
����

Implementing GIS Procedures on Parallel Computers : A Case 
Study 

James E . Mower
 
Department of Geography and Planning
 

147 Social Sciences
 
State University of New York at Albany
 

Albany, New York 12222
 
jmower@itchy .geog .albany.edu
 

ABSTRACT
 

The development of efficient GIS applications on parallel 
computers requires an understanding of machine 
architectures, compilers, and message passing libraries . 
In this paper, the author compares performance statistics 
for implementations of drainage basin modeling, hill 
shading, name placement, and line simplification 
procedures under control-parallel and data-parallel 
approaches . The suitability of each approach and its 
message passing strategies are discussed for each 
application . The paper concludes with caveats for the 
developer concerning the current state of parallel 
programming environments . 

INTRODUCTION 

Parallel computing tools are being increasingly exploited 
by the GIS community for tasks ranging from line 
intersection detection (Hopkins, S ., R.G . Healey, and T.C. 
Waugh 1992) to the development of network search 
algorithms (Ding, Y., P.J . Densham, and M.P . Armstrong 
1992) . GIS professionals who turn to parallel computers 
for fast solutions to large computing problems are 
confronted with an array of architectural designs not 
encountered in sequential computing . Choosing an 
inappropriate parallel architecture or computing model can 
result. in little or no performance benefits over a modern 
sequetial computer . This paper will illustrate the 
suitability of various parallel computing models for GIS 
applications by examining the performance characteristics 
of code written by the author for : 

1) drainage basin analysis, 
2) analytical hill shading, 
3) cartographic name placement, and 
4) line simplification . 

It will show that the appropriate selection of a parallel 
computing architecture and programming environment is 
essential to the visualization and efficient solution of 
the problem . 

The differing computational demands of each problem domain 
highlight the strengths of competing parallel
architectures . The name placement procedure, making 
extensive use of general interprocessor communication 
services, is contrasted with the hill shading procedure 
that uses simple grid communication facilities . Two 
procedures based on the Douglas line simplification 

424 



�

algorithm (Douglas and Peucker 1973), one written as a 
control-parallel procedure and the other as a data-
parallel procedure, show the relative costs of message
passing on multiple instruction stream, multiple data 
stream (MIMD) computers and on single instruction stream,
multiple data stream (SIMD) computers . 

The procedures described in this paper were implemented on
Thinking Machines CM-2 and CM-5 computers . The CM-2 is a
true SIMD computer, consisting of up to 64K bit-serial 
processors connected by hypercube and grid communication
networks . The CM-5 is a synchronous-asynchronous multiple
data (SAMD) computer, capable of operating in both 
control-parallel and data-parallel modes . The name 
placement procedure was implemented on a CM-2 : all the 
other procedures were implemented on a CM-5 . 

Where appropriate, performance statistics are provided to
show the consequences of making specific design choices .
Particular emphasis will be given to the performance of 
the control-parallel and data-parallel variants of the 
Douglas algorithm, both running on the CM-5 . 

If a programming environment lacks a-structure for stating
clear solutions to a class of problems, attaining marginal
increases in performance may be inconsequential to the 
developer . Comparisons of the Douglas implementations
will show that the control-parallel model better captures
the elegance of the sequential algorithm. 

MACHINE ARCHITECTURES AND PROGRAMMING MODELS 

This paper will examine the procedures in the context of 
SIMD and MIMD architectures . SIMD machines support data-
parallel programming. Under this approach, a control or 
front-end processor broadcasts instructions to a parallel 
processor array . All processors in the array operate
synchronously, each executing or ignoring the current 
instruction, depending upon the state of its local data . 
The data-parallel procedures described here are 
implemented in the C* programming language, a superset of 
ANSI C with data-parallel extensions . 

MIMD machines allow processors to run asynchronously on 
their own instruction stream . In a master-worker control-
parallel model, each worker processor runs an identical 
copy of a program as if each were a separate computer,
exchanging data with the master through message passing 
operations . Because the instruction streams are 
independent, the rate at which each worker executes its 
instructions is determined by the length of its data 
stream (Smith 1993) . 

Workers notify the master processor when they are ready to
receive new work or when they are ready to send completed
work. During a cooperative or synchronous message
passing operation, the receiving processor remains idle 
until the sending processor is ready to pass its message . 



������

IMPLEMENTING THE PROCEDURES 

Drainage basin modeling and hill shading 

The data-parallel drainage basin and hill shading 
procedures map elevation samples in a U.S .G .S . 1 :24,000 
series DEM to processors arranged in a 2-dimensional grid . 
The procedures execute the following computations : 

1) removal of most false pits through elevation 
smoothing,

2) calculation of slope and aspect to determine 
cell drainage direction, 

3) propagation of drainage basin labels, 
4) removal of remaining false pits through basin 

amalgamation, 
5) location of stream channels through drainage 

accumulation, and 
6)	 calculation of hill shaded value from cell slope 

and aspect and light source azimuth and 
altitude . 

To take full advantage of a SIMD machine, a data-parallel 
program must execute instructions on all of the array 
processors, and hence on all of its input simultaneously . 
For drainage basin analysis and hill shading, Mower (1992) 
shows that steps 1, 2, and 6 meet this criterion. 
Typically, though, many data-parallel procedures operate 
on a subset of the processors over any particular
instruction . Steps 3, 4, and 5 all require that values 
propagate away from a set of starting cells . In steps 3 
and 4, drainage basin labels propagate away from pits . On 
the first iteration, only processors associated with pits 
are active . On subsequent iterations, progressively 
larger numbers of processors are activated along the 'wave 
front' expanding away from each pit : cells that were 
active on the previous iteration become inactive (Figure 
1) . 

Figure 1 .	 Processors that are active over each iteration 
of step 3 for a 1:24,000 DEM sampled at 30 meter 
intervals . The entire DEM is represented by 
approximately 120,000 processors . 

Step 5 promotes an opposite pattern of activation . On the 
first iteration, each cell starts with one unit of water 
and queries its 8-case neighbors for cells that drain 
toward itself . After accumulating the water supplies of 



the uphill neighbors, the next iteration begins . If a 
cell no longer finds uphill neighbors with a positive
water supply, it becomes inactive . The number of active 
processors gradually declines until the end of the step
when none but those associated with pits are active 
(Figure 2) . 

Figure 2 .	 Active processors over each iteration of the
 
drainage accumulation procedure for the same
 
size window as Figure 1 .
 

Steps 1, 2, and 6 of the data-parallel algorithms for
drainage basin modeling and hill shading are relatively
simple to	 implement on a SIMD machine. They are also
fast-hill shading an entire 1:24,000 DEM requires less
than one second . For each step, the iterative control
loop of a	 sequential implementation is replaced with a
parallel context operator that restricts the computations
to all but the edge cells of the matrix . Operations that
require values from 8-connected neighbors receive them
through fast grid communication functions . Steps 3, 4, 
and 5 are	 harder to implement, requiring that processors
determine their state of activation with respect to their 
local data . 

Operations that refer to a data object larger than the
grid cell are sometimes clumsy or inefficient to
implement . To find the pour point for a drainage basin in 
step 4, cells on the edge of the basin are activated. A
scanning function finds the pour point as the activated
cell with minimum elevation that also drains to a basin
with a lower pit than its own. Finally, cells in the
basin with elevations below the pour point are activated 
to raise them to the level of the pour point in a flooding
procedure . These operations pertain to a small percentage
of the total cells in the DEM, leaving the rest of the 
processors inactive over their duration . 

The author is currently developing a control-parallel
algorithm for drainage basin modeling, using the drainage
basin, rather than the grid cell, as the basic data 
object . This approach applies a standard suite of 
drainage basin modeling procedures to each basin as 
defined initially by its pit . Using a master-worker 
model, the master processor assigns pits to workers as 
they become available. Each worker runs asynchronously on 



its basin, requesting a new basin from the master on 
completion . 

This approach will perform best on large regions
containing many basins . For smaller regions having fewer 
basins than processors, dissimilarities in running time 
among the workers will lead to relatively low efficiency . 
This approach also lacks the elegance of the data-parallel
procedure with regard to steps 1, 2, and 6, ignoring their 
inherent parallel structures . 

Name placement 

The name placement procedure employs a data-parallel model 
equating processors with the locations of populated
places . (Mower 1993a) . These features are distributed 
irregularly across the earth and cannot be represented
efficiently in a two-dimensional array . Instead, their 
processors are represented as a vector . Since the 
position of a processor in the vector array does not 
implicitly represent the geographic coordinates of its 
place, the coordinates must be stored explicitly . 

As the procedure scans the database for places that fall 
within the user's window, it determines the neighborhood
for each place as the total area over which its label 
could be located . Places later compare their 
neighborhoods against one another for intersection . If a 
place finds an overlapping neighborhood, it adds the 
processor identifier of the overlapping place to its list 
of neighbors . Currently, data is read from modified 
U.S .G .S . Geographic Names Information System (GNIS) files 
of populated places for names appearing on 1:24,000 series 
maps . 

For its point symbol and label to occupy non-overlapping 
map locations, each place queries the locations of the 
point markers and labels of its neighbors . Since the 
geographic location of each place is arbitrary with 
respect to the position of its processor in the list, 
interprocessor communication must occur over a general
communication network . Depending upon the topology of the 
network and upon the relative addresses of the processors, 
messages will require varying numbers of steps to reach 
their destination . If messages contend for a limited 
number of network router nodes, the overall time to pass 
them will increase . Therefore, general communication 
functions frequently take longer to perform than do grid
functions, usually requiring one step . 

After querying the user for an input window and map scale, 
the name placement procedure begins by placing all point
features (currently populated places) that fall in the 
user's window onto the map with their labels to the upper
right of their point symbols . Depending on map scale, 
feature density, feature importance, type size, and point
symbol size, a number of feature symbols and labels will 
overlap . Each processor checks the features in its 
neighborhood for overlap conditions . If it finds that its 
label overlaps one or more features of greater importance 



(currently determined as a simple function of population),
it tries moving its own label to an empty position . If no 
such position exists, it tries moving its label to a 
position that is occupied by no features of greater
importance than itself . If that doesn't work, the feature 
deletes itself . All features iterate through this cycle
until no conflicts remain . 

The pattern of processor activation for name placement is 
quite different from those for drainage basin analysis and 
hill shading which are generally similar across data sets . 
The running time of the name placement program varies 
directly with the maximum number of neighbors found by any 
processor . This is a function of map scale-at some very 
large scale, no neighborhoods overlap ; at some very small 
scale, all neighborhoods overlap . As map scale decreases, 
the maximum number of neighbors found by any map feature 
increases, requiring the activation of a greater number of 
processors . The number of active processors and the 
lengths of the neighbor lists decline as overlaps are 
resolved through label movement or feature deletion,
increasing the execution speed of subsequent iterations . 

The author compared the performance of the SIMD version 
implemented on a CM-2 to a functionally equivalent
sequential version running on a Sun Microsystems
SPARCstation 2 . For a 1 :3,000,000 scale map of New York 
State, the SPARCstation required one hour and 25 minutes . 
The same map completed in slightly over 4 minutes on the 
CM-2 . The author also found that the running time of the 
CM-2 version increased linearly at a small constant rate 
with the maximum number of neighbors (as a function of map
scale) of any mapped feature . With a 20 fold increase in 
the maximum number of neighbors, running time increased by 
a factor of only 2 .15 (Figure 3) . 

300 

250

200

P 8 150
100

50

0
0 100 200 300 400 500 

Maximum NumberofNeighbors for Any Place in
 
Window
 

Figure 3 .	 Graph of execution time as a function of the 
maximum number of neighbors for any place on the 
map . 

Line simplification 

The Douglas algorithm for line simplification is 
implemented in both data-parallel and control-parallel
approaches . Under the data-parallel approach, each 
processor represents the vertex of a cartographic line, 
extracted from U.S .G.S . 1 :2,000,000 series DLG files . 

429 



Under the control-parallel approach, copies of a 
simplification procedure run asynchronously on each 
processor. Two versions of this approach are implemented . 
In the first version, each processor is responsible for 
opening a line file, reading its contents, simplifying all 
lines in the file within the user's window, and writing 
the output to a global file . In the second version, a 
master processor performs all input and distributes work, 
segmented by lines, to the next available worker processor 
that requests it . Each worker simplifies its line and 
writes its output to a global file . The master and the 
workers negotiate the distribution of work and data 
through synchronous (cooperative) message passing . 

Under the data-parallel approach, the set of processors 
dedicated to a line are divided into scan sets . A scan 
set consists of processors representing the starting node, 
the ending node, and the vertices between them . A 
processor representing a starting node finds the equation 
of the baseline connecting itself to the ending node . The 
vertex processors calculate their perpendicular distances 
to the baseline . A scanning function on the front-end 
finds the vertex processor in each scan set having the 
greatest calculated distance from its baseline, marking it 
significant if the distance is greater than the user's 
tolerance value . Each significant vertex segments the 
line into new scan sets . The procedure continues until it 
finds no new significant vertices . 

Of the three approaches to line simplification, the first 
is the easiest to implement . It simply applies a 
recursive sequential implementation of the Douglas 
procedure separately to each file that happens to 
intersect the user's window. No message passing is 
required between the master processor and a worker once 
its file is opened and processing begins . For each file, 
the number of lines per unit area and the amount of 
overlap between its region and that of the user's window 
determine the length of its processing time . Given an 
even distribution of lines across the region, files 
overlapping the edge of the user window will finish sooner 
than those in the middle of the window . 

The second approach uses a master-worker strategy to 
balance the workload more evenly across the processors . 
It also runs a recursive sequential implementation on each 
node but segments the data by line rather than by file . 
The master processor polls the workers for any that are 
idle, sending each available worker an individual line to 
simplify . When a worker has completed its line, it writes 
it to a global output file. 

The second approach requires 2 types of messages to be 
sent : 1) a message from a worker announcing that it is 
ready to receive a line for processing and 2) a message 
from the master sending a worker a line to simplify . Both 
messages are passed cooperatively, requiring the receiving 
partner to remain idle until the message originates from 
the sending partner . 



����

Mower (1993b) compares execution times for the data-
parallel and control-parallel approaches to the Douglas
algorithm . The parallel approaches were compared to a 
sequential version built from the control-parallel-by-file
code . To control for differences in operating system
performance, the sequential version was linked to the same
parallel libraries as the control-parallel versions but 
run on a single CM-5 processor. 

Surprisingly, the control-parallel version segmented by
files and the sequential version both performed 
substantially faster than the version segmented by lines .
Although the latter provides better load balancing, it
does so through expensive message passing operations . 
Figure 4 compares the amount of time required to execute 
each version on varying numbers of lines . Except for 
message passing and I/O operations, the source code for 
the three versions are identical . 

Execution Times for main() 

200.00- _
 
segmented by file


180.00 
160.00 - -	segmented by line 

v 140.00 - - sequential i
 
c 120.00

a
U 

20 .00 
0.00 

0 5000 10000 15000 20000 25000 
Total Number of Lines in Window 

Figure 4 .	 Graph of execution times for each of three 
parallel implementations of the Douglas
Procedure . 

Because test results of a data-parallel prototype
implementation gave very slow execution times compared to
the control-parallel prototypes, it was not developed to a
final testing version . The cause for its poor performance
can be attributed mainly to its inefficient use of SIMD 
processors . The prototype implementation processes one
line at a time, leaving the majority of the processors
idle . The procedure would activate a greater number of 
processors if more lines were processed simultaneously but 
would still perform the same number of sequential scans 
over each scan set . It is unclear whether this would lead 
to a substantial improvement in its performance
characteristics . 

CONCLUSION 

This paper has shown the performance benefits and 
liabilities incurred through the application of various 
parallel architectures, programming approaches, and 



�����

message passing strategies to drainage basin modeling, 
hill shading, name placement, and line simplification 
implementations . Specifically, it found that : 

1) data-parallel procedures execute fast when all 
processors are kept active and message passing 
is restricted to grid operations ; 

2) data-parallel procedures may perform slower than 
equivalent sequential procedures when the 
conditions in 1) are not met ; 

3) synchronous message passing operations slow 
execution substantially in control-parallel 
procedures ; and 

4) of the procedures reviewed in this paper, name 
placement and hill shading currently offer the 
best performance improvements over equivalent 
sequential procedures . 

Some observations on parallel programmina 

SAMD machines provide the necessary flexibility for 
implementing the procedures described in this paper, 
offering control-parallel and data-parallel programming 
models under a variety of message passing schemes . At the 
moment, however, some of these tools work better than 
others . The author's experience in the development of 
parallel procedures for GIS applications on the CM-5 has 
led to the following observations on its programming 
environments : 

1) Parallel programming languages and compilers are 
changing rapidly . Modern parallel computers support 
parallel versions of several high-level programming 
languages including C, FORTRAN, and Lisp . A manufacturer 
will generally supply new compilers with new or updated 
platforms . Changes from one version of a compiler to the 
next may require the user to spend many hours debugging or 
optimizing code for the new environment. The author has 
found that the best defense against compiler changes is to 
use the simplest data structures and control structures 
that the language offers . Unfortunately, many of the new 
compilers are actually beta test versions and do not 
perform good code optimization . In that case, the user 
must select those language features that are known to 
compile into the fastest executable code . Expect to 
rewrite your code frequently . 

Sometimes languages themselves change . Early versions of 
the C* programming language implemented by Thinking 
Machines, Inc . looked very much like C++ . After version 
6, the language was completely rewritten and now looks 
much more like standard C . Most of the parallel 
extensions changed completely between versions . 

2) Debugging is difficult . Data-parallel debuggers have 
become much more usable with the introduction of X
Windows-based data visualization tools . Some of these 



�

tools are still limited in their ability to show members 
of parallel structures or elements of parallel arrays . 
Traditional debugging methods using print statements from 
within a program may not be successful in printing values 
of parallel or local variables . As a result, the 
programmer must often resort to indirect techniques such 
as introducing scalar debugging variables within a 
program. 

Control-parallel debugging with print statements is
somewhat easier to perform since the processors run 
standard versions of sequential programming languages . In
this environment, the programmer generally tries to reduce
the amount of debugging output or to simplify it . On a
MIMD machine of 32 processors, the output of a single
print statement in straight-line code would appear 32 
times, once for each copy of the program. For procedures
with large numbers of print statements embedded within
complex control structures, the output of the statements 
can be intermingled, making for confusing reading . 

The relevance of these observations will fade as parallel
programming environments stabilize . With an understanding
of their current limitations, the GIS developer can use 
these tools to bring about large increases in the
performance of spatial data handling procedures . 

REFERENCES 

Ding, Y ., P .J . Densham, and M.P . Armstrong 1992,
Parallel Processing for Network Analysis : Decomposing
Shortest Path Algorithms for MIMD Computers, Proceedings,
5th International Symposium on Spatial Data Handling,
Charleston, pp . 682-691 . 

Douglas, D.H . and T.K . Peucker 1973, Algorithms for the 
Reduction of the Number of Points Required to Represent a
Digitized Line or its Caricature, The Canadian Car
tographer, 10(2) :112-122 . 

Hopkins, S ., R.G . Healey, and T.C . Waugh 1992, Algorithm
Scalability for Line Intersection Detection in Parallel
Polygon Overlay, Proceedings, 5th International Symposium
or. Spatial Data Handling, Charleston, pp . 210-218 . 

Mower, J.E . 1992, Building a GIS for Parallel Computing
Environments : Proceedings, 5th International Symposium on
Spatial Data Handling, Charleston, pp . 219-229 . 

Mower J.E . 1993a, Automated Feature and Name Placement on
Parallel Computers, Cartography and Geographic Information
Systems, 20(2) :69-82 . 

Mower J.E . 1993b (manuscript submitted for review), SIMD
Algorithms for Drainage Basin Analysis . 

Smith, J.R . 1993, The Design and Analysis of Parallel
Algorithms, Oxford University Press, Oxford . 




