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ABSTRACT
 

Data structures for automated cartography traditionally have been based on either 
vector or tessellation models. We describe a set of topological abstractions, derived 
from a vector approach to the representation of geographic space, that were developed 
to support the interactive solution of location-selection problems . When augmented 
with an appropriate representation of geometry, these abstractions are used to generate 
cartographic displays that support interactive decision-making. The advantages of this 
approach include : the use of the same data abstractions for analysis and display 
purposes ; support for multiple representations ofnetworks and, therefore, a degree of 
scale independence ; and, finally, support for highly interactive problem-solving and 
decision-making because map generation can be decomposed into parallel processes. 

1.0 INTRODUCTION 

Decision-makers faced with ill-structured social and environmental spatial problems 
increasingly are adopting spatial decision support systems (SDSS) to help them find 
solutions. When decision-makers try to resolve such problems, they can work within 
four spaces (Densham and Goodchild, 1990). 

o	 Objective space contains all feasible options available for a given problem. 

o	 Decision space is bounded by the decision-maker's knowledge, objectives and 
values. It contains those options considered feasible by the decision-maker . 

o	 Model space is determined, for a given model, by its variables and their values, 
its parameter values, and the relationships represented in the model. 

o	 Geographic space provides a context for a decision and is depicted using 
cartographic and other graphical representations. Because of its richness and 
complexity, geographical space is abstracted and represented in objective, 
decision and model spaces . 

For any given problem, SDSS users normally wish to use the system to help them 
explore their decision space. Because an individual's decision space typically is some 
subset of objective space, the challenge facing SDSS designers is to empower their 
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users and to expand their decision space to include much of the objective space. One 
approach to this challenge is to provide users with modelling capabilities and 
complementary representations ofgeographic space; in concert, these representations
enable users to evaluate solutions from models using their expertise, objectives and
values by synthesizing mathematical and cartographic representations of a problem. 

Despite the emphasis on exploring decision spaces in the SDSS literature, many
current systems support a process of decision-making in which graphical
representations play a very restricted role (Densham, 1993a) . This process often
follows more traditional modes of GIS use, in which a system's capabilities are
sequenced in a linear, "work-flow" approach that results in a final graphical product.
To explore a decision space, however, decision-makers require a series of capabilities,
consisting of both analytical and graphical representations, that can be combined in
flexible sequences. Moreover, decision-makers increasingly wish to interact with a 
system through any of the representations of a problem that it provides . For example,
in our applied work with decision-makers we often display a map of a locational
configuration and listen as they articulate questions. In most cases, such questions
would be answered if the user could manipulate the graphic directly - by dragging a
facility to a new location, by adding or removing a facility, or making some other
change - and the system would respond by invoking the appropriate analytical
capability. While such linkages are very similar to those found in the direct
manipulation interfaces of word processors and object-based drawing packages, they
typically are missing from geoprocessing software . Consequently, we listen as
decision-makers articulate their questions and move their fingers across the screen to
illustrate the kinds of actions they would like to make ; we then try to translate these
questions into an appropriate sequence of analytical operations. 

In this paper, we show how multiple topological structures can be used to represent
the analytical and cartographic components of a range of location-selection problems .
These structures support bi-directional linkages between the analytical and
cartographic representations of problems. As such, they provide a foundation for
building a SDSS that supports a visual and interactive approach to decision-making ; 
one that synthesizes the goal-seeking nature of traditional analytical modelling with the
intuitive "what-if"approach supported by GIS. 

2.0 REPRESENTATIONS 

Historically, there have been conceptual and practical issues that have conditioned
approaches to the representation of geographical relationships . These issues have been 
addressed in different ways by cartographers and spatial analysts. One dimension on
which to measure such differences is the level of abstraction used in representing
space, spatial relationships and thematic information . Cartographers have attempted to
provide map users with appropriate, and often detailed, geometrical representations of 
space. Spatial analysts, on the other hand, have tended to employ highly abstracted
representations of spatial relationships in their models. In extreme cases, only an
abstracted form of topology is maintained and geometry is discarded completely - the
origin-destination matrix is a prime example. While these abstracted relationships
often are derived from detailed cartographic information, the extreme parsimony ofthe
derived information has tended to preclude effective display. As a consequence of
these differences, separate data structures have been developed for graphical and
analytical purposes. 

Cartographic data structures have benefitted from many years of development in the
fields of automated cartography and GIS (e .g . Peucker and Chrisman, 1975). In 
contrast, analytical data structures reflect the "black-box" nature of modelling tools:
analytical structures are often ad hoc and code-specific with little or no attention paid
to placing them in a broader representational context . This results, in part, from the
"stand-alone" nature of many custom-written modelling tools and the often scant 
attention paid to visualization by spatial analysts . Furthermore, the use of commercial
modelling and analysis packages (including SAS, SPSS and GAUSS) often forces 



spatial analysts to remove the geometry from their problems to make them fit the 
available representations and structures . Paradoxically, it is the very domain­
independence of their representations and structures that makes these packages feasible 
commercially. In contrast, cartographic data structures have evolved to reflect and 
accommodate the standard set of spatial primitives around which most GIS are built. 
Thus, points, lines, areas, and raster cells are well-defined, and theirrepresentations in 
GIS that support both operations and display have been refined over twenty years. 
Despite these refinements, recent changes in software technology have caused 
researchers to view these structures as collections of objects . Unfortunately, spatial
analysts have paid little attention to the identification and definition ofthe spatial
primitives and objects which underlie their algorithms and models. Consequently,
analytical objects normally are not the same as display objects in either their structure, 
content or function. This variation has, in part, led to an asymmetry: the display of 
cartographic objects must reflect the current status of analytical objects (e .g. which 
ones are facilities) but analytical objects typically carry little or no geometrical
information and often only abstracted topological information that can be used to link 
them to cartographic objects . 

3.0 VISUAL INTERACTIVE LOCATIONAL ANALYSIS 

Decision-makers increasingly work in microcomputer environments for which a 
plethora of word-processors, spreadsheets, drawing and charting packages, and 
database management systems have been developed to support multiple forms of user 
interaction . Such software increasingly links graphics to other forms of representation
and provides mechanisms for their direct manipulation, including drag-and-drop
editing. For example, if a user changes the cost of a raw material in a spreadsheet cell, 
a graphic that depicts forecasted profits is updated automatically . The power of 
complementary analytical and graphical representations that have been designed to 
enhance a decision-maker's understanding of a problem has been recognized in many
disciplines . Operations researchers, for example, have developed graphical methods 
for both formulating and interacting with analytical models . These visual interactive 
modelling (VIM, Hurrion, 1986) tools typically support bi-directional linkages among
representations . Thus, using a spreadsheet analogy, users could either change the value 
of a cell and see the graphic updated, or they could manipulate the graphic and see the 
cells in the spreadsheetupdated. In a GIS, maps are used to support spatial query. 
This form of linkage, however, normally is found only between the database and 
graphics capabilities of a GIS and bi-directional linkages typically are not a part of 
systems that couple GIS and spatial models . This is particularly true of systems
coupling locational analysis capabilities with those ofGIS (Densham, 1993a) . 

Akey component of aVIM environment for locational analysis is the user interface . 
Ideally, this interface supports representations of all four spaces in which decision­
makers work: objective, decision, model and geographic . Although a GIS might 
represent geographic space using a variety of abstractions, the general absence of 
modelling capabilities from these systems means that they lack representations 
designed explicitly for objective space, decision space and model space. Furthermore, 
an interface must support both goal-seeking and "what-if'modes of system use, 
blending analytical and intuitive approaches to problem-solving . To understand better 
the issues and problems that must be addressed in designing an interface to represent
these spaces, we have designed a model interface (Armstrong, Densham and Lolonis, 
1991) for use in redistricting applications . This interface supports bi-directional 
linkages among graphical displays and analytical capabilities, and direct manipulation
of its linked representations. 

The interface consists of three windows that display complementary maps, graphs
and tables. Used together, these representations provide substantialamounts of 
information about the four spaces in which decision-makers work. For example, the 
mapwindow may display current facility locations, and the allocations of demand to 
them, while the graph window contains a histogram offacility workloads and the table 
window lists facility attributes. If a decision-maker wishes to investigate the effects of 



adding a new facility, two approaches can be used. The first (goal-seeking) approach,
is to select a command from a menu that identifies the optimal location for the facility
and updates all three windows appropriately. The second (intuitive) approach enables
the user to specify the location for the facility by pointing to a candidate location . In
this latter case, the map window first must be updated to show existing facilities and all
the candidate facility locations that have been identified; the user selects one of these 
locations and all three windows are then updated to show facility locations and 
allocations ofdemand, facility workloads, and facility attributes for the new
configuration . In both approaches, the user can confirm the addition of the new facility
orreject it, returning the windows to their original state. 

Direct manipulation of the interface's representations is used in other contexts . For 
example, if decision-makers want to investigate the effects ofrelocating a facility, they
may simply click on a facility symbol and drag it to a new location. The allocations of 
demand are recalculated, redisplayed, and the other windows also are updated to reflect 
the requested change. In another context, the capacity of a facility maybe changed by
dragging its bar in the workload histogram to a new level; again, the system
automatically recalculates the changes and displays them . 

Despite its utility, this interface has shortcomings . An extra window is required to
 
support direct interaction with the underlying analytical operations : the user could set

model parameters using either a dialogue box or by manipulating the contents of a
 
graphical display. This window also could be used to stop a model during its solution
 
to change its parameters or to force a particular candidate to be a facility site. This
 
process would be facilitated by animating the solution process, providing a pedagogic

tool that would enable a user to see the current best configuration and its attributes .
 

4.0 INTEGRATINGCARTOGRAPHY AND LOCATIONAL ANALYSIS 

Designers of a visual interactive modelling environment must address issues beyond
the design ofthe interface. First, every operation supported by the interface has
implications for the database management system (DBMS) which must provide data
for query, analysis and display and must be able to accommodate the results of
analyses. Second, data structures must be identified that support both analytical and 
display operations. Finally, to facilitate human-computer interaction, mechanisms for 
updating displays in real-time are required. 

4.1 Data Structures 
Because analytical and display objects often are different in structure, content and

function, a central issue in coupling GIS with analytical software is the resolution of
object differences between them (Nyerges, 1992). One approach to solving this 
problem is to employ formal methods for modelling entities and their relationships.
Armstrong and Densham (1990) developed Entity-Category-Relationship (ECR)
diagrams of two different "user" views ofa SDSS database : a cartographic perspective 
and a locational analysis view. The integration of these two views at a conceptual
level required that object differences be resolved. The resulting conceptual design was
used with database management software to develop a logical schema and, ultimately,
to implement a database . 

Several specially-designed relationships and record types are used in the 
implemented database to minimize search and retrieval to support both analysis and
display. To indicate which points in the database are also nodes on the network used
for locational analysis, a record called "L A Nodes" is used. This record obviates 
searching all of the points in the database, many of which are not part of the network,
to retrieve the network's geometry and topology . To increase the utility of these data
after retrieval, relationships are used to indicate the linkages among nodes on the
network, sorted in order of network node (L A Nodes) identifiers. Sorting these items
in the DBMS means that they do not have to be sorted after every retrieval and before
they can be processed using a shortest path algorithm. Furthermore, these relationships 



Figure 1. Candidate and demand strings 

The network is 
labelled for 
Dijkstra's shortest 
path algorithm ­
node 1 is the origin,
all other nodes are 
destinations . 
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also facilitate the identification and retrieval of chains depicting network links for 
display purposes . 

The data structures used to support analytical and display operations are critical in a 
VIM environment. These data structures must facilitate both goal-seeking and "what­
if' forms of analysis, including the generation and evaluation of configurations of 
facilities and their associated demand sets . Unless these structures also support 
display, there is a strong possibility that versioning problems will arise - at any point in 
time, the mathematical representation ofthe problem is different from the cartographic 
one. To support the interface described above, andVIM for locational analysis more 
generally, we are employing data structures developed to support interactive locational 
analysis . 

Two types of data structures have been used to develop a series of analytical 
operations that can be sequenced to implement heuristic location-allocation algorithms . 
The first structure, the allocation table (Densham and Rushton, 1992a), is a spatial 
accounting mechanism; it records the closest and second-closest facilities to every 
demand location . The second structure, the distance string, comes in two forms: 
candidate strings (Hillsman, 1980) and demand strings (Goodchild and Noronha, 
1983). Both types of distance string store information about feasible interactions 



Figure 2. The allocation table 
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among demand locations and candidate facility locations. Although every demand 
node has a demand string, only candidate nodes (potential facility locations) have 
candidate strings. 

Figure 1 depicts a small, ten-node network with five candidate locations (nodes 1, 4, 
8, 9 and 10) and the associated candidate and demand strings for node 1. The format 
of the strings is the same : a header row with four fields and two rows with fields 
containing node identifiers and weighted distances (w idi,) respectively . The wi term 
represents the weight or demand at node i; the "distance between demand node i and 
candidate j is represented by did . (Here, did will be used to denote physical distance but 
it can be used to represent travel cost, travel time, and other measures of spatial
separation.) Ademand string records the weighted distances from the demand (base)
node to all of the candidates that may serve it if they become facility sites . Acandidate 
string stores the weighted distances to all of the demand nodes that the candidate (base 
node) may serve if it becomes a facility site. In both types of strings, entries are sorted 
in ascending order of did , the measure of spatial separation . This ordering facilitates 
search and retrieval by proximity, rather than by node identifiers . Although a complete 
set ofcandidate and demand strings contains the same information, they are organized 
to optimize different forms of data retrieval. Demand strings are used to answer the 
question "What is the closest facility to this demand node?" In contrast, candidate 
strings answer the question "Which demand nodes can this candidate serve if it 
becomes a facility?" 

An allocation table consists of six rows and n columns, where n is the number of 
demand nodes on the network. For each demand node, the first two rows of the table 
store, respectively, the node identifier of, and the associated weighted distance to, the 
closest facility; similarly, the third and fourth rows store the identifier of, and the 
weighted distance to, the second-closest facility . The fifth and sixth rows of the table 
are used to evaluate alternative locational configurations that are different from those 
represented in rows one to four. Figure 2 depicts the first four rows of the allocation 
table for the network introduced in Figure 1 with facilities sited at candidates 1, 4 and 
10. An allocation table can be built in two ways: first, by searching along every 
demand string to find the identifiers of the first two candidates which are facility sites; 



and, second, by comparing the weighted distance for each demand node in the 
facilities' candidate strings. 

In concert, an allocation table and a set ofcandidate and demand strings provide a 
flexible representation of a locational problem. Densham and Rushton (1992a, 1992b)
show how three heuristic location-allocation algorithms can be implemented using five 
operations defined upon distance strings and the allocation table. Amicrocomputer­
based software package implementing these three algorithms has been developed
around these data structures and operations (Densham, 1992). By defining a few 
additional operations, these data structures also support a further four algorithms
(Densham, 1993b). 

4.2 Generating Spider Maps
We have developed a taxonomy of cartographic displays that can be used to depict

the results of different queries and analyses to decision-makers (Armstrong et al ., 
1992). Each of these maps is suited to answering different questions that decision­
makers articluate as they investigate location-selection problems . A "spider map," for 
example, is used to show the allocation of a dispersed set of demand to a smaller set of 
facilities; it can be used to depict an existing locational configuration or to show the 
results of analyses, both goal-seeking and intuitive. A canonical spider map links each 
demand node to its allocated facility with a straight line . The display of such a map
requires geometrical, topological and thematic information: thematic information is 
used to differentiate among facility locations and demand node locations; geometrical
information is used to locate both facilities and demand nodes in space; and, finally,
topological information is used to link the demand nodes to the facilities. While 
distance strings and the allocation table can supply some of this information, the 
remainder must come from other sources . 

The geometry of a network normally is discarded as a shortest path algorithm 
generates distance strings. This occurs because strings record only those allocations of 
demand nodes to candidates that are feasible using one or more criteria. Although the 
spatial separation of demand nodes and candidates is captured in their widij values, did 
may represent various metrics of spatial separation and the resulting proximity values 
may bear little relationship to network geometry. Thus, only an abstracted form of the 
network's topology is retained : pairs ofcandidates and demand nodes that potentially 
can fill the roles of service provider and client. Although the allocation table is built 
from information stored in the strings, it contains two other pieces of information 
required to generate spider maps . First, the allocation table contains thematic 
information about which candidates are facility sites and, second, topological
information that describes the allocation of demand nodes to these sites. The missing
element is the geometrical data - the locations in space ofeach demand node and 
facility. 

Anetwork's geometry and full topology are required by the shortest path algorithm 
to build distance strings . In both the PLACE (Goodchild and Noronha, 1983) and 
LADSS(Densham, 1992) packages, these data are stored in two files: the links file 
contains the topology, while the geometry of the nodes and their thematic information 
are stored in the nodes file. The links file contains one record for every node on the 
network. Each record stores the node's identifier; its valency (the number of network 
links for which it is a node); the identifiers of the nodes at the other end of its links 
(sorted in ascending order of identifier) ; and the corresponding link lengths. The nodes 
file is a table that contains one, six-field record for every node in the links file . The 
fields in each record store a node's : identifier ; region identifier (a polygon representing 
a census tract, for example) ; weight or demand ; candidacy (1 if it is a candidate, 0 
otherwise) ; X coordinate; andY coordinate . The contents of these two files can be 
retrieved from the database described above. Moreover, because of the organization of 
these data in the DBMS, they do not have to be sorted before they can be used by the 
shortest path algorithm (Armstrong and Densham, 1991). Thus, the geometrical data 
required to generate a vector spider map can be retrieved directly from the database, 
from the nodes file on disk, or from a data structure in RAM. 



Figure 3. A spider map showing allocations and flows along network links 

In many situations, a spider map that depicts the actual paths taken through the 
network enables a decision-maker to understand better the consequences of selecting a 
particular locational configuration . Figure 3 shows a network-based spider map that 
depicts the aggregate flows of demand along each link (McKinney, 1991). Producing
such a map requires all ofthe information used for a vector spider map, plus a list of 
the links that form the paths between each demand node and its closest facility. 
Although a shortest path algorithm (for example, Dijkstra, 1968) identifies these paths 
as it builds the distance strings, all the paths underlying a string are discarded once it 
has been built. Consider, for example, a network of 100 nodes arranged as a ten-by-ten
lattice . If all of the nodes have positive weights and also are candidates, then each 
candidate and demand string has 100 entries . The paths underlying a complete set of 
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candidate and demand strings for this network traverse 66,000 links, all of which 
would have to be stored. A 100 node network is tiny when compared with the digital
network data sets available from various sources, including TIGER files, and storing
paths for such networks would require large amounts of storage . Furthermore, many of 
these paths will never be required . Ifwe consider locating one facility at a corner of 
the 100 node lattice, only 100 of the 10,000 paths will be required to generate the 
spider map - traversing only 900 links. 

An alternative to storing the paths is to reconstruct them when they are required. 
This option is attractive because the amount ofcomputation required to build the paths
for a network-based spider mapnormally is very much less than that required to 
construct a set ofcandidate and demand strings . Building a set of candidate and 
demand strings requires multiple paths to be generated per demand node, one for every
candidate site on the network to which the node feasibly can be assigned. The spider 
map, in contrast, requires the generation of only one path per demand node, depicting
the route from the node to its associated facility . The allocation table provides a list of 
the nodes that are allocated to each facility . To generate the paths linking each demand 
node to its associated facility, a shortest path algorithm can be used . Because the 
identifiers of the facilities and of their assigned demand nodes are known, the amount 
of searching performed by the shortest path algorithm is reduced. This is achieved by
searching outward from a facility site only until every demand node allocated to the 
facility has been reached. Thus, supplementing the distance strings and the allocation 
table with the contents of the nodes and links files provides all the information required 
to generate a network-based spider map. 

For very large networks, the computation required to build even one candidate or 
demand string can be considerable . Consequently, we have investigated the use of 
parallel processing to increase computational throughput and, thereby, decrease the 
solution times of locational analysis algorithms. We have developed a series of 
strategies for decomposing spatial algorithms into parallel processes (Armstrong and 
Densham, 1992; Ding, 1993). These strategies have been used to develop parallel
processing versions ofDijkstra's algorithm (Ding et al., 1992; Ding, 1993). Parallel 
processing can be used to reduce the time required to generate the paths depicted in a 
network-based spider map. Each facility, its associated list of demand nodes, and the 
contents of the nodes and links files can be passed to a separate processor. After 
generating the required paths, each processor can then aggregate the demand flows 
over each link, returning a list of links traversed and the associated volume of demand. 
The cartographic chain representing each link can then be retrieved from the database 
and drawn in an appropriate hue (McKinney, 1991) to depict the demand flow. 

1 Interactive Modellin 
The addition of a new facility to an existing configuration changes the allocations of 

at least some demand nodes to facilities, requiring the update of a spider map. Using
the methods described above, the following course ofaction occurs if a decision-maker 
adds a new facility: 

1)	 The decision-maker clicks on a candidate facility site to locate a new facility
there. 

2)	 The SDSS responds by adding the new facility to the allocation table and 
updating its contents . 

3)	 The first row ofthe allocation table and the contents of the nodes and links files 
are used to generate the paths through the network that will be depicted in a 
network-based spider map. 

4)	 The paths, their associated lists of links and demand flows, are used to query
the database and to redraw the spider map. 

5)	 The contents of the graph and table windows also are updated. 
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By applying some knowledge about the spatial structure of a location-allocation model 
to step 3, it is possible to determine which nodes will be reallocated when the new 
facility is added (Densham and Rushton, 1992a) . This knowledge can be used, first, to 
generate paths only for these reallocated nodes and, second, to recalculate the 
aggregate demand flows over affected links, further reducing the amount of 
computation required to generate the spider map. 

A similar process is used when the decision-maker either relocates a facility by 
dragging it across the screen, or removes a facility from the configuration. The only 
changes occur in step 3 because a different set of operations are applied to the 
allocation table and distance strings. These operations determine the effects ofthe 
relocation or facility removal on the allocations of demand nodes to facilities and the 
value ofthe objective function . 

5.0 CONCLUSIONS 

We have shown how abstracted topological data structures, used for locational 
analysis, can be supplemented with geometrical and topological information to produce 
cartographic displays. Several advantages are realized when this approach to map 
generation is adopted. First, the same data abstractions are used for analysis and 
display purposes, obviating versioning problems. Second, the data abstractions can be 
implemented as objects with both analytical and display methods. Third, a degree of 
scale independence results because this approach supports multiple representations of 
networks. Fourth, this approach is suitable for highly interactive problem-solving and 
decision-making because many of the components of spider maps, and other maps used 
in locational decision-making, can be generated independently and can be decomposed 
into parallel processes. Finally, in a pedagogic context, the solution processes to 
various algorithms can be animated to depict different spatial search strategies. 
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