problem is described in the following way. 
Given a set X={p1, p2, . ., Pn) of n epsilon points (x,y,£), find a set X' of epsilon points 
{ pl, p2 , . ., pin } where myz so as to minimize the expression ; 

min 
<m I lip,'-pill }, lip' -pill <Fi (4a) 

and 

II pr - p's II < minimum s), `dr,SE { 1, ..,m) (4b) 

where ILII designates the metric distance between epsilon point centers . 

As in (1) we are minimizing the sum of the radii that enclose points ofX by circles located 
at cluster centers of X". But equation (4a) requires the distance between a cluster center pr 
and an input point pi is constrained to be less than the epsilon tolerance F-i for that point. 
Equation (4b) additionally stipulates that a minimum separation is maintained between 
clusters centers. 

Notice that a variable number of cluster centers rn<n is permitted . The problem now 
resembles a clustering procedure rather than a graph location problem, for this reason we 
refer to the solution of the distance constrained Euclidean p-median problem simply as a 
constrained clustering. The lower limit to the number of cluster points in is determined by 
the minimum number of points that will define a set-covering of X based upon equation 
(4b) . The number ofclusters is given by the solution set that satisfies both conditions . 

The constrained clustering defines a set-partitioning of X. Each epsilon point of X is 
clustered to the nearest cluster point from the set X" . So any two points pi,pj clustered 
together are considered part of the same equivalence class based on the relation pi is­
coincident-to pj . Since coincidence is an equivalence relation then by definition the relation 
is reflexive, symmetric and transitive . This property is used to avoid the inconsistencies 



�����������

found in naive algorithms for comparing points. 

Proof of Constrained Clustering Conditions 
We need to prove a constrained clustering fulfills the three geometrical conditions stated in 
the last section . These conditions will be defined in terms of a clustering procedure to 
decide point coincidence relations on a set of epsilon points . 

Definition . Given a set of epsilon points X={p1, p2 , . ., Pn} we partition X into subsets 
X1,..,Xm. Each subset Xk defines a cluster set with a representative point pk chosen as the 
cluster center, the set of in cluster centers is denoted as the set X" . The relation between 
the epsilon points in the sets X and X' is called a constrained clustering when the following 
conditions are satisfied ; 

1 . II pi - pi II <F; (from eq . 4a) 

2. min { II pr - pi II }, II pr - pi II < Ei 4a)�(fromeq. 
i=1 

<m 

3 . II pr - p's il < minimum s), dr,sE { 1, . .,m } (from eq . 4b) 

Proof. Lets assume a constrained cluster exists satisfying conditions 1 and 2. For now 
lets disregard condition 3, and allow clusters to be separated by less than the minimum 
tolerance . Without loss of generality, assume there are two cluster centers pi,psE X' which 
are separated by a distance less than minimum(~.,Es) . There must also exist extreme' 
points belonging to the cluster sets piE Xr, p.iE XS which lie within the distance 
minimum(ir,E,) to one another. Since these points are within the minimum tolerance to one 
another they are free to group together without violating condition 1, and form a new 
cluster with a smaller diameter . Therefore, there must be another way of clustering the 
points which gives a smaller sum of lengths between cluster centers and points from X. 
This violates condition 2, and to avoid the contradiction we conclude condition 3 must be 
true . 

a) Move B' closer to `A' b) `A' and ̀ B' within c) Re-clustering to satisfy 
minimum tolerance minimum diameter clusters 

Figure 5. Demonstrates proof of constrained clustering 

As an example we can examine the arrangement of points shown in figure 5. Diagram a) 
shows two clusters that satisfy conditions 1-3 . We examine the effect of moving the two 

'Extreme points are the points on theconvex hull ofa set of points [Preparata and Shamos 19851 

294 



clusters closer together, until in diagram b) they are separated by less than their minimum 
tolerances. It is evident that the points could be re-clustered to obtain a more compact 
cluster with a smaller sum oflengths between cluster centers and input points, as shown in 
diagram c) . 

This means we can place an upper bound on the distance points can be moved, and a lower 
bound on the separation between final point centers. Even more importantly, we have 
defined the coincidence relation based upon the constrained clustering . Points that belong to 
the same cluster (Pi,PjEXr) are coincident, otherwise they are non-coincident. By using 
this set membership relation to test for point coincidence we satisfy the transitivity rules and 
avoid inconsistencies. 

CONCLUSION 

This paper has examined how a tolerance paradigm is used in geometrical algorithms . Each 
point is assigned a tolerance and is referred to as an epsilon point. The tolerance paradigm 
determines what epsilon points are coincident, and subsequently merges them . In 
determining coincidences certain geometrical properties are desired ; these are i) creep to 
prevent input points from drifting too far, and ii) shrouding to maintain some separation 
between points . The paper focuses on a way to test for coincidence of epsilon points with 
multiple epsilon tolerances, and several solutions are discussed. We found one solution that 
uses a clustering approach to merge epsilon points is a suitable model for point 
coincidence. 

The problem of clustering epsilon points, which we named constrained clustering, is 
described using set-theoretic principles from graph location theory . We describe a variation 
of the Euclidean p-median problem which constrains the distances between points to satisfy 
the two geometrical criteria for creep and shrouding. Using this approach, point 
coincidence is defined as an equivalence relation over a set of epsilon points . This allows 
us to make set-theoretic conclusions about epsilon points. For instance, we can now 
unambiguously say that if (PI is-coincident-to P2) and (P2 is-coincident-to P3) implies (P1 
is-coincident-to P3). 

Being able to cluster epsilon points and guarantee geometrical properties has beneficial 
consequences for designing a multi-tolerance overlay algorithm . It provides verification 
conditions that is used in a correctness proof for the map overlay algorithm [Pullar 19911. 

Another implication of these results is that to obtain upper and lower bounds for creep and 
shrouding we must solve a geometric location problem. The Euclidean p-median problem 
has a complexity classed as NP-hard, and even an approximate solution requires an 
efficient clustering algorithm [Megiddo and Supowit 19841. 

REFERENCES 

Chrisman N., 1983, Epsilon Filtering: A Technique for Automated Scale Change . 
Proceedings 43rdAnnual Meeting (~fACSM: p.322-331 

Christofides N., 1975, Graph Theory: An Algorithmic Approach . Academic Press. 

Duda R., and Hart P., 1973, Pattern Classification and Scene Analysis . Wiley
Interscience . 



Fang S. and Bruderlin B., 1991, Robustness in Geometric Modeling - Tolerance-Based 
Methods. Proceeding International Workshop on Computational Geometry CG'91, 
Switzerland, Lecture Notes in Computer Science, #553, Springer-Verlag, Editors 
H.Beeri and H.Noltemeier. p.85-102 

Hartigan J.A ., 1975, Clustering Algorithms. Wiley, New York. 

Megiddo N., and Supowit K., 1984, On The Complexity Of Some Common Geometric 
Location Problems. SIAM Journal ofComputing 13(1): p.182-196 

Milenkovic V.J ., 1989, Verifiable Implementations Of Geometric Algorithms Using Finite 
Precision Arithmetic . In : Geometrical Reasoning, editors D. Kapur and J. Mundy,
MIT Press, Pennsylvania. 

Preparata F.P . and Shamos M.I., 1985, Computational Geometry. Springer-Verlag, New 
York . 

Pullar D.V., 1991, Spatial Overlay with Inexact Numerical Data, Proceedings Auto-Carto 
10, Baltimore. p.313-329 

Segal M., 1990, Using Tolerances to Guarantee Valid Polyhedral Modeling Results. 
Proceedings SIGRAPH: p.105-114 




