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ABSTRACT 
Interpolation is a computationally intensive activity that may require hours of 
execution time to produce results when large problems are considered . In this 
paper a strategy is developed to reduce computation times through the use of 
parallel processing. A serial algorithm that performs two dimensional inverse­
distance weighted interpolation was decomposed into a form suitable for 
processing in a MIMD parallel processing environment. The results of a series 
of computational experiments show a substantial reduction in total processing 
time and speedups that are close to linear as additional processors are used . 
The general approach described in this paper can be applied to improve the 
performance of other types of computationally intensive interpolation 
problems . 

INTRODUCTION 
The computation of a two-dimensional gridded surface from a set of dispersed 
data points with known values is a fundamental operation in automated 
cartography . Though many methods have been developed to accomplish this 
task (e.g. Lam, 1983; Burrough,1986) inverse distance weighted interpolation is 
widely used and is available in many commercial GIS software environments . 
For large problems, however, inverse distance weighted interpolation can 
require substantial amounts of computation . MacDougall (1984), for example, 
demonstrated that computation times increased dramatically as the number of 
data points used to interpolate a small 24 by 80 map grid increased when a 
Basic language implementation was used . While little more than a half hour 
was required to interpolate the grid using 3 data points, almost 13 hours were 
required when calculations were based on 100 points (see Table 1) . 

Table 1 . Computation time (hours) for interpolating a 24 x 80 grid using an 8 
bit, 2 MHz microcomputer . 

N Points Hours 
3 0.57 
10 1 .51 
25 3.50
 
1 00 12.46
 

Source : MacDougall,1984 . 
MacDougall was clearly using an unsophisticated algorithm ("brute force") 
implemented in an interpreted language (Basic) which ran on a slow 
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microcomputer; most workstations and mainframes would now compute 
this problem in a few seconds. Using MacDougall's 100 point problem as 
an example, what took over 12 hours, can now be computed in just under 
12 seconds (Table 2) using a single processor on a "mainframe-class" 
Encore Multimax computer. 
Table 2 . Computation time (seconds) for interpolating a 24 x 80 grid using 
1 Encore processor. 

Points Seconds 
10 1 .50 
100 11.92 

The need for high performance computing, however, can be established by 
increasing the problem size to a larger grid (240x800) with an increased number 
of data points (10,000); this larger and more realistic problem roughly 
maintains the same ratio of points to grid points used by MacDougall . When 
the problem is enlarged in this way, a similar computational "wall" is 
encountered : using 3 proximity points, the interpolation problem required 7 
hours and 27 minutes execution time on a fast workstation, an RS/6000-550. 
Based on the history of computing, this is a general pattern : As machine speeds 
increase, so does the size of the problems we would like to solve, and 
consequently there is a continuing need to reduce computation times (see e.g . 
Freund and Siegel,1993). 

Several researchers have attempted to improve the performance of 
interpolation algorithms. White (1984) comments on MacDougall's approach
and demonstrates the performance advantage of integer (as opposed to floating
point) distance calculations . Another important strategy reduces the total 
number of required computations by exploiting the spatial structure inherent 
in the control points . Hodgson (1989) concisely describes the interpolation 
performance problem and provides a solution that yields a substantial 
reduction in computation time. His method is based on the observation that 
many approaches to interpolation restrict calculations to the neighborhood 
around the location for which an interpolated value is required . Traditionally, 
this neighborhood has been established by computing distances between each 
grid point and all control points and then ordering these distances to find the k­
nearest. Hodgson reduced the computational overhead incurred during these 
steps by implementing a new, efficient method of finding the k-nearest 
neighbors of each point in a point set; these neighbors are then used by the 
interpolation algorithm . Clarke (1990) illuminates the problem further and 
provides C code to implement a solution. 

Despite these improvements, substantial amounts of computation time are still 
required for extremely large problems . The purpose of this paper is to 
demonstrate how parallel processing can be used to improve the 
computational performance of an inverse-distance weighted interpolation 
algorithm when it is applied to the large (10,000 point) problem described 
earlier. Parallel algorithms are often developed specifically to overcome the 
computational intractabilities that are associated with large problems. Such 
problems are destined to become commonplace given the increasing diversity,
size, and levels of disaggregation of digital spatial databases. 



The parallel algorithm described here is based on an existing serial algorithm. 
Specifically, we demonstrate how a serial Fortran implementation of code that 
performs two dimensional interpolation (MacDougall,1984) is translated, 
using parallel programming extensions to Fortran 77 (Brawer,1989), into a 
version that runs on a parallel computer . In translating a serial program into a 
form suitable for parallel processing, several factors must be considered 
including characteristics of the problem and the architecture of the computer to 
be used . We first consider architectural factors and then turn to a specific 
discussion of our parallel implementation of the interpolation algorithm; this 
"brute force" implementation represents a worst case scenario against which 
other approaches to algorithm enhancement can be compared. The approach 
described here can be applied to enable the use of high performance parallel 
computing in a range of related geo-processing and automated cartography 
applications . 

ARCHITECTURAL CONSIDERATIONS 
During the past several years, many computer architects and manufacturers 
have turned from pipelined architectures toward parallel processing as a 
means of providing cost-effective high performance computing environments 
(Myers,1993 ; Pancake, 1991) . Though parallel architectures take many forms, a 
basic distinction can be drawn on the basis of the number of instructions that 
are executed in parallel. A single instruction, multiple data (SIMD) stream 
computer executes the same instruction on several (often thousands of) data 
items in lock-step . This is often referred to as synchronous, fine-grained 
parallelism . A multiple instruction, multiple data (MIMD) stream computer, 
on the other hand, handles the partitioning of work among processors in a 
more flexible way, since processors can be allocated tasks that vary in size. 
Thus, programmers might assign portions of a large loop to different 
processors, or they might assign a copy of an entire procedure to each 
processor and pass a subset of data to each one. This allocation of parallel 
processes can occur in an architecture explicitly designed for parallel 
processing, or it may take place on a loosely-confederated set of networked 
workstations using software such as Linda (Carriero and Gelernter,1990) or 
PVM (Beguelin et al., 1991; 1993) . Because of the flexibility associated with this 
coarse-grained MIMD approach, however, programmers must be concerned 
with balancing workloads across different processors . If a given processor 
finishes with its assigned task and it requires data being computed by another 
processor to continue, then a dependency is said to exist, the pool of available 
processors is being used inefficiently and parallel performance will be 
degraded (Armstrong and Densham,1992) . 

The parallel computations described in this paper were performed using an 
Encore Multimax computer . The Encore is a modular MIMD computing 
environment with 32 Mbytes of fast shared memory; users can access between 
1 and 14 NS32332 processors, and each processor has a 32K byte cache of fast 
static RAM. The 14 processors are connected by a Nanobus with a sustained 
bandwidth of 100 megabytes per second (ANL,1987) . Because a MIMD 
architecture is used in this research, workload distribution and dependency 
relations must be considered during the design of the interpolation algorithm . 



IMPLEMENTATION OF THE ALGORITHM 
The underlying assumption of inverse-distance weighted interpolation is that 
of positive spatial autocorrelation (Cromley,1992) : The contribution of near 
points to the unknown value at a location is greater than that of distant points . 
This assumption is embedded in the following equation : 

NI Wijzi 

where : 
zj is the estimated value at location j, 
zi is the known value at location i, and 
wij is the weight that controls the effect of other points on the calculation of 
zj . 

It is a common practice to set wi j equal to dij - a, where d ij is some measure of 
distance and a is often set at one or two. As the value of the exponent 
increases, close data points contribute a greater proportion to the value of each 
interpolated cell (MacDougall, 1976:110; Mitchell, 1977 : 256) . 

In this formulation, all points with known values (zi) would contribute to the 
calculation of zj . Given the assumption of positive spatial autocorrelation, 
however, it is common to restrict computations to some neighborhood of zj . 
This is often done by setting an upper limit on the number of points used to 
compute the zj values . The now-ancient SYMAP algorithm (Shepard,1968), for 
example, attempts to ensure that between 4 and 10 data points are used 
(Monmonier,1982) by varying the search radius about each zj . If fewer than 4 
points are found within an initial radius, the radius is expanded; if too many 
(e.g. >10) points are found, the radius is contracted . MacDougall (1976) also 
implements a similar approach to neighborhood specification. This process, 
while conceptually rational, involves considerable computation, since for each 
grid point, the distance between it and all control points must be evaluated. 

Our parallel implementation of MacDougall's serial interpolation 
algorithm uses the Encore Parallel Fortran (EPF) compiler . EPF is a parallel 
programming superset of Fortran77 that supports parallel task creation 
and control, including memory access and task synchronization (Encore, 
1988; Brawer,1989) . 

Parallel Task Creation . An EPF program is a conventional Fortran77 
program in which parallel regions are inserted. Such regions consist of a 
sequence of statements enclosed by the keywords PARALLEL and END 
PARALLEL and other EPF constructs can only be used within these 
parallel regions . Within a parallel region, the program is able to initiate 
additional tasks and execute them in parallel on the set of available 
processors . For example, the DO ALL . . . END DOALL construct partitions 
loop iterations among the set of available processors. The number of 
parallel tasks, n, is specified by setting a processing environment variable 
called EPR PROCS. At the command line, under the csh shell for example, 



if one were to specify setenv EPR PROCS 4, then three additional tasks 
would be created when the PARALLEL statement is executed . 

Shared Memory . By default, all variables are shared among the set of 
parallel tasks unless they are explicitly re-declared inside a parallel region . 
A variable declared, or re-declared, inside a parallel region cannot be 
accessed outside that parallel region; each task thus has its own private 
copy of that variable. This behavior can be explicitly stressed by using the 
PRIVATE keyword when declaring variables. This approach could be 
used, for example, in a case when each of several (private) parallel tasks are 
required to modify specific elements in a shared data structure . 

Process Synchronization . Portions of a program often require results 
calculated elsewhere in the program before additional computations can be 
made. Because of such dependencies, most parallel languages provide 
functions that allow the programmer to control the execution of tasks to 
prevent them from proceeding until they are synchronized with the 
completion of other, related tasks . In EPF, several synchronization 
constructs are allowed . For example, CRITICAL SECTION and END 
CRITICAL SECTION constructs enclose a group of statements if there is 
contention between tasks, so that only one task is allowed to execute within 
the defined block of statements and processing only proceeds when all 
tasks before the start of the critical section have been completed . 

These parallel extensions facilitate the translation of serial code into parallel 
versions . In many instances, problems may need to be completely restructured 
to achieve an efficient parallel implementation, while in other instances 
conversion is much more straightforward . The serial to parallel conversion 
process often takes place in a series of steps, beginning with an analysis of 
dependencies among program components that may preclude efficient 
implementation (Armstrong and Densham,1992) . As the code is broken into 
discrete parts, each is treated as an independent process that can be executed 
concurrently on different processors. In this case, the interpolation algorithm 
can be cleanly divided into a set of independent processes using a coarse­
grained approach to parallelism in which the computation of an interpolated 
value for each grid cell in the lattice is treated independently from the 
computation of values for all other cells . While some variables are declared 
private to the computation of each cell value, the matrix that contains the 
interpolated grid values is shared . Thus, each process contributes to the 
computation of the grid by independently writing its results to the matrix held 
in shared memory . In principle, therefore, as larger numbers of processes 
execute concurrently, the total time required to calculate results should 
decrease . 

The following pseudocode, based on that provided in MacDougall (1984), 
presents a simplified view of a brute-force interpolation algorithm that 
uses several EPF constructs . The main parallel section, which calculates 
values for each grid cell, is enclosed between the DOALL . . . END DOALL 
statements. 



Code fragment 1. Pseudocode for parallel interpolation
 
DECLARATIONS
 
FORMAT STATEMENTS
 
FILE MANAGEMENT
 
READ DATA POINTS
 
CALCULATE INTERPOLATION PARAMETERS
 

t-start = etime(tmp)
 
FOREACH CELL IN THE MAP
 
PARALLEL
 
INTEGER I, J, K, rad
 
REAL TEMP, T, B
 
REAL distance(Maxcoords)
 
INTEGERL(Maxcoords)
 
PRIVATE I, J, K, RAD, TEMP, T, B, distance, L
 
DOALL (J=1 :Columns)
 
DO 710 I=1, Rows 
FOREACH DATA POINT 
COMPUTE DISTANCE FROM POINT TO GRID CELL 
CHECKNUMBER OF POINTS WITHIN RADIUS 
COMPUTEINTERPOLATED VALUE 

710 CONTINUE 
END DOALL
 

END PARALLEL
 
tend =etime(tmp)
 
t1 = (t end - t-start)
 

END 

RESULTS 
Because the Encore is a multi-user system, minor irregularities in execution 
times can arise from a variety of causes . To control the effects that multiple 
users have on overall system performance, we attempted to make timing 
runs during low-use periods. Given the amount of computation time 
required for the experiments using one and two processors, however, we 
did encounter some periods of heavier system use. These factors, however, 
typically cause only small irregularities in timings, thus the results 
reported in this paper are indicative of the performance improvements that 
can generally be expected in aMIMD parallel implementation . 

The 10,000 point interpolation problem presents a formidable 
computational task that is well illustrated by the results in Table 3. When a 
single Encore processor is used, 33.3 hours is required to compute a 
solution to the problem. The run time is reduced to 2.5 hours, however, 
when all 14 processors are used . Figure 1 represents the monotonic 
decrease of run times with the addition of processors . Though the slope of 
the curve begins to flatten, a greater than order of magnitude decrease in 
computation time is achieved . This indicates that the problem is amenable 
to parallelism and that further investigation of the problem is warranted. 



The results of parallel implementations are often evaluated by comparing 
parallel timing results to those obtained using a version of the code that uses a 
single processor . Speedup (see e.g . Brawer,1989: 75) is the ratio of these two 
execution times : 

TimeSequential
Speedup = 

TimeParallel 

Measures of speedup can be used to determine whether additional processors 
are being used effectively by a program . The maximum speedup attainable is 
equal to the number of processors used, but speedups are normally less than 
this because of inefficiencies that results from computational overhead, such as 
the establishment of parallel processes, and because of inter-processor 
communication and dependency bottlenecks . Figure 2 shows the speedups 
obtained for the 10,000 point interpolation problem . The near-linear increase 
indicates that the problem scales well in this MIMD environment . 

Table 3 . Run times for the 10,000 point interpolation problem as different 
numbers of processors are used. 

10 12 14Processors 1 2 4 6 8 
Hours 33.3 17.0 8 .5 5 .7 4 .2 3 .4 2 .8 2.5 

Figure 1 . Run times for the 10,000 point problem. 



Figure 2. Speedups for the 10,000 point problem . 

A measure of efficiency (Carriero and Gelernter,1990: 74) is also sometimes 
used to evaluate the way in which processors are used by a program . This 
measure simply controls for the size of a speedup by dividing it by the number 
of processors used . If values start near 1.0 and remain there as additional 
processors are used to compute solutions, then the program scales well . On the 
other hand, if efficiency values begin to decrease as additional processors are 
used, then they are being used ineffectively and an alternative approach to 
decomposing the problem might be pursued . Table 4 shows the computational 
efficiency for the set of interpolation experiments . The results demonstrate that 
the processors are being used efficiently across the entire range of processors, 
with no marked decreases exhibited. The small fluctuations observed can be 
attributed to the lack of precision of the timing utility (etime) and random 
variations in the performance of a multi-processor, multi-user system. It is 
interesting to note, however, that the largest decrease in efficiency occurs as the 
number of processors is increased from 12 to 14 (the maximum) . Because 
additional processors are unavailable, it cannot be determined if this decrease 
is caused by the presence of overhead that is only encountered as larger 
numbers of processors are added to the computation of results . 

Table 4 . Efficiency of the interpolation experiments . 

Processors 2 4 6 8 10 12 14
 
Efficiency 0.99 0.99 0.97 0.99 0.98 0.99 0.95
 



CONCLUSIONS 
Different approaches to improving the performance of inverse distance 
weighted interpolation algorithms have been developed . One successful 
approach (Hodgson,1989) focused on reducing the total number of 
computations made by efficiently determining those points that are in the 
neighborhood of each interpolated point . When traditional, serial computers 
are used, this approach yields substantial reductions in computation times. 
The method developed in this paper takes a different tack by decomposing the 
interpolation problem into a set of sub-problems that can be executed 
concurrently on a MIMD computer. This general approach to reducing 
computation times will become increasingly commonplace since increasing 
numbers of computer manufacturers have begun to use parallelism to provide 
users with cost-effective high performance computing environments . The 
approach described here should also work when applied to other 
computationally intensive methods of interpolation such as kriging (Oliver et 
al .,1989a;1989b) that may not be directly amenable to the neighborhood search 
method developed by Hodgson . 

Each processor in the MIMD computer that was used to compute these results 
is not especially fast by today's standards . In fact, when a modern superscalar 
workstation (RS/6000-550) was used to compute results for the same problem, 
it was 4.5 times faster than a single Encore processor. When the full 
complement of 14 processors is used, however, the advantage of the parallel 
approach is clearly demonstrated: the Encore is three times faster than the 
RS/6000-550 . The approach presented here scales well with near linear 
speedups observed in the range from 2 to 14 processors. 

Future research in this area should take place in two veins. The first is to use a 
more massive approach to parallelism. Because of the drop in efficiency 
observed when the maximum number of processors is used, larger MIMD-like 
machines, such as a KSR-1, or alternative architectures such as a heterogeneous 
network of workstations (Carriero and Gelernter,1990) or a SIMD machine 
could be fruitfully investigated. It may be that a highly parallel brute force 
approach can yield performance that is comparable, or superior, to the search­
based approaches suggested by Hodgson. The second, and probably 
ultimately more productive, line of inquiry would meld the work begun here 
with that of the neighborhood search-based work . The combination of both 
approaches should yield highly effective results that will transform large, 
nearly intractable spatial interpolation problems into those that can be solved 
in seconds . 
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