
�

SUITABILITY OF TOPOLOGICAL DATA STRUCTURES FOR DATA
 
PARALLEL OPERATIONS IN COMPUTER CARTOGRAPHY
 

Bin Li
 
Department of Geography
 

University of Miami
 
Coral Gables, FL 33124-2060
 

Internet : binli@umiami .miami.edu
 

ABSTRACT
 

High performance computing is rapidly evolving towards parallel processing . 
Among various issues in applying parallel processing to computer 
cartography, a major concern is the compatibility between parallel 
computational models and existing cartographic data structures as well as 
algorithms . This paper assesses the suitability of topological data structures 
for Data Parallel Processing in computer cartography. By mapping selected 
cartographic operations to the data parallel model, we found that topological 
data structures, with minor extensions, can support data parallel operations . 
The topological information stored in the cartographic database can be used as 
index vectors for segmented-scan and permutation . To demonstrate this 
approach, the paper describes data parallel implementations of three 
cartographic operations are described, including line generalization, point-in
polygon search, and connectivity matrix construction . 

INTRODUCTION 

The motivation to conduct this research is three-fold . First, recent studies 
have shown the great potential of data parallel processing in computer 
cartography and GIS (Mower, 1992, 1993; Mills et al ., 1992a, 1992b ; Li,1993) . 
While most studies have been conducted in the raster domain, data parallel 
processing in the vector space has received less attention. Due to their spatial 
irregularity, cartographic operations in the vector domain are more difficult 
to adopt to the data parallel computational model. To perform data parallel 
processing, the vector space must be transformed to a regular one through 
specific decompositions such as the uniform grid (Franklin et al ., 1989; Fang 
and Piegl, 1993) . Although the uniform grid is a very efficient data structure 
for many vector operations, one of its drawbacks is the overhead to convert 
the data from and to their original structures . The conversion is necessary in 
the real world situations because few software packages for GIS and computer 
cartography use the uniform grid . It is therefore worthwhile to study the 
suitability of existing vector data structures for data parallel processing . 
Topological data structures are selected in this project because they are the 
most commonly used data structures in GIS software packages . 

Second, large scale applications of the parallel computing technology require 
"enabling technologies" that are based on existing hardware and software 
environment and allow flexible evolutions . Set aside other technical and 
economic conditions for using parallel computing, software developers 
would not adopt strategies that require fundamental changes in existing data 

434 



structures . It is preferable to have solutions that are less costly but can greatly 
increase processing capacity and functionality . One of such solutions is to 
develop add-on software that enables the user to run large GIS applications 
on parallel computers . Such add-on software must provide interface between 
the core modules and the new parallel programs . The interface will be more 
efficient if the existing data structure is compatible with the parallel 
computational model . 

Third, it is conceptually challenging to examine how topological 
representations of geographic space may facilitate data parallel processing in 
cartography . Understanding such relations may help developing new 
insights to solving cartographic problems . 

This paper reports findings on three popular operations in computer 
cartography and GIS . They are line simplification, point-in-polygon search, 
and connectivity matrix construction . The paper describes how data parallel 
procedures can be implemented with topological data structure . It 
emphasizes on whether the selected cartographic algorithms can be expressed 
with data parallel operations without significant alternation on the original 
data structure . 

The topological data structure used in the paper is described in ESRI's GIS 
training book (ESRI, 1990) . Some good references on data parallel processing 
include the article by Hillis et al . (1986), the book by Blelloch (1991), the 
FORTRAN 90 Handbook by Admas et al . (1992), and a number of 
programming manuals from Thinking Machines Corporation (1991a, 1991b) . 

LINE SIMPLIFICATION 

Line simplification is an important operation in cartographic generalization . 
A commonly used procedure is the Douglas-Peucker algorithm (Douglas and 
Peucker, 1973) . Mower (1992) presented strategies to implement the 
algorithm for the data parallel (S-LINE) and the message passing (M-LINE) 
computational model . However, Mower's parallel procedures seem to apply 
to only a single line, which may not be applicable to a vector coverage that has 
more than one line . This section describes a data parallel procedure that 
executes the Douglas-Peucker algorithm on all the lines simultaneously. 

The basic strategy is to store the coordinates of all the points on several long 
vectors, with two start bit vectors defining the boundaries between line 
segments . Prefix scan can then be used to find the significant points in all 
segments. The process iterates until all points are either retained or 
eliminated . 

The operation requires eight vectors : 
" vector X and Y for the original x, y coordinates, 
" vector Xs, Ys, Xe, and Ye for the start and end point coordinates, 
" vector DIST to store the distance from each point to the line that 

links the two end points in each line segment, 
" vector FLAG to record the status of each point on the line . 



����

These vectors are segmented with two start-bit vectors, Sup and S down. 
They specify the boundaries of line segments from the upward (from left to 
right) or the downward (from right to left) direction (Figure 1) . Because new 
significant points are generated in each iteration, the length of these vectors 
are allocated dynamically . 

17 

13 

ARC# X, Y coordinates 

1 (x1, yl) . . . (x10, y10) 
2 (x10, y10) . . . (x13, y13) 
3 (xlo, y10) . . . (x21, y21) 

218J 9 10 10 11 12 13 10 14 20 

0 ~0F-oF-o 0 0 

S-down 

0 1 01 01 
0 

Figure 1. Mapping a line coverage to segmented vectors definedby two start-bits. Vector X 
stores the x coordinates of all the points . The numbers in Xare the IDs of the points . Other 
vectors, including Y, Xs, Ys, Xe, Ye, DIST, and FLAG, have the same structures as X. 

(1) Construct vector X, Y, Sup, and S_down from the arc-coordinate list. 
Generating vector X and Y requires a simple assignment but the start-bit 
vectors need to be constructed with parallel permutation . The parallel indices 
for the permutation are slight modifications of the running-totals of the 
vector "number-of-points" obtained from the arc-coordinate list . These 



������

indices direct the assignment of scalar 1 to the start-bit vector Sup and 
S_down (Figure 2) . 

NumberofPoints 10 4 9
 
Running-total (up) 10 14 23
 
Running-total(down) 23 13 9
 

Running_total(up) + 1 

01 1711 01 

Running-total(down) + 1 

S-down 

0 100 

Figure 2. Constructing the start-bits from the "number-of-points" vector . Because prefix-scan 
with start-bit is direction dependent, two start-bit vectors are needed to define line segments . 

X 

5.0 5.0 6.3 ~ 6.5 

0 001 

Xs 

S-down 

0 0 0 

Xe 

_6 516.5 6.5 -6.5F6 .5 6.5 6.5 6.5 6.5 6.5 

Figure 3. Illustration of the copy-scan operation. Only line segment 1 is shown here. Other line 
segments are marked with "*". Note that the x coordinate of the start point, 0, is distributed to 
all points in segment 1 of Xs ; and the end point coordinate, 6.5, is copied to all locations in 
segment 1 of Xe. 

(2) Assign 1 to positions in vector FLAG that correspond to the start and end 
points . By default, the start and the end points are significant and retained. 



�

(3) Use copy-scan to distribute start/end point coordinates from vector X and 
Y to corresponding line segments in vector Xs, Ys, Xe, Ye (Figure 3) . 

(4) Calculate the distances from each point to the line that links the two end 
points of a corresponding line segment. This step involves element-wise 
operations among vector X, Y, Xs, Ys, Xe, and Ye. The results are stored in 
vector DIST . 

(5) Use maximum-scan to find the longest distance in each segment in DIST. 
Select positions that are greater than the user-specified tolerance, record them 
as significant points in vector FLAG. 

(6) Calculate the new lengthes of the vectors based on the number of new 
significant points found . Since a new significant point becomes a start point 
of one line segment as well as an end point of another, for each new 
significant point, one position must be added to the vectors . The calculation 
can be done with the selection procedure in step (5) . 

(7) Permute the original X, Y coordinates to the new vectors (Figure 4) . 

(8) Update the start-bit vectors so that locations corresponding to the new 
significant points are included as start-bits (Figure 4) . 

(9) Repeat (3) to (8) until all entries in vector FLAG become either 1 or 0 . 
Retain points that have flag value 1 . 

X(old) 

5.0 5.0 6.3 6.5 

6 9 ~10 

0 0 

Figure 4. Newvectors are created in each iteration. Vector Index directs X(new) to obtain 
coordinates in corresponding locations in Mold). The start-bit vector is also updated. Note 
that the new vectors mayhave different length from the previous ones because line segments 
split at the new significant points. 

POINT-IN-POLYGON SEARCH 

Point-in-polygon search can be accomplished by the plumb-line 
algorithm-the search point (X0, YO) is in polygon P if the number of 
intersects between the plumb-line X = XO and P, and above the search point, is 
odd (Monmonier, 1982) . Since intersects are calculated with each link (a line 



����

segment defined by two points), it is necessary to establish the arc-link 
topology (Figure 5) . 

ARC# Link 

1 1,2 
2 3,4 
3 13 
4 5, 6, 7, 8, 9,10 
5 11 
6 12 

Figure 5. The polygon, the search point, and the arc-link topology. 

Once the arc-link topology is built, the linkages between the links and the 
polygons also are established . We can first identify links that intersect with 
the plumb-line above the search point. Then with the topology vectors as 
parallel indices, the number of intersects can be permuted to arcs then to 
polygons . 

(1) Find intersects between the links and the plumb-line . The following
parallel structure is used to accommodate the calculations: 

shape [N]vector; 
struct segment { 

int id ; 
float x1, y1 ; 
float x2, y2; 
int flag; 

1; 
struct segment:vector link; 

illustrated as : 

LINK	 1 2 3 4 5 6 7 8 9 10 11 12 13 
X1 . . . 
Y1 . . . 
X2 . . . 
Y2 . . . 
flag . . 

Each element in LINK stores the link ID, the coordinates of two endpoints,
and a flag to indicate whether the link intersects with the plumb-line . To 
check intersects, the x, y coordinates of the search point are broadcasted to all 
locations in LINK and the calculations are performed simultaneously . Links 
that intersect with the plumb-line above the search point have flag value 1,
others 0 . For the example in figure 5, the intersect flags turn out as follows : 



����������������

0 0 0 0 0 0 1 0 1 1 0 0 0 

(2) Find the number of intersects with each arc (Figure 5) . 
" Use vector Arc-link as the parallel index, get the intersect flags to 

vector Arc-intersect so that the intersect information could be associated with 
each arc . 

" Use vector Arc-ID as the parallel index, combine the number of 
intersects to vector Arc . 

�0Intersect Flag 0 0 0 0 0 0 1 0 1 1, 0 0 

Arc-link 12341356789101112 
Arc-intersect 0 0 0 0 0 0 0 1 0 1 1 0 0 

Arc-ID	 1122 344444 4 5 6 

Arc	 0003 00 
1 2 3 4 5 6 

Figure 6. Using parallel communications to find the number of intersects with each arc. 

(3) Find the number of intersects with each polygon . Similar to the arc-link 
topology, the polygon-arc relation is mapped to vector Polygon-arc and 
Polygon-ID (Figure 7) . Then the same procedures in step 2 are used to 
combine the total number of intersects with each polygon (Figure 8) : 

Polygon Arc 

1 
2 

1, 3, 5 
2, 6, 3 00 

Polygon-arc 
Polygon-ID 

1 
1 

3 5 2 6 3 5 6 4 
1 1 2 2 2 3 3 3 

3 5, 6, 4 

Figure 7. Deriving parallel index vectors from the polygon-arc topology. 

Arc (intersect) 

Polygon-arc 1 3 5 2 6 3 5 6 4 
Polygon (intersect) 0 0 0 0 0 0 0 0 3 

*I I I I I I I I 
Polygon-ID 1 1 1 2 2 2 3 

Polygon	 0 0 3 
1 2 3 

Figure 8. Using parallel communication to find the number of intersections with each polygon. 

" Use vector Polygon-arc as the parallel index, identify which arc 
intersects with the plumb-line . 

" Use vector Polygon-id as the parallel index, combine the number of 



���

intersects to vector Polygon . 

(4) Select from vector Polygon the location that has the odd number of 
intersects . 

CONNECTIVITY MATRIX CONSTRUCTION
 

Connectivity matrix is commonly used in spatial statistics . It is a numerical 
representation of spatial relations for one and two dimensional cartographic
objects . With cartography evolving beyond its traditional scope of mapping
geographic space and relations, spatial connectivity matrix becomes a 
necessary component for inferential cartographic analysis . 

Arc # Left Right 

1 0 1 
2 0 2 
3 0 3 
4 0 4 

4 5 
6 

4 
1 

1 
2 

7 4 2 
8 2 3 
9 3 4 
10 4 5 

0 1 2 3 4 5 0 1 2 3 4 5 

0 0 1 1 1 1 0 0 0 1 1 1 1 0 
1 0 0 1 0 0 0 1 1 0 1 0 1 0 
2 0 0 0 1 0 0 2 1 1 0 1 1 0 
3 0 0 0 0 1 0 3 1 0 1 0 1 0 
4 0 1 1 0 0 1 4 1 1 1 1 0 1 
5 0 0 0 0 0 0 5 0 0 0 0 1 0 

Figure 9. Constructing a connectivity matrix from the left-right topology . 

The following describes how the left-right topology can accommodate data 
parallel construction of the connectivity matrix for a polygon coverage . The 
procedure is straight-forward-the two polygons that share the same arc are 
connected . In addition, an arc cannot be shared by more than two polygons . 
Therefore, given vector LEFT and RIGHT, LEFT(i) and RIGHT(i) are 
neighboring polygons (Figure 9a) . In other words, the LEFT and RIGHT 
vector actually serve as the indices for the two dimensional connectivity
matrix. Using the FORALL construct in FORTRAN90, the relations between 
the connectivity matrix and the LEFT and RIGHT vector can be expressed as : 

FORALL (i = 1:N) C mat(LEFT(i), RIGHT(i)) = 1 



�

where C-mat is an N-by-N binary matrix, with 0 and 1 indicating the 
connectivity between two polygons (Figure 9b) . A complete C-mat is 
obtained by combining with its transpose; i.e ., 

C-mat = TRANSPOSE(C mat) + C-mat 

where TRANSPOSE is an intrinsic function in FORTRAN90 (Figure 9c) . 

SUMMARY 

This preliminary study found that the topological data structure sufficiently 
supports data parallel implementation of three cartographic operations . First, 
the topologies stored in the vector cartographic database can be used as 
parallel indices to establish hierarchical relations among cartographic objects . 
For instance, using the arc-link topology as the parallel index, an arc vector 
can be easily constructed from the link vector . Similarly, a polygon vector can 
be built with the polygon-arc topology . The following C* statement express 
the hierarchical relations among cartographic objects : 

ARC = [ARC LINK] LINK; 
POLYGON = [POLY ARC]ARC; 

Such linkages also channel information among cartographic objects from one 
level to another . The section on point-in-polygon search showed how the 
number of intersects can be accumulated from links to polygons . 

Second, vectors that define segments for parallel prefix scan operations are 
also generated from topological information in the original database . 
Segmented scan makes it possible to execute accumulative operations 
simultaneously on all units of such cartographic objects as arc and polygon . 
The boundaries between cartographic objects are defined with two 
approaches, using the start-bit vector or the ID vector. Both are generated 
from the original topological information . With these vectors, many 
cartographic algorithms can be implemented with segmented prefix-scan 
which we used as the primary operation for line simplification . 

Findings from this study should be applicable to data parallel 
implementations of other vector-oriented operations in analytical 
cartography, such as polygon overlay and network analysis . They also should 
be useful for assessing the technical feasibility of data parallel processing in 
the vector domain. 

ACKNOWLEDGEMENT 

The author wishes to thank the Northeast Parallel Architecture Center at 
Syracuse University for providing the computer hardware and technical 
supports . 



REFERENCES 

Adams, J ., et al., 1992, FORTRAN 90 Handbook, Complete ANSI/ISO 
Reference, McGraw-Hill Book Company, New York . 

Blelloch, G., 1991, Vector Models for Data-Parallel Computing, MIT Press, 
Cambridge, MA. 

Douglas, D. H. and T . K . Peucker, 1973, Algorithms for the Reduction of the 
Number of Points Required to Represent a Digitized Line or its Caricature : 
The Canadian Cartographer, Vol . 10, No . 2, pp . 112-122 . 

ESRI, 1990, Understanding GIS, ESRI Inc ., Redland, CA. 

Fang, T. P ., and L . Piegl, 1993, Delaunay Triangulation Using a Uniform Grid : 
IEEE Computer Graphics and Applications,. Vol. 13, pp . 36-47 . 

Franklin, R., et al., 1989, Uniform Grids : A Technique for Intersection 
Detection on Serial and Parallel Machines : Auto Carto 9, Proceedings, Ninth 
International Symposium on Computer-Assisted CartogrTy, Baltimore, 
MD, pp . 100-109 . 

Hillis, D., and G . L . Steele, Jr ., 1986, Data Parallel Algorithms : 
Communications of ACM, Vol . 29, pp . 1170-1183. 

Li, Bin, 1993, Opportunities and Challenges of Parallel Processing in Spatial 
Data Analysis : Initial Experiments with Data Parallel Map Analysis, Doctoral 
Dissertation, Department of Geography, Syracuse University, Syracuse, NY. 

Mills, K., et al ., 1992a, Implementing an Intervisibility Analysis Model on a 
Parallel Computing System : Computers & Geosciences, Vol. 18, pp . 1047-1054 . 

Mills, K., et al., 1992b, GORDIUS : A Data Parallel Algorithm for Spatial Data 
Conversion : SCCS-310 , Syracuse University, Syracuse, NY. 

Monmonier, M., 1982, Computer Assisted Cartography : Principles and 
Prospects . Prentice Hall, Englewood Cliffs, NJ . 

Mower, J., 1992, Building a GIS for Parallel Computing Environment: 
Proceedings of the 5th International Symposium on Spatial Data Handling , 
Charleston, SC, pp . 219-229 . 

Mower, J ., 1993, Automated Feature and Name Placement on Parallel 
Computers : Cartography and Geographic Information Systems, Vol . 20, No . 2, 
pp . 69-82 . 

Thinking Machines Corporation, 1991a, Programming in FORTRAN, 
Cambridge, MA. 

Thinking Machines Corporation, 1991b, Programming in C*, Cambridge, MA. 






