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ABSTRACT
 

A novel approach has been developed, implemented and tested to 
approximate, or to map, large heterogeneous surfaces with predefined 
accuracy and complexity. The methodology is based on tiling, the hierarchical 
decomposition of regular grid tessellations . The quadtree-construction is 
guided by a measure of local homogeneity and the predefined number of 
leaves, or level of accuracy . A modified Kullback-divergence is applied for 
the characterization of goodness of approximation . The procedure is aimed to 
find the quadtree-represented map of limited number of leaves which is the 
most similar to a given image in terms of divergence . Various statistical and 
computational advantages are demonstrated within the framework of spatial 
data processing and error handling in geographic analysis. This methodology 
minimizes information loss under constraints on size, shape and 
distribution of varying size mapping units and the residual heterogeneity is 
distributed over the map as uniformly as possible . As such, it formally 
defines a cost-versus-quality function in the conceptual framework of the 
cartographic uncertainty relationship . Our straightforward decomposition 
algorithm is found to be superior to other combinations od sampling and 
interpolation for mapping strategies . It is advantageous in cases when the 
spatial structure of the phenomenon to be mapped is not known, and should 
be applied when ancillary information (e.g ., remotely sensed data) is 
available . The approach is illustrated by the SHEEP (Spatial Heterogeneity 
Examination and Evaluation Program), an environmental soil mapping 
project based on high-resolution satellite imagery of a salt-affected rangeland 
in Hortobagy, NE-Hungary. 

INTRODUCTION 

The spatial structure of phenomena, its relationship to sampling, 
mapping, resolution and accuracy, has been the focus of a wide array of 
geographic research (Moellering and Tobler 1972 ; Goodchild 1992) . 
Geographic information systems (GIS) are being increasingly used to utilize 
these findings related to sampling design to perform analyses on spatial 
databases and to evaluate their quality (Burrough 1986) . These advances, 
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however, are rarely applied simultaneously in reported case studies, even 
though conceptually and methodologically they often have common 
foundations (for example, spatial covariation may be utilized in interpolation
but not in sampling design and regionalization, or quality assessment). 

We consider the conceptual framework for database development
from sampling to the measurement of accuracy, and explicitly formalize the 
cost-versus-quality function . Sampling strategies for mapping are always
based on some preliminary knowledge and a priori assumptions about the 
phenomenon to be mapped . They are based on expertise in the field of 
application or on mathematical statistics or on both . The "goodness," or 
efficiency of sampling, in general, is dependent on the relationship between 
the cost of sampling and the quality of the final map product. Regardless of 
the actual circumstances, the goal of sampling is to collect "representative"
samples (Webster and Oliver 1990). We need a means of sampling that will 
ensure appropriate information that can predict characteristics at locations 
where no samples were taken. In terms of characterization, our analysis and 
discussion will be confined to the task of predicting the local (expected) value 
of a variable, which is a quite widely explored problem in mappings (Ripley
1981). 

Our assumptions about the circumstances of database development are 
as follows: 
" a fixed budget is given for sampling, for which we seek maximum accuracy
(or conversely, an accuracy threshold is given for which minimum sampling
effort should be determined); 
" the spatial structure of the phenomenon to be mapped is not homogeneous
(i .e ., it varies over a range of scales); therefore, no a priori partitions can be 
defined; and 
" some ancillary data sets are available whose spatial pattern is in close 
correspondence with the phenomenon to be mapped . 

ACONSTRAINED OPTIMALAPPROACH TO MAPPING ALATTICE 

We provide here a method for constrained optimal approximation of 
lattices . The mapping of a two-dimensional heterogeneous surface is treated 
with the following constraints : (1) a data set (A) is available on a lattice, 
which will be sampled and approximated by a map (M); (2) both A and M are 
two-dimensional discrete distributions; (3) the location of each datum on M 
corresponds to the location of a datum or data on A and (4) M consists ofa 
finite number of patches that are homogeneous inside, and the value 
associated with a patch approximates the value(s) of A at corresponding
locations. No assumptions are made about the exact nature of the spatial
statistics of the surface to be mapped (e .g., stationarity) . 

FROM MULTIPLE RESOLUTION TO VARYING RESOLUTION 

Spatial pattern can play a significant role in the characterization of 
patches from sampling through interpolation to regionalization. 

1 For a review of sampling, resolution and accuracy see Csillag et al. (1993) . 
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Understanding spatial pattern generally aims at the design of a sampling 
scheme, which is reasonable under certain statistical assumptions and 
models (Kashyap and Chellapa 1983, Kabos 1991), and for the application of 
"best" parameters defined by those models in interpolation and 
representation (Tobler 1979 ; Jeon and Landgrebe 1992) . Advancements in 
computing and storage performance in GIS, paralleled with the apparent 
contradiction between finding the best resolution for regular samples and 
identifying (a priori) patches (partitions) for samples (Webster and Oliver 
1990), has increased the popularity of mapping with multiple representation 
(Dutton 1984) . Beside some storage- and processing-related technical issues, 
the identification and representation of mapping units (or area-classes; see 
Mark and Csillag 1989) have not been adequately addressed . Several soil or 
vegetation maps, whose patches often contain inclusions, can serve as simple 
illustrations: when a partition is optimal for the patches, it misses the 
inclusions, and when it is optimized for the inclusions, it becomes redundant 
for the patches (Csillag et al . 1992) . Furthermore, it is prohibitive, because of 
size, to examine all possible partitions for optimization. 

In the construction of databases, the hierarchy of resolutions in 
multiple representations based on uniform grids, a pyramid, offers the 
possibility of creating a GIS, which adjusts the level of detail to particular 
queries . Furthermore, it has become feasible to create varying resolution 
representations, of which quadtrees have become most well known and 
widely applied (Samet 1990) . Beside storage and processing efficiency, the 
advantage of varying resolution representations is to ensure uniform 
distribution of accuracy (quality) over the entire data set . This would require 
criteria for creating quadtrees from pyramids . 

We have developed and implemented a method (Kertesz et al . 1993) to 
create a quadtree as a constrained optimal approximation of the lowest (most 
detailed) level of a pyramid . A quadtree can also be thought of as a spatial 
classification (partition on tiles) with the advantage that not only does each 
location belong to one and only one leaf, but the location, size and 
arrangement of all possible leaves is known a priori . Our method starts from 
the highest (least detailed) level (i .e ., approximating the entire lattice by one 
value, its mean) and proceeds by straightforward decomposition . Because of 
the strong constraint on the shape, size, arrangement and potential number 
of patches on a map represented by a quadtree as a function of the number of 
levels (Samet 1990), with the application of an appropriate measure, the 
accuracy of all potential maps can be compared -- hence the process can be 
optimized . 

DIVERGENCE MEASURES TO CHARACTERIZE DIFFERENCES IN 
SPATIAL PATTERN 

To quantify the dissimilarity between the lattice and its (potentially varying 
resolution) map we apply a measure that (1) directly compares the lattice and 
the map and returns a scalar, (2) has a value independent of the size of the 
lattice, (3) is nonparametric, (4) is independent of the scale of data values (i .e ., 
invariant to multiplication by a constant), and (5) provides the opportunity 
for additive application due to element-by-element computation (Figure 1) . 
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FIGURE 1 . 
Test data set (a) with four possible delineations with their corresponding total 

divergence and the contribution of the patches (b) . 

We have chosen Kullback-divergence (Csiszdr 1975), 

I ~.J 
Lpij log2(p . qij)DKullback (p I q) _ £
 

i=1 I=1
 

where 
I
 

EI I = EI J =1, 0, > 0
 
pij qij pij > qij

i=1 j=1 i=17=1 

and 

p and q are discrete spatial distributions of I by J elements ; 

because its usage does not require any limitations concerning the nature of 
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the distributions, and described its general properties and its relationship to 
Shannon's information formula, x2 elsewhere (Kertesz et al . 1993) . Its real 
advantage is that for any delineated patch on a map, one can compute the 
contribution of that particular patch to the total divergence : 

tch 
D(patchgrid I patch,nap) _ Y _7 [grid .ISUM] log2(grid .Imapl)) (2) 

II II
1 

where 

grid; . is the value for i,jth cell of the grid 
map~ the value for i,jth cell of the map 

I and J are the side lengths of the grid to be mapped 
and the map in corresponding cells, respectively . 

DECOMPOSITION PROCEDURE AND CRITERIA 

Our method utilizes the advantage of varying resolution adjusted to 
spatial variability because it provides a rule for selecting the necessary spatial 
detail to represent each mapping unit with similar (internal) heterogeneity . 
In other words, it leads to a measure of local variability not weighted by area . 
Therefore, at very heterogeneous locations it will lead to smaller units (i.e ., 
higher levels of the quadtree), whereas at relatively homogeneous locations 
it will decompose the grid into larger tiles (i .e ., lower levels of the quadtree) . 

The decomposition algorithm can be characterized by two features : the 
cutting rule and the stopping rule. In this paper we use "maximum local 
divergence" as the cutting rule, and "total number of mapping units" as the 
stopping rule . Further options will be discussed in the final section . The first 
rule means that the quadtree leaf is cut into four quadrants whose local 
divergence is the maximum among all existing leaves, while the second rule 
stops the decomposition at a threshold predefined by the number of leaves. 

The approach embedded in this method avoids the major conceptual 
problems of spatial pattern analysis and measurement of accuracy tied to the 
existence and knowledge of the spatial covariance function . In several, 
primarily environmental, mapping tasks the uncertainty in the delineation 
of mapping (and sampling) units is intolerably high, especially when local 
factors control the landscape . Kertesz et al. (1993), for example, characterized 
salt-affected, semiarid rangelands exhibiting scale-invariant patterns; certain 
(mostly transitional) patches occurred over several hectares as well as over a 
few square centimeters . The measurement of accuracy in databases 
constructed for such areas will heavily depend on the validity of statistical 
assumptions (Goodchild and Gopal 1989; Csillag 1991) . Our method not only 
does not require strong assumptions about the spatial statistics of the lattice 
but (1) optimizes local accuracy of sampling and mapping units under a 
global threshold, (2) explicitly links accuracy to the number of mapping units 
(and vice versa) and (3) when those strong assumptions are valid, leads to 
identical results. 
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MAPPINGWITH ANCILLARY DATA: SAMPLING QUADTREES 

We demonstrate the characteristics of the method described in the 
previous section from a database development perspective (i .e ., as if one had 
to actually sample a surface and approximate it on a lattice), with several 
illustrative examples . For comparison, besides sampling based on quadtrees, 
equal number of samples will be taken by random and regular (square)
design . Reconstruction will be performed by Thiessen-polygonization, 
inverse squared Euclidean distance, and kriging to test the robustness of the 
sampling method over various levels of sophistication in interpolation. 

All procedures are carried out on a data set, with spatial characteristics 
illustrated in Figure 2, taken from a satellite image used for database design 
and development in SHEEP (Spatial Heterogeneity Examination and 
Evaluation Program), an environmental rangeland degradation mapping
project in East Hungary (Toth et al. 1991 ; Kertesz et al . 1993). 

Selecting optimal samples by the proposed decomposition method 
requires some information in the form of a lattice about the surface to be 
sampled and mapped. At first, the entire lattice is approximated by its (global) 
mean (the root of the quadtree), and its Kullback-divergence is measured 
from the actual distribution . Then, the lattice is approximated by four 
quadrants (level 1 on the quadtree), and for each leaf their contribution to the 
total Kullback-divergence is computed according to Equation (2). If the 
threshold in the number of samples or in total Kullback-divergence has not 
been met, decomposition is continued by cutting the leaf with the highest 
contribution (i .e ., the most heterogeneous one) . Thus, at each step, the 
number of (potential) sampling units increases by three, and the 
decomposition proceeds least intensively over homogeneous areas. 

0 8 32 

FIGURE 2.
 
The original data set (left), some of the noise fields (top) and their
 

combinations (bottom) .
 



To compare the efficiency of the different sampling designs we 
reconstructed the 128-by-128 data sets and measured their Kullback­
divergence from the original data . For realistic illustration we set the number 
of samples to 256 . Three interpolations (quadtree leaves, Thiessen­
polygonization, and inverse squared Euclidean distance) are summarized for 
the sampling quadtrees (256 leaves), and three interpolations (kriging, 
Thiessen-polygonization, and inverse squared Euclidean distance) are shown 
for the regular and random sampling . The numerical results are summarized 
in Table 1 . 

Table 1 .
 
Accuracy of approximations (DK*104 to the original data based on 256
 
samples) by sampling design (Q=quadtree, G=regular grid, R=random) and
 
interpolation (QTR=sampling quadtree, THI=Thiessen-polygonization,
 
DI2=inverse square distance, KRI=kriging) .
 

INTERPOLATION QTR THI DI2 KRI 
SAMPLING 

Q 8 .937 16 .864 11 .094 --­
G --- 22 .864 17 .550 17 .646 
R --- 25 .545 19 .824 18 .468 

The sampling quadtrees lead to approximately half, or less, the 
Kullback-divergence than any other sampling and interpolation method, 
because they not only are more sensitive to local variability but also are 
obtained by using all data from the approximated distribution.2 In addition, 
samples selected by this method carry over so much information about the 
distribution of variance in the data set that they systematically result in 
significantly smaller Kullback-divergence than the other sampling methods 
over all interpolation techniques . Furthermore, sampling based on quadtrees 
and interpolation by inverse squared Euclidean distance is, by far, the 
superior method among those tested . 

SAMPLING AND RECONSTRUCTION: NOISY DATA 

In general, at best, one can assume to have a data set that corresponds 
to the phenomenon to be mapped but contains a certain amount of noise . 
This available data set may be remotely sensed data, as in the illustrative 
example, or it can be any existing data set (on a lattice) in a database . In 
practice, these are exactly the sources of sampling design and database 
development . Therefore, it is important to examine the proportion and 
spatial structures of noise and its effects on the accuracy of sampling and 
reconstruction . 

We generated noise fields with five different levels of spatial 
autocorrelation (correlation distance or range = 0, 4, 8, 16, 32 cell units) 3 and 
mixed them with 10%, and 50% weights to the original data sets (Figure 2), 

2 These results refer to the ideal situation of when the data set to be approximated in our 
database is entirely well known. The Kullback-divergences of the Q-QTR (sampling 
quadtree with mean values assigned to the leaves) method can be interpreted, therefore, as 
measures of the cost of data compression. 

3 Gerard Heuvelink kindly made his software available (Heuvelink 1982). 



preserving the original mean and variance . The Kullback-divergences

between the noisy and original data sets are summarized in Table 2 . It helps
 
to "scale" Kullback-divergence to certain amounts of noise, which reveals
 
that while there is a strong relationship between the amount of noise and
 
Kullback-divergence, it does not change significantly with its correlation
 
length .
 

Table 2.
 
Kullback-divergences between the noisy and the original data sets (DK*104)
 

CORRELATION LENGTH 
0 4 8 16 32 

NOISE-LEVEL 
10% 4 .782 4 .802 4 .856 5 .128 4 .912 
50% 26 .234 26 .200 27 .296 30 .537 28 .004 

We examine the effects of noise by designing the sampling quadtree on 
the noisy data, and approximate the original one. Numerical results indicate 
that the longer range noise is added (i .e., the smoother the ancillary data set 
becomes), the better the approximation is to the ancillary data, and the 
accuracy of reconstructing the original data decreases . At 10% random noise,
the 256 samples taken from the noisy ancillary data set approximate the 
original data almost as well as if samples were taken from the original
(9.532*10-4 versus 8.937*10-4 for tiling reconstruction) . 

Reconstructions based on sampling quadtrees with 256 samples using
inverse squared Euclidean distance interpolation (providing the best results 
among the methods tested) outperform reconstructions based on random 
and regular square sampling using the same interpolation, regardless of the 
amount and spatial structure of noise (Table 3) . The stronger the pattern, the 
more sampling quadtrees provide advantage (Figure 3) . At low (10%) noise 
levels, consistently over all noise structures, reconstructions based on 
sampling quadtrees lead to approximately one-third less Kullback-divergence
than reconstructions based on other sampling methods . All accuracies 
slightly increase when approximating original data . 

Table 3 . 
Kullback-divergences (DK*104) between reconstructions, the original data set 
and noisy data sets ; 256 sampling locations determined on noisy data by
sampling quadtree (Q), regular square grid (G) and random (R) ; samples
taken from noisy data and inverse squared Euclidean distance interpolation . 

CORRELATION LENGTH 
0 4 8 16 32 

10%
 
(sampled vs . sampled)


Q 16 .781 16 .225 15 .653 12 .096 11 .363 
G 22 .704 21 .909 19 .573 17 .402 16 .321 
R 23 .786 23 .651 21 .095 19 .308 19 .092 

(sampled vs . original) 
Q 12 .937 13 .321 14 .532 14 .224 14 .723 
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G 19.071 19 .511 20 .037 20 .248 21 .395 
R 20 .889 21 .992 21 .240 22 .631 22 .416 

50% 
(sampled vs . sampled)

Q 39 .874 34 .879 27 .003 15 .906 9 .383 
G 40 .994 36 .858 28 .183 17 .048 12 .071 
R 39 .921 37 .998 30 .225 19 .777 16 .476 

(sampled vs . original)
Q 25 .756 26 .478 31 .245 32 .198 34 .615 
G 26 .779 28 .618 32 .015 34 .518 37 .932 
R 27 .742 31 .464 31 .392 38 .259 38 .713 

R=0 R=32 

A 

50% 

B 

50% 

FIGURE 3 . 
Reconstructions based on 256 samples under various amounts and spatial 

structure of noise : sampling quadtree (A), inverse square distance (B) . 



At high (50%) noise levels the differences are more related to the 
spatial structure of noise. Whereas the Kullback-divergence of 50% noisy data 
from the original is about six times that of 10% noisy data (Table 2), the 
Kullback-divergences of reconstructions increase by a factor of only three . 
Reconstruction by inverse squared Euclidean distance interpolation based on 
256 samples, selected by sampling quadtrees from the noisy ancillary data,
approximate the original data set comparably than 256 samples selected by
other sampling methods from the original data set (e.g ., DK increases from 
12.937*10 -4 to 14.723*10-4 as the correlation length of noise increases ; these 
values are below the ones obtained for regular square sampling [G, 17.550*10­
4] or random sampling [R, 19.824*10 -4 ] of the original data and significantly
below the DK values between reconstructions and the noisy data set) . 

CONCLUDING REMARKS 

The approximation or mapping procedure described above is a part of 
a larger project aimed to develop optimal resolution mapping for 
heterogeneous landscapes, and salt-affected grasslands in particular . The 
optimization is carried out by locally adjusting (changing) the spatial
resolution of the map so that it conveys maximum information for the user 
with given (predefined) number of patches . Hence, it is a sampling effort 
constrained optimization . 

The sampling quadtrees are computed controlling accuracy by
Kullback-divergence, an information theoretical measure to characterize 
spatial pattern . Several modifications of the current algorithm (with the 
cutting rule tied to maximum contribution to total Kullback-divergence and 
straightforward decomposition) are under investigation, as well as are 
extensions to other, more flexible, hierarchical data structures and links to 
efficient computations of spatial statistical characteristics based on the-size 
distributions (Kummert et al . 1992) . 

We evaluated the performance of the proposed method under various 
levels and different spatial structures of noise and compared the results with 
other (regular square and random) sampling . Reconstructions of two 
dimensional distributions on a regular lattice based on sampling quadtrees
outperform other sampling designs . The more heterogeneous the surface to 
be mapped and the fewer (realistically limited number of) samples taken, the 
more benefit can be gained . 

This study provided the foundations for the sampling and mapping
procedures of the SHEEP project in northeast Hungary. Further studies of the 
efficiency and robustness of this and related methods (e.g ., by pruning the 
quadtree and/or formalizing the correspondence among mapped variables)
will be evaluated and tested in several other test sites . 
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