
FROM COMPUTER CARTOGRAPHYTO SPATIAL VISUALIZATION:

ANEWCARTOGRAMALGORITHM

BIBLIOGRAPHICSKETCH

Daniel Dorling currently holds a British Academy Fellowship at the University ofNewcastle upon Tyne.
His research interests include studying the geography of society, politics and housing, visualization,
cartography and the analysis of censuses . After the completion of his PhD (entitled 'the visualization of
spatial social structure') in 1991, he was awarded a Rowntree Foundation Fellowship. He graduated from
Newcastle University in 1989 with a first class degree in Geography, Mathematics and Statistics .

Daniel Dorling

Department ofGeography

University of Newcastle upon Tyne

England, NE1 7RU

ABSTRACT

Computer cartography is developing into spatial visualization, in which researchers can choose
what they wish to see and how they wish to view it. Many spatial distributions require new
methods of visualization for their effective exploration. Examples are given from the writer's
work for the preparation of a new social atlas of Britain, which not only uses new statistics but
employs radically different ways of envisioning information to show those statistics in a new
light - using area cartograms depicting the characteristics of over ten thousand neighbourhoods
simultaneously.

INTRODUCTION

Suppose that one could stretch a geographical map so that areas containing many
people would appear large, and areas containing few people would appearsmall . .

Tobler, 1973, p.215

Suppose, now, that one could stretch a geographical map showing the characteristics of
thousands of neighbourhoods such that each neighbourhood became visible as a distinct entity.
The new map would be an area cartogram (Raisz 1934). On a traditional choropleth map of a
country the shading of the largest cities can be identified only with difficulty. On an area
cartogram every suburb and village becomes visible in a single image, illuminating the detailed
geographical relationships nationally . This short paper presents and illustrates a new algorithm
to produce area cartograms that are suitable for such visualization; and argues whycartograms
should be used in the changing cartography of social geography.

Equal population cartograms are one solution to the visualization problems of social geography.
The gross misrepresentation of many groups of people on conventional topographic maps has
long been seen as a key problem for thematic cartography (Williams 1976). From epidemiology
to political science, conventional maps are next to useless because they hide the residents of
cities while massively overemphasising the characteristics of those living in the countryside
(Selvin et a11988). In mapping social geography we should represent the population equitably.

Visualization means making visible what can not easily be imagined or seen. The spatial
structure of the social geography of a nation is an ideal subject for visualization as we wish to
grasp simultaneously the detail and the whole picture in full . A population cartogram is the
appropriate base for seeing how social characteristics are distributed spatially across people
rather than land . Although the problems of creating more appropriate projections have emerged
in many other areas of visualization (see Tufte 1990, Tukey 1965).

208

THEALGORITHM

Cartograms have a longer history than the conventional topographic maps of today, but only in
the last two decades have machines been harnessed to produce them (see for instance Tobler
1973, Dougenik et al 1985). Most cartograms used today are still drawn by hand because the
cartographic quality of automated productions was too poor or could not show enough spatial
detail. Akey problem for visualization is that the maintenance of spatial contiguity could result
in cartograms where most places were represented by strips of area too thin to be seen. This
paper deals with non-continuous area cartograms (following Olson 1976) where each place is
represented by a circle . The area of each circle is in proportion to the place's population and each
circle borders as many of the place's correct geographical neighbours as possible (see Haro 1968).

The Pascal implementation of the algorithm is included as an appendix so that detailed
cartograms can be produced for countries other than Britain . The algorithm begins by
positioning a circle at the centroid of each place on a land map and then applies an iterative
procedure to evolve the desired characteristics. All circles repel those with which they overlap
while attracting those with whom they share a common border . Many more details are given in
Dorling (1991) . Figure 1 shows the evolution of a cartogram of the 64 counties and regions of
Britain using this algorithm - the areas, as circles, appear to spring into place. Figures 2 to 6
illustrate various graphical uses to which the cartogram can be put, ranging from change and
flow mapping, to depicting voting swings by arrows or the social characteristics of places with a
crowd of Chernoff faces (the cartogram is also useful when animated, see Dorling 1992).

The true value of this new algorithm is not in producing cartograms of a few hundred areas, as
manual solutions and older computer programs can already achieve this. Aprojection has never
been drawn before, however, which can clearly make visible the social structure of thousands of
neighbourhoods on a few square inches of paper. Figures 7 and 8 use an equal land area map to
show administrative boundaries while Figures 9 and 10 show the same boundaries on a
population cartogram. Each of the ten thousand local neighbourhoods (called wards) are visible
on the cartogram and there is enough space to name the cities which can only be shown by dots
on a conventional mapof British counties.

Figures 11 and 12 show the ward cartogram being used to illustrate the spatial distribution of
ethnic minorities in Britain . On the ward map it appears that almost everyone is white, with the
most significant feature being two ghettos in the mountains of Scotland . This map is completely
misleading, as are all maps of social geography based on an equal land area projection . Most
people in Britain live in neighbourhoods which contain residents belonging to ethnic minorities .
Their most significant concentrations are in Birmingham, Leicester, Manchester, Leeds and three
areas of London, where "minorities" comprise more than a quarter of some inner city
populations . Conventional maps are biased in terms of whose neighbourhoods they conceal.

The new algorithm has been used to create cartograms of over one hundred thousand areal
units. To show social characteristics effectively upon these requires more space than is available
here and also the use of colour (see Dorling 1992). Figures 13 and 14 have used such a cartogram
as a base to illustrate the spatial distribution of people in Britain following the method used by
Tobler (1973) for the United States. Once a resolution such as this has been achieved, the
cartogram can be viewed as a continuous transform and used for the mapping of incidences of
disease or, for instance, the smooth reprojection of road and rail maps. At the limit-were each
areal unit to comprise of the space occupied by a single person - the continuous and
non-continuous projections would become one and the same.

Population area cartograms illuminate the most unlikely of subjects . Huge flow matrices can be
envisioned with ease using simple graphics programming. Figure 15 shows over a million of the
most significant commuting flows between wards in England and Wales. The vast majority of
flows are hidden within the cities . Figure 16 reveals these through reprojecting the lines onto the
ward cartogram. On the cartogram movement is everywhere and so the map darkens with the
concentration of flows. just as all that other commuters can see is commuters, so too that is all
we can see on the cartogram. Equal population projections are not always ideal.

The algorithm used to create these illustrations is included as a two page appendix. The author
hopes that it will be used by other researchers to reproject the maps of othercountries - using the
United States's counties or the communes of France for example. The program requires the
contiguity matrix, centroids and populations of the areas to be reprojected. It produces a
transformed list of centroids and a radius for the circle needed to represent each place (its area
being in proportion to that place's population). The cartograms shown here were created and
drawn on a microcomputer costing less than $800 .

CONCLUSION

The creation and use of high resolution population cartograms moves computer cartography
towards spatial visualization . The age old constraints that come from conventional projections
are broken as we move beyond the paper map to choose what and how we wish to view the
spatial structure of society (Goodchild 1988). Conventional projections are not only uninform
ative, they are unjust -exaggerating the prevalence of a few people's lifestyles at the expense of
the representation of those who live inside our cities, and hence presenting a bias view of society
as a whole. If we wish to see clearly the detailed spread of disease, the wishes of the electorate,
the existence of poverty or the concentration of wealth, then we must first develop a projection
upon which such things are visible. The algorithm presented here creates that projection .

REFERENCES

Dorling, D. (1991) The visualization of spatial social structure, unpublished PhD thesis,
Department of Geography, University of Newcastle upon Tyne .

Dorling, D. (1992) Stretching space and splicing time : from cartographic animation to interactive
visualization, Cartography and Geographic Information Systems, Vo1.19, No.4, pp.215-227,
267-270.

Dougenik, J.A ., Chrisman NR . & Niemeyer, D.R. (1985) An algorithm to construct continuous
area cartograms, Professional Geographer, Vol.37, No .1, pp.75-81 .

Goodchild, M.F. (1988) Stepping over the line: technological constraints and the new
cartography, The American Cartographer, Vo1.15, No .3, pp.311-319 .

H1r6, A.S. (1968) Area cartograms of the SMSA population of the United States, Annals of the
Association of American Geographers, Vo1.58, pp.452-460 .

Olson, J. (1976) Noncontiguous area cartograms, The Professional Geographer, Vo1.28,
pp.371-380 .

Selvin, S., Merrill, D.W., Schulman, J., Sacks, S., Bedell, L. &Wong,L. (1988) Transformations of
maps to investigate clusters of disease, Social Sciences in Medicine, Vo1.26, No.2, pp.215-221 .

Raisz, E. (1934) The rectangular statistical cartogram, The Geographical review, Vol.24,
pp.292-296.

Tobler, W.R . (1973) Acontinuous transformation useful for districting, Annals of the NewYork
Academy ofSciences, Vol.219, pp.215-220 .

Tufte, E.R. (1990) Envisioning information, Graphics Press, Cheshire, Connecticut.

Tukey, J.W . (1965) The future process of data analysis, Proceedings of the tenth conference on
the design of experiments in army research development and testing, report 65-3, Durham NC.,
USarmy research office, pp.691-725.

Williams, R.L. (1976) The misuse of area in mapping census-type numbers, Historical Methods
Newsletter, Vol-9, No4, pp.213-216 .

����������

0

C,y, UC aN+ N >>~ O U O yb.C N
Th NC
N

v U O G
0 B
eo ~ d0 N.' 'O 3 y °
s .J-- $,' '~

~ yE ~ 0.3U

ao

c-cE
 e, o ~ ,o E

v.. E 3 U ..U. U N > cd
O .y :9 O .~ t3 TL O t .-

0
�c ~ oyE ~ D. C ~ v C ~ ~ O.L U

E v E ° ~ .a' ~ 3
> .h

n
dw0

0

213

����������

'£ caN

N °C U .OC
of ~ N y 'C~ C Ob
O ~, Oq

.O ~ O b=d .E
O O ..M cb ~ ~ N~ ~ 28-8

d sr O '.
7v

" ~ N W H , ° p

° '° " oeo 3 ~3 ° u
~cA.o . uu ~u41

en °° ug .~o ~ c 'c a.

�

3c`°

C. r yl

~~Ws c

,o ~ c N .o

o°~'~ 3~~.uop,o~
0

o o h ~

O v _ ~ .- 3 >N 3 O
° E o .= c c

3 C cd A

= t O

����

x

Appendix: Cartogram Algorithm
Being distributed for free academicuse only.

Copyright: Daniel Dorling,1993

program cartogram (output) ;

(Pascal implementation of the cartogram algorithm)

(Expects, as input, a comma-separated-value text
file giving each zone's number, name, population,
and y centroid, the number of neighbouring zones

and the number and border length of each neighbouring
zone . .Outputs a radius and new centroid for each zone

The two recursive procedures and a tree structure are
include to increase the efficiency of the program.)

(Constants are currently set for the 10,444 1981 census
wards of Great Britain and for 15,000 iterations of the
main procedure- exact convergence criteria are unknown .
Wards do actually converge quite quickly - there
are no problems with the zlgorithm's speed -
it appears to move from O(n2) to 0(n log n)
until other factors come intc play when n
exceeds about 100,000 zones.)

const
iters = 15000;
zones = 10444 ;
ratio = 0.4 ;
friction = 0.25;
pi 3.141592654 ;=

type
vector = array (} . .zones) of real ;
index = array [} . .zones] of integer ;
vectors = array [l . .zones, 1. .21] of real ;
indexes = array [} . .zones, 1. .21] of integer ;
leaves =record

id : integer;
xpos : real ;
ypos : real;
left : integer;
right : integer;

end;
trees = array [l . .zonesl of leaves ;

var
infile, outfile : text;
list : index;
tree : trees;
widest, diet : real ;
closest, overlap : real ;
xrepel, yrepel, xd, yd : real ;
xattract, yattract : real ;
displacement : real ;
atrdst, repdat : real ;
total_dist : real ;
total_radius, scale : real ;
xtotal, ytotal : real ;
zone, nb : integer ;
other, fitter : integer ;
end_pointer, number : integer ;
x, y : index;
xvector, yvector : vector ;
perimeter, people, radius : vector ;
border : vectors ;
nbours : index;
nbour : indexes ;

(Recursive procedure to add global variable "zone" to)
(the "tree" which is used to find nearest neighbours)
procedure add_point(pointer,axis :integer) ;

begin
if tree[pointer] .id = 0 tfii

begin
treelpointer] .id .= zone,

tree[pointerl .left := 0;[
tree pointer right 0;

tree[pointer) .xpoa := -,,one';

tree[pointer) .ypos := y[zone] ;

end

else

if axis = 1 then

if x[zone] >= tree[pointer].xpos then

begin

if tree [pointer].left = 0 then

begin
end_pointer := end-pointer +1 ;
tree[pointer].left := end_pointer;

end;
add_>oint(treelpointerl .left,3-axis) ;

end
else
begin

if tree[pointer] .right = 0 then
begin

end_pointer := end_pointer +1 ;
tree[pointer) .right := end-pointer;

end;
add_>oint(tree[pointer] .right,3-axis) ;

end
else

if y[zone] >= tree[pointer] .ypos then
begin

if tree[ointer]left = 0 thenp
begin

end_pointer := end pointer +1 ;
tree[pointer] .left := end_pointer;

end;
add_point(tree[pointer] .left,3-axis) ;

end
else
begin

if tree[pointer] .right 0 then=
begin

end_pointer := end_pointer +1 ;
tree[pointer] .right := end_pointer;

end;

add_point(tree[pointerl .right,3-axis) ;

end

end;

(Procedure recursively recovers the 'list" of zones)
(within 'diet" horizontally or vertically of the
(from the 'tree" . The list length is given by the integer}
("number" . All global variables exist prior to invocation)
procedure get_pcint(pointer, axis :integer);

begin

if pointer>0 then

if tree[pointerl .id > 0 then

begin

if axis = 1 then

begin

if x[zone]-dist < tree[pointer] .xpos then

get_point(tree[pointer] .right,3-axis) ;

if x[zone]+dist >= tree[pointer] .xpos then

get_>oint(tree[pointer] .left,3-axis);

end;

if axis = 2 then

begin

if y[zone]-dist < tree[pointer] .ypos then

get_>oint(tree[pointer] .right,3-axis) ;

if ylzone]+diet >= tree[pointerl.ypos then

get_point(tree[pointer] .left,3-axis) ;

end;
if (x[zone]-dist < tree[pointer] .xpos)

and (x[zone]+dist>=treelpointer] .xpos) then
if (y[zone]-dist < tree[pointerl .ypos)

and(y[zone]+dist>=tree(pointer] .ypos) then
begin

number := number +1 ;
list[number] := tree[pointerl .id;

end;
end;

end;

��

(The main program)

begin
 _

reset(infile,'FILE=ward .in') ;
rewrite(outfile,'FILE=ward .out') ;
total dist :=0;

totalradius := 0;

for zone := 1 to zones do
begin
read(infile,people[zone],x[zone),y[zone],nbours(zonel) ;
perimeter[zone] := 0;
for nb := 1 to nbours[zone) do
begin

read(infile,nbour[zone,nb], border[zone,nb]) ;
perimeter[zone):=perimeter[zone]+border[zone,nb) ;
if nbour[zone,nb] > 0 then
if nbour[zone,nb] < zone then
begin

xd := x[zone]- x[nbour[zone,nbl] ;
yd := y[zone]- y[nbour[zone,nb]] ;
total_dist := total_dist + sgrt(xd*xd+yd*yd) ;
total_radius := total_radius +

sgrt(people[zone]/pi)+sgrt(people[nbour[zone,nbj]/pi) ;
end;

end;
readln(infile) ;

end;
writeln ('Finished reading in topology') ;

scale := total diet / total radius ;

widest := 0;

for zone := 1 to zones do

begin

radius[zone] := scale * agrt(people[zone]/pi) ;

if radius[zone] > widest then

widest := radius[zone] ;

xvector[zone] := 0;

yvector[zone] := 0;

end;

writeln ('Scaling by ',scale,' widest is ',widest);

{Main iteration loop of cartogram algorithm.)

for itter := 1 to iters do

begin

for zone := 1 to zones do

tree[zone] .id := 0;

end-pointer := 1 ;

for zone := 1 to zones do

add_point(1,1) ;

displacement := 0.0 ;

(Loop of independent displacements- could run in parallel .)
for zone := 1 to zones do
begin

xrepel .= 0.0 ;

yrepel .= 0.0 ;

xattract := 0.0 ;

yattract := 0.0 ;

closest := widest ;

(Retrieve points within widest+radius(zone) of "zone")

(to "list" which will be of length "number" .)

number := 0;

dist := widest + radius[zone] ;

get_point(1,1) ;

(Calculate repelling force of overlapping neighbours .)
if number > 0 then

for nb := 1 to number do

begin

other := list(nb] ;

if other <>
 zone then
begin
xd := x[zone]-x[other] ;
yd := y[zone]-y(other) ;
dist := sqrt(xd * xd + yd * yd);
if dist < closest then
closest := diet ;

arerl~:=radius[zone]+radius[other]-diet ;
it overlap > 0.0 then
it dist > 1 .0 than
bagis
xrepel :=xrepel

overlap*(x[other)-x[zone))/dist ;
yrepel :-yrepel

overlap*(y[other]-y[zone])/dist ;

+ids

{Calculate forces of attraction between neighbours .)

for nb :- 1 to nbours(zone] do

beqis
other :- nbour[zone,nb] ;
if other <> 0 then
begin

xd := x[zone]-x[other) ;
yd := y[zone]-y[other] ;
dist := sqrt(xd * xd + yd * yd) ;
overlap:=dist-radius[zone]-radius[other] ;
if overlap > 0.0 then
begin
overlap := overlap*

:=xattracte~nb]/perimeter[zone] ;
xattract

other]-x[zone])/diet;
yattract =yattract`

°verlap*(y[other]-y[zone])/diet;
end;

end;
and;

(Calculate the combined effect of attraction and repulsion.]
atrdst := sgrt(xattract*xattract+yattract*yattract) ;
repdst := sgrt(xrepel*xrepel+yrepel*yrepel) ;
if repdst > closest then
begin
xrepel := closest * xrepel / (repdst + 1) ;
yrepel := closest * yrepel / (repdst + 1) ;
repdst := closest;

end;
if repdst > 0 then
begin
xtotal :=(1-ratio)*xrepel+

ratio*(repdst*xattract/(atrdst+l)) ;
ytotal :=(1-ratio)*yrepel+

ratio (repdst yattract/(atrdst+l)) ;
end

else
begin
if atrdst > closest then
begin

xattract := closest*xattract/(atrdst+l) ;
yattract := closest*yattract/(atrdst+l) ;

and,
xtotal := xattract ;
ytotal := yattract ;

end;
(Record the vector .)

xvector[zone):= friction *(xvector[zone)+xtotal) ;
yvector[zone]:= friction *(yvector[zone]+ytotal) ;
displacement := displacement+

sgrt(xtotal*xtotal+ytotal*ytotal) ;
end;

(Update the positions .)
for zone := 1 to zones do
begin

x[zone) := x[zone] + round(xvector[zone]) ;
y[zonej := y[zone] + round(yvector[zone]) ;

end;
displacement := displacement / zones;
writeln('Iter: ', iter, ' disp : ', displacement) ;

end;
(Having finished the iterations write out the new file .)

for zone := 1 to zones do
writeln(outfile,radius[zone] :9 :0,',',x(zone] :9,

,',y[zoneJ :9) ;
end.

