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ABSTRACT
 

Square or rectangular grids are extensively used for digital elevation models 
(DEM's) because of their simplicity, their implicit topology and their minimal 
search time for applications . However, their inability to adapt to the variability of 
the terrain results in data redundancy and excessive storage requirements for large 
models . One approach to mitigating this is the use of data compression methods. 
One such method, based on probabilities, is that of Huffman encoding which gives 
error-free data compression . The key idea is the use of a model that predicts the 
data values. The method of Lagrange Multipliers for minimisation of the root 
mean square prediction error has been applied to local geometric predictors and 
compared with the least-squares fitting of quadratic and bilinear surface patches. 
The measure of goodness was the average entropy derived from the differences 
between the actual and predicted elevations . The lower the entropy, the better is 
the prediction method. An optimal 8-point predictor proved better than the fitting 
of polynomial surfaces and gave about a 4% to 7% improvement on a simple 
triangular predictor. 

INTRODUCTION. 

The data redundancy inherent in regular grid digital elevation models (DEMs) can 
be removed by the use of data compression techniques . One common approach is 
to step through the data values in some predefined order and to make a prediction 
of the current value from the previous values . The difference between the 
predicted integer value and the actual value is added to a string of prediction 
errors, which is encoded using a variable length coding technique such as 
Huffman encoding [2] . Error free recovery of the original data can be obtained by a 
reversal of the method. Kidner & Smith [3] proposed a simple triangular predictor 
for use before Huffman encoding. In this paper, we consider a number of 
alternative prediction methods . 

A MEASURE OF COMPRESSION PERFORMANCE 

In general, an estimate of the maximum amount of compression achievable in an 
error-free encoding process can be made by dividing the number of bits needed to 
represent each terrain height in the original source data by a first-order estimate of 
the entropy of the prediction error data . Since there is in general a large degree of 
redundancy in the source data, an accurate prediction process causes a reduction in 
the entropy value due to the probability density function of the prediction errors 
being highly peaked at zero and having a relatively small variance.The 
mathematical definition of entropy is : 
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H=-ZN P(') 1092 P(i) (1) 

where H is the entropy and p(i) is the probability of each data value. So by 
estimating the entropy, one can determine how efficiently information can be 
encoded. 

A METHOD OF MINIMISATION. 

The method of Lagrange Multipliers for determining maxima and minima of a 
function S(x,y z) subject to a constraint condition O(x y z)=0 ; consists of the 
formation of an auxiliary function:­

G(x,y,z) --- S(x,y z)+a 0(x,yz) (2) 

subject to the conditions that aG/ax =0, aG/ay=0, aG/az=0 and aG/aX=0, which are 
necessary conditions for a relative maximum or minimum. The parameter X, 
which is independent of x,y and z, is called the Lagrange multiplier. 
This method has traditionally been used in geostatistical estimation techniques 
such as kriging [1] . 

PREDICTION OF TERRAIN ELEVATION DATA. 

Given a square or rectangular grid of points f (i,j) : i=0,1,. . .,N; j=0,1,. . .,M} we will let 
Z denote Z(i,j), the point being predicted and take Z1= Z(i-1,j), Z2 = Z(i-1,j-1), Z3= 
Z(i,j-1). We use the values of Z 1, Z2,Z3 in a predictor of the form : 

pred(Z)= Nearest Integer { 9121 + 9222+9323 } . (3) 

The greatest compression will be achieved if the entropy of the set of values { Z ­
pred(Z) ; i=1,2,. ..N ; j=1,2,. ..M } is minimised. Although the form of the expression 
for entropy makes minimisation difficult, we can attempt the minimisation 
indirectly as follows: 
(1) Assume that the mean error (Z - (91Z1 + 9222+9323 )) is zero; 
(2) Subject to this constraint, minimise the squares of the errors 

�(S(91,92, 93) = -(Z-41Z1 - 9222- 93Z3)2 4) 

where the summation is over all terrain height values i=1,2, . . .,N; j=1,2, . . .,M. 

:Then S(91,R2,93) becomes

''i) Z2+ y ; 91221 2+', ) 922222+y-ij932Z32 -2ZZ191-2~; j ZZ2ft,2 ­

2 l; j Z Z393 + 2 Z1 Z29192 + 2 Y-i j Z1 Z39193 + 21 i j Z2Z39293 . 

In order that S(91,92,93) be minimised subject to the mean error being zero, we let 

G(91,92,93) = S(91,92,93)"(E ; j Z- 911i j Z1- 921i j Z2- ~L3E ; j Z3) 
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and set the partial derivatives 
ac/a~. :1 , ac/awe , ac/a~.3 , ac/aa to zero; i.e . 

2g1E ; ;j ;j ZlZ2w2 + 2 Yij ZlZ3w3 ->E j Z1 =j Z,2-2Y- ZZ, +2Y- ; 0. 

ZZ2 +2Y- ;2g2Ei j Z22-21ij j ZjZ2g1+2Y;j Z2Z,*3',\E ;j Z2 = 0. 

2~13Ejj Z32 - 2E ; j Z Z3 +2Y- ZlZ391 + 2 Y-ij Z273w2 -,\y-ij Z3 = 0.;j

Y-ijZ - 91Y-ijZ1 - 92Eij Z2 - 93Eij7'3=0 . 

Define the coefficients C as : 

C11 = y; j Z(i-l,j) 2 Y-i j Z('-1,j) x Z(i-l,j-1)�C 12 = 

C13 = Y- ; j Z(i-1,j) x Z(i,j-1) C2 = E; j Z(i-l,j-1) 2 

C23 = Y,; j Z(i-l,j-1) x Z(i j-1) C3 = Ei j Z(i,j-1) 2 

C01 = I; j Z(i,j) x Z(i-l,j) = Y- ; j Z(i,j) x Z(i-1,j-1)C02


C03 = E; j Z(i,j) x Z(i,j-1) = E; j Z(i,j)
C
C1 = Y- j j Z(i-l,j) C= Y-i

j Z(i-1,j-1) 

C = Y-i j Z(i,j-1) . 

The equations reduce to :­

R1C11+R2C12+R3C13+ (-a/2)Cl = Col
 

91C12+ 92C22+93C23+ (-a/2)C2 = C02
 

9JC13+R2C23+93033+ (->,/2)C =C03
 

91C1+92C2+93C3+ (-5,/2).0 = CO .
 

Once all the coefficients C have been calculated, the problem reduces to solving 4 
linear equations in 4 unknowns . The solution vector [gl,g2,g3,-X /21 gives the 
fitting coefficients . The term involving the Lagrange multiplier (a) is not required
in the prediction process. 

The above equations have been set up for predicting a value for a point Z(i,j)
based on 3 nearby terrain heights. The same method can be used for predicting a 
value for the same terrain height from 8 neighbouring heights with solution 
vector [gl, . . .,g8,-5,/21 giving the fitting coefficients to Z(i-1,j), Z(i-1,j-1), Z(i,j-1), 
Z(i-2,j), Z(i-2,j-1), Z(i-2,j-2), Z(i-1,j-2) and Z(i,j-2), which are shown as points 1. . .8 in 
Fig. 1 . 
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Z (i-2,j) Z (i-l,j) Z (i,j) Predicted Point 

4 

Z (i,j-1)5 " 2 3 

Z (i-l,j-1) 

8 

Z (i-2,j-2) Z (i,j-2) 

Fig. 1. 

APPLICATIONTO DIGITAL ELEVATIONMODELDATA. 

In this section we will compare the entropy values for our 3-point and 8-point 
predictors with the triangular predictor of Kidner and Smith [3] which is given by 
pred(Z)= Z0-1j) - Z(i-1,j-1) + Z(i,j-1) . Given a square or rectangular grid the first 
row and column (or first two rows and columns for an 8-point predictor) are 
excluded and the points are scanned column by column starting from Z(1,1) (or 
Z(2,2) for an 8-point predictor) . For each point the prediction is calculated and the 
error pred(Z)-Z is recorded . From the frequencies of these errors, the probabilities 
of the errors and hence the entropy can be calculated. 
We will use two British Ordnance Survey 401x401 Digital Elevation Model grids 
consisting of points sampled at 50 metre intervals accurate to the nearest metre. 
Source data is held on disk as 2-byte integers (16 bits). ST06 is an area of South 
Wales containing sea and land areas to the south and west of Cardiff and ST08 
covering the Taff and Rhondda Valleys centred near the town of Pontypridd . The 
terrain profiles consist of both smooth and sharp changes in topology, i.e . deep 
valleys and rounded hills in ST08 and areas with smoother gradients but 
containing coastal cliffs in ST06 . The original data was rounded to units of 2 
metres as the elevation range then allowed all elevations to be represented in 8 
bits for convenient comparison . 
The entropies, values of S2 and g-values are given in Table 1. For the triangular 
predictor, the 3-point predictor and the 8-point predictor, the entropies are 1.3910, 
1 .3581, 1 .3042 bits per elevation for ST06 and 2.3689, 2.3465 and 2.2577 bits per 
elevation for ST08. These values should be compared with the 8 bits per elevation 
of the original data . 



Optimum Predictors for a Digital Elevation Model. 

Predictor Data Set 
(S 2 ) Coefficients 

(V. -values) 
Entropy 
(bits/elevation) 

Triangular 

[3l 
ST06 

4 
9 .7596x10 1,1,1 1.3910 

0 .8267 

3pt ST06 48.0336x10 -0.6967 
0 .8703 1 .3581 

0 .8237 
4 -0.4168 

8pt ST06 6.9809x10 0 .9829 
-0.1169 

1 .3042 

-0.0866 
0.0824 
-0.0773 
-0.1912 

Triangular 
[3l 

ST08 
5 

3.10961 x10 1,-1,1 2 .3689 

apt ST08 
5 

2 .87193x10 

0 .9380 
-0 .8610 
0 .9230 2 .3465 

1 .0370 
-0.5736 

8pt ST08 2.46358x10 0.9236 
-0 .2214 

2.2577 

-0 .0313 
0.0585 
-0 .0263 
-0 .1666 
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Local Coordinates (x,y) . 

(0,2) 

F, i~2. 

For each surface patch used to fit to a set of six points, we can work within a local 
coordinate system as in Fig. 2. This has the advantage that the matrix only has to 
be inverted once . The point to be predicted will simply have the coordinates (0,0)
and so (0,0) is substituted into F(x,y) . Then the difference between the value of the 
predicted height using this method and the actual height value is calculated and 
rounded to the nearest integer. This procedure is repeated over the whole terrain 
data matrix and stored as a string of difference values . 
As for the Lagrange multiplier method, the average entropy of the resulting string
of corrections is calculated . The results are presented in Table 2. 

PREDICTION BY FITTING QUADRATICS THROUGH SETS OF TERRAIN 
HEIGHTS. 

The least squares fit of a quadratic function defined by a+bx+cx 2 through three sets 
of three points in a west-east, south-north and a south-west to north-east direction 
was done to predict the point Z(i,j) . (These are illustrated by ray 1, ray 2 and ray 3 in 
Fig. 3). This method would enable the capture of surface convexity or concavity. 
The actual predicted value was taken either .a s the median value of the three 
quadratics or as the average predicted value of the three quadratics. The resulting 
prediction errors in both cases were used to calculate the entropy as in the case of a 
least-squares surface fit. 
A similar procedure was followed of retaining the first row and column of terrain 
height values together with the second and third row and column as prediction 
errors using the triangular predictor [3] . The errors arising from both the mean 
and the median prediction for the three quadratics are stored separately. In each 
case the entropy for these errors is calculated . 
In this case we can either substitute in points to calculate the coefficients directly or 
minimise the least squares error as before . We do this for each ray separately . 

L'n=~;-1 . .3 (Zi -s-bx-cx 2)2 where Zi= height (x l ) . (9) 
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(0,3) (0,2) (0,1) Predicted Point Z(i,j) 

Ray 1 . / I (0,0) 

I 

91 

Ray 3. 

Ray 2 . 

46 

(3,0) 

Fig. 3 . 

In matrix form this becomes : 

3 1x ; 1x2 
a 2i Z i 

:E1xi 1xi 2 A3 b lxszs 

1x 4 
c1xi 2 ~ix3 l 2xzi 

The solution vectors [a,b,c] give the fitting coefficients for each quadratic equation 
used to determine the predicted height . In this case, we have used three rays with 
each ray consisting of three contributing terrain height values. 

The results for our representative test data were as follows : In ST06, the entropy 
taking the mean value of the ray predictions was 2.1692 bits and taking the median 
value 2.5885 bits . In ST08, the respective entropy values were 3.9579 and 4.2243 bits 
per elevation . 

PREDICTION BY BILINEAR SURFACE FITTING. 

In this method, a bilinear surface defined by the equation a+bx+cy+dxy is used to 
fit through four points P,Q,R,S and used to predict the five points A,B,C,D,E and 
the differences between the actual and predicted values stored in a matrix (see 
Fig.4) . The procedure is repeated on the square P,C,E,A using the true height 
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values to predict the points H,I,J,K,L in the diagram. When a predicted point is on 
the boundary of two separate surface patches, the mean value of the combined 
prediction error or correction value is taken. The initial array of terrain heights is 
a 256x256 array (257x257 height values) and is recursively sub-divided into 
quadrants of 128x128, 16 of 64x64 and 64 of 3202 and so on . During this recursive 
subdivision, the above prediction process is applied to each quadrant where on 
each subdivision the four mid-points and centre point are predicted by fitting an 
increasingly finely grained bilinear surface. Once again, each surface patch is 
defined by a local coordinate system i.e . if P,Q,R,S have coordinates (0,0), (1,0), (1,1), 
(0,1) respectively then each predicted point in each quadrant at each sub-division 
will have the local x,y coordinates as illustrated by A,B,C,D,E of (0,0 .5), (1,0 .5), 
(0 .5,1), (0 .5,1) and (0 .5,0 .5).The four coefficients of each bilinear surface used to 
define each surface patch are calculated by a system of 4 linear equations 
formulated by the least squares minimisation procedure described above or can be 
done by direct substitution where each predicted point is : 

P+(Q-P)x+(S-P)y+(P-Q-S+R)xy. (10) 

The algorithm terminates when the recursion has produced 47 smaller patches of 
3x3 elevation points . Since our test-data, ST06 and ST08, are fixed sized arrays of 
401x401 points, the recursive sub-division algorithm is run on 4 overlapping tiles 
of 257x257 points with origins at coordinates (0,0), (0,144), (144,0), (144,144) for the 
maximum terrrain data matrix coverage. In ST06 the entropy values were 2.0919, 
1.8117, 2.9287, 2.7503 bits for the overlapping segments. The corresponding values 
for ST08 were 3.6112, 3.8811, 3.5570 and 3.6358 bits respectively . 

DISCUSSION. 

The results above show quite clearly that a small improvement can be made to 
the simple triangular predictor method for both the three-point and eight-point
predictors by the minimisation method of Lagrange multipliers. Typical savings in 
the average entropy values varied between 4% and 7% . It was interesting to note 
that in both the 3-point and 8-point prediction methods, the significant coefficient 
(g) values affecting the prediction of the terrain height always corresponded to 
points 1,2 and 3 with a smaller contribution from points 4,6 and 8 for the 8-point 
predictor. This seemed to support the rationale behind the triangular predictor [3] . 
Comparisons with a least squares fit of six points to predict the same point and 
different least squares fits of both a quadratic interpolation of neighbouring points
and a bilinear surface interpolation have confirmed this . These surface fitting 
prediction methods failed to achieve a lower entropy value with the least squares
fit being the best of the other three methods. Table 2 shows comparative entropy 
values for our data sets ST06 and ST08 for the different prediction methods 
described. For many data sets compression ratios above 4 or 5 are easily achievable 
using a error-free Huffman encoding algorithm with minor modification to the 
code given in [3] to include the calculation of the coefficients (g-values) for either 
the 3-point or 8-point predictor . 
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S D (0.5,1 .0) R 

[0,01 [0,2561 

(0,1 .0) (1 .0,1 .0) 

A 
[128,01 

(0,0 .5) 

1 

_ ~ 
16 

1 

1 

I 
I E 

I 

I 

(0 .5,0 .5) 

B 

(1 .0,0 .5) 

H 

64 

P 

[256,01 
(0,0) 

Q 

[256,2561 

(1,0) 

[ 0,128 ] - Array Coordinates 
( 0.5,0)-Local Coordinates 

L.IV Quadrants 

Terrain Height 

Predicted Height 

Boundary Point 

Points A,B,C,D,E are predicted from P,Q,R,S. by fitting a bilinear surface 
a+bx+cy+dxy. The pointsH,I,J,K,L are predicted from surface fit to A,E,C,P. The 
process is repeated in quadrants 11, III, IV to determine mid-points and centres of 
quadrants. Points I and J are predicted from 2 separate bilinear surface fits i.e point I 
from quadrants I and IV and point J fromquadrants I and 11 . In such cases, theaverage 
correction (prediction error) is taken from the separate prediction estimates . 

The smallest quadrant is a 3 x3 . The total no . of squares is 16,384 (=47) . 

Figure 4. 



COMPARISON BETWEENPREDICTION METHODS 

Entropy (bits/elevation)
Prediction Method 

ST06 ST08 

Triangular Predictor [3]
3-point
8-point
LeastSquares Surface Fit 
Quadratic Fit (mean result)
Quadratic Fit (median result) 

1.3910 
1.3581 
1.3042 
2.0521 
2.1692 
2.5885 

2.3689 
2.3465 
2.2577 
3.4159 
3.9579 
4.2243 

Bilinear Surface Fit (256x256)
Origin at: (0,0)

(0,144)
(144,0)
(144,144) 

2.0919 
1.8117 
2.9287 
2.7503 

3.6112 
3.8811 
3.5570 
3.6358 

Table 2. 

CONCLUSIONS. 

The 3-point and 8-point predictors are clearly superior to the other methods 
reported . With all predictors, the Huffman code gives an average code length 
slightly greater than the entropy. It is also necessary to store a code table, a look up 
table for efficient decoding, the coefficients for the optimal predictors and the first 
row and column(or first two rows and columns for the 8-point predictor) [3] . 
However for large models, the additional storage requirements are very small. 
An alternative approach to terrain compression of a regular grid data is a 
transform technique - the two-dimensional discrete cosine transform (2D-DCT) . 
Transform coding allows greater compression but is computationally intensive 
and gives some error on reconstruction of the data. Transform coding can be 
combined with Huffman encoding or Run Length Encoding to allow further 
compression . As an example, terrain data has been compressed by a factor of 
18.75:1 with this method by adapting published algorithms [4] . In this case, the 
reconstructed data is about 75% error-free . 
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