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Abstract 

The problem of cross country movement planning is to find the least cost 
path between a source and a destination given a polygonal partitioning of 
the plane. This paper presents the comparison between a vector-based algo­
rithm and several raster-based algorithms for solving the cross country move­
ment planning problem. Besides three known raster methods (standard, more­
connected, and quadtree), a new method, extended raster approach, has been 
designed and implemented . The latter finds better solutions because of the 
higher degree of freedom when moving through a rasterized terrain, that is, 
more directions can be followed. The vector method of Mitchell and Papadim­
itriou has also been implemented for comparison . Assuming a reasonable sized 
terrain with a reasonable accuracy all methods have performance problems . 
Therefore, a hierarchical approach is presented which can be applied in both 
the vector and raster domain . This approach will find the optimal path in 
contrast to other hierarchical approaches, which do not guarantee to find the 
optimal path, but often return a good path . The performance improvement 
should make the hierarchical approach suitable for interactive movement plan­
ning tasks. 

Introduction 

The cross country movement (CCM) problem is also known as the Weighted Region 
(Least Cost Path) Problem [15, 22] . The unit cost of traversing a given region (poly­
gon) is uniform within the region, but varies between regions and is based on soil, 
vegetation, and so on . Finding an optimal path, that is, locating a corridor from a 
given source location to a given destination location [3, 6, 10] is not only used for 
travelling . It can also be applied in other planning situations, such as building high­
ways, railways, pipelines and other transport systems. The cost function is based on 
optimization criteria such as time, safety, fuel usage, impact, length, etc . Note that 
the CCM-problem is very different from the more common linear route planning in a 
road network, because the cost of using an element (polygon) is not fixed . 

Section 2 contains the description of four different raster-based algorithms for the 
CCM planning problem. The vector-based approach of Mitchell and Papadimitriou 
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[15] follows in Section 3. Section 4 contains details with respect to the implementation, 
some test results, and a comparison of the different methods. All presented solutions 
require a lot of time and space when using realistic data sets . Therefore, an exact 
solution hierarchical approach is given in Section 5 . Finally, conclusions and future 
work are described in the last section . 

2 Raster CCM Algorithms 
The first type of solution to the CCM-problem begins with superimposing a regular 
rectangular grid on the plane 1. The sampling theories of Shannon, Whittaker and 
Nyquist [11, 17] state that the gridsize should be at least 2v'-2- times smaller than the 
smallest detail to be kept . After the rasterization a suitability score (weight or cost 
value) is assigned to each grid-cell. This value represents the "cost per unit distance" 
travelling inside a cell . Several techniques, such as the Delphi Method and the No­
minal Group Technique [9], have been developed to assign the scores . These scores 
are determined by several geographic variables such as soil type, obstacles, vegetation 
and overgrowth . Other factors that influence the score are weather conditions and 
means of transportation : foot, bike, car, tank, etc. 

Several raster-based algorithms for finding the shortest path' have been developed. 
All algorithms are based on making a graph with nodes (e .g . raster cells) and implicit 
edges, the possible movements between the nodes. Then the Dijkstra [1, 4] graph 
search algorithm is used to find the optimal path . Other search techniques could be 
used instead, e.g . based on heuristics : A*-algorithm [8] . The main difference between 
the algorithms is the assignment of nodes and edges: 

9 standard 4-connected rasters : only rook's moves on a chess board are allowed; 
see Subsection 2.1 ; 

more-connected rasters [3, 6, 10] : 8-connected rasters (queen's move are also 
allowed), 16-connected rasters (queen's+knight's moves), 32-, 64- and 128­
connected; see Subsection 2.2 ; 

extended raster : this new method extends the number of possible angles to 
move from one individual grid cell to one of its 8-connected neighbors; see 
Subsection 2.3 ; 

9 quadtree [20] based rasters in order to save memory space; see Subsection 2.4 . 

2.1 Standard Raster Distortions 
A number of geometric distortions can be distinguished in the paths produced on 
a standard raster grid : elongation, deviation and proximity distortion [6, 10] . In 
Fig. 1 a raster of a uniform terrain, i.e . each cell having the same suitability score, is 
visualized . A route is planned from raster cell s to raster cell t. The path which is as 
close as possible to the continuous-space path (see Fig. 3), is a stair-stepped route. 
The elongation error E is defined as the ratio of the cost of the calculated shortest 
path to the cost of the continuous-space path ; e.g . in Fig. 1, E = 2/Vf2_ = Vf2_, that 
is, the calculated shortest path on a 4-connected raster is approximately 41 per cent 
longer than the continuous-space path . 

'An alternative grid is a honeycomb grid in which each hexagon has six neighbors [12] . 
2 The term "shortest path" has the same meaning as "optimal path" in this paper . 
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Fig . 1 : Stairs effect . Fig . 2 : Max deviation . Fig . 3 : Real distance . 

In general, on a uniform grid, the shortest path will make moves in at most two 
directions . The maximum deviation error 6 occurs when all moves in one direction 
are executed first ; e .g . in Fig . 2, 6 = 0.5 times the continuous-space path . Note that 
paths in Fig . 1 and 2 have the same elongation error . 

Proximity distortion occurs from the fact that suitability scores are usually calculated 
for each cell independently of its neighbors . In this way paths can be found which 
are calculated optimal, but the influence of their neighborhood is ignored . Therefore, 
paths trough a cheap narrow strip will get the same cost value as paths trough a large 
uniform terrain . The problem of proximity distortion can be solved by performing a 
smoothing operation on the suitability score matrix . Note that only the score matrix 
changes and that the actual problem of route planning does not change . 

2 .2 More-Connected Rasters 

An approach to reduce the distortions in the standard raster is to extend the number 
of directions a route can follow from each cell . If new implicit edges (queen's moves) 
are also inserted between every two already existing edges, then a 8-connected raster 
is created ; see Fig. 4 . This process can be repeated to obtain a 16-connected raster 
by adding the knight's moves (Fig. 5) and repeated again to obtain a 32-connected 
raster ; see Fig. 6 . In the same manner 64- and 128-connected rasters can be created . 
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Fig . 4 : 8-connected . Fig . 5 : 16-connected . Fig . 6 :32-connected . 

In a uniform terrain, the increment in directional possibilities leads to better shortest 
paths, not only intuitively (Fig . 7, 8, and 9), but also mathematically [10] ; see Fig . 10 . 
Fig . 11 visualizes the difference in shortest paths found with different connected raster 
approaches in a simple terrain . The more-connected raster approach has also several 
drawbacks . The computation of the cost of an edge is more complicated, because 
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an edge may pass several cells with line segments with different lengths [24] . Fur­
thermore, more-connected rasters imply more dense graphs, which result in longer 
computation times . 

Fig. 7 : 4-connected . Fig . 8 : 8-connected. Fig . 9 : 16-connected . 

Another drawback is that in a non-uniform terrain certain desired angles may be 
expensive, because the longer edges may also pass very expensive cells . Perhaps the 
most surprising drawback of the 16- and more-connected raster cell approach is that 
intersecting paths are possible . One expects that when two shortest paths meet that 
they will converge and continue as one path to the source . In Fig. 12 .a an example
of two intersecting paths is given . In this figure the dark colored raster cells have a 
higher suitability score than the light colored raster cells . 

Maximum Maximum 
connect Elongation E ~ Deviation S 

4 1.41421 0.50000 
8 II 1 .08239 0 .20710 
16 1.02749 0.11803 
32 1.01308 0.08114 
64 I 1 .00755 0.06155 
128 1 .00489 0.04951 

Fig . 10 : Maximum elongation and maxi­
mum deviation errors . Fig . 11 : 4-, 8-, and 16-connected paths .
 

2 .3 Extended Raster Approach 

The extended raster approach solves the problem of intersecting paths and possibly 
too expensive angles because of long edges by defining graph nodes at the sides of the 
raster cells instead of at the centers of the raster cells ; see Fig . 12 . By varying the 
number of graph nodes on the sides of the raster cells the number of allowed directions 
can be varied . Nodes in the center of raster cells (or anywhere inside a raster cell) 
are not necessary, because according to Snell's law of refraction of light, paths within 
uniform areas are always straight lines ; see Subsection 3 .2 . Note that in the extended 
raster approach there are two kind of nodes : data nodes, which correspond to raster 
cells and search nodes, which are located on the boundaries of the raster cells . 
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a. ?.4 edges from a corner b. 18 edges from intermediate a. b. search node . search nodes. 

Fig. 12 : Intersection and fusion . Fig. 13 : 2 intermediate nodes. 

The total number of search nodes ns on a square raster of nxn raster cells (data nodes) 
with i intermediate search nodes on each side of a raster cell is n,q = (2i+1)n2+(2i+ 
2)n+1 . In the graph, the total number of edges is I EI = 2(3i2+5i+2)n2+2(i+l)n 
2(3i + 2)(i + 1)n2. Note that the number of directions which can be followed from 
each corner search node differs from the number of directions which can be followed 
from each intermediate search node ; see Figs . 13 .a and 13.b . The search graph of 
the extended raster approach without intermediate search nodes can be compared to 
the search graph of the 8-connected raster approach . The higher degree of freedom 
with the increasing number of intermediate search nodes i is visualized in a uniform 
terrain in Fig. 14, 15, and 16 . However, the same improvement is also obtained in 
non-uniform terrains in contrast to the more-connected approach . 

Another advantage of the extended raster method is that each edge is contained in 
exactly one raster cell . The movement cost of such an edge is calculated depending on 
the length and on the suitability score of only one raster cell . Horizontal or vertical 
moves along the raster edges use the suitability score of the cheapest cell adjacent to 
the edge . A drawback of the extended raster method is that the search graph gets 
quite dense when the number of intermediate nodes i increases. However, the search 
graph can be made less dense by applying Snell's law of reflection, which states that 
shortest paths bend towards the normal when entering a cell with higher cost ; see 
Subsection 3 .2 . 

Fig. 14 : i = 0 nodes. Fig. 15 : i = 1 node . Fig. 16 : i = 2 nodes. 

2.4 Quadtree Approach 

One of the drawbacks of the previously described approaches is that even in uniform 
areas every sample-point is stored as a separate data-object . In the quadtree [20] 
data structure, these uniform areas are grouped together . This does not only result 
in more efficient memory usage, but also in more efficient algorithms, because of the 
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smaller number of nodes and edges in the graph. 
The quadtree is a hierarchical data structure, and is based on the successive subdi­
vision of a raster into four equal-sized quadrants or regions . If a quadrant does not 
consist entirely of raster cells with the same suitability score, then it is again sub­
divided into quadrants, and so on. In this way regions are obtained with a uniform 
suitability score. 

As an example of the quadtree, consider the 23 x 23 raster shown in Fig. 17 . In 
Fig. 19, it is shown how this raster is subdivided into square regions . The layout 
of the quadtree data structure is shown in Fig. 18 . All white nodes in this figure 
correspond with regions in the quadtree and are called leaf nodes. The black nodes 
are called internal nodes. The topmost node is called the root node . The search graph 
is created by connecting all adjacent (along an edge or point) cells ; see Fig. 19 . In 
order to be able to search the graph efficiently all the edges are stored explicitly. 

1 1 1 1 1 1 9 9 

1 1 1 1 1 1 9 9 

1 9 9 9 41 1 1 

1 1 1 1 9 9 4 4 

1 1 1 4 4 4 4 4 

41 1 4 4 4 4 4 

4 4 4 4 4 4 4 4 

4 7 4 4 
~414141 1 1 141 1 

Fig. 17 : Raster . Fig. 18 : Quadtree . Fig. 19 : Graph 

Although in the worst case the number of regions in the quadtree is equal to the 
number of sample points (e .g . a chess board), in most cases the number of regions is 
much smaller. When there is not much reduction, then it is possible that the gridsize 
has been chosen too large in the sampling phase. One drawback of the quadtree 
method is that within a large quadtree node every "position" has the same distance 
from the source . This is visualized in an iso-time diagram as a large blob with only 
one color. A related problem is caused by the fact that the path has to go from center 
to center, which may result in non-optimal solutions in the case of large nodes; see 
Fig. 21 . A solution for this might be a combination of the quadtree and the extended 
raster approach . 

Fig. 21 : Deviation error caused by 
large quadtree cells . 

Fig. 20 : Weighted Region Voronoi Diagram. 



���

3 Vector CCM algorithm 
The precision of the raster-based solutions, i .e . the quality of the returned shortest 
paths, depends on the fineness of the grid, and on the number of move directions 
permitted . The ideal solution is only found when both tend to infinity. Clearly, this 
is a very unpractical solution . Therefore, the vector approach, which produces an 
exact solution, is examined . In the vector-based movement planning problem it is 
now assumed that the plane is subdivided into polygonal regions . Each region (face) 
is associated with a positive weight af (> 0) . However, each edge is also associated 
with a weight ae (> 0) in contrast to the raster approach . These weight factors 
specify the cost per traversed distance in a region or along an edge . By giving the 
edges their own weight factor, on-road movement planning and CCM-planning can 
be nicely integrated . Obstacles can be seen as regions with an infinite weight . We 
now want to find the path with the least cost across this map given a source and a 
destination . The vector-based algorithm to solve the CCM planning problem (also 
called weighted region problem) is based on the article of Mitchell and Papadimitriou 
[15] . 

The first big step in the vector algorithm is to triangulate the polygonal partitioning 
and is described in Subsection 3.1 . Some observations about shortest paths in a vector 
map are given in Subsection 3.2 . Subsection 3.3 gives an outline of the vector CCM 
algorithm . 

3 .1 The Constrained Delaunay Triangulation 

The algorithm we developed to build a constrained Delaunay triangulation (CDT) 
over a planar set of n points together with a set of non-intersecting edges has the 
properties that all specified points and edges can also be found in the output and it 
is as close as possible to the unconstrained Delaunay triangulation [18] . It runs in 
O(nlogn) time, which is asymptotically optimal [21] . This algorithm is based on the 
concept of two other algorithms . The first algorithm is the unconstrained Delaunay 
triangulation (UDT) algorithm of Lee and Schachter [14] and the second algorithm 
is the CDT algorithm of Chew [2] . 

The input of our algorithm is a graph G = (V, E) in which V is a set of n vertices 
and E is a set of edges, the so called G-edges . Two different kinds of edges appear 
in a CDT: G-edges, already present in the graph, and D-edges, created by the CDT 
algorithm . If the graph has no G-edges then the CDT and the UDT are the same . 
The graph can be thought ofto be contained in an enclosing rectangle . This rectangle 
is subdivided into n separate vertical strips in such a way that each strip contains 
exactly one region (a part of the strip) which in turn contains exactly one vertex . 
After dividing the graph into n initial strips, adjacent strips are pasted together in 
pairs to form new strips . During this pasting new regions are formed of existing 
regions for which the combined CDTs are calculated ; see Figs . 22, 23, and 24 . This 
pasting of adjacent strips is repeated following the divide-and-conquer paradigm until 
eventually exactly one big strip, consisting of exactly one big region, is left for which 
the CDT is calculated . More details about the algorithm and its implementation can 
be found in [24] . 

3 .2 Principle Properties of Shortest Paths 

The following properties form the basis of the vector-based CCM algorithm and are 
valid for the shortest path between two points: 
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Fig. 22 : Step 1, 91 strips . Fig . 23 : Step 3, 23 strips . Fig . 24 : Step 5, 5 strips . 

1 . Within a uniform region, the shortest path does not bend . Note that this does 
not mean that the shortest path between two points within the same area always 
is a straight line ; see Fig . 25 . 

2 . Shortest paths do not intersect unless they have the same distance to the source 
and can therefore be interchanged . 

3 . On entering a new region the shortest path obeys Snell's Law of Refraction : 
af sin(B) = af, sin(B') where B and 9' are the angles of entry and exit ; see 
Fig . 27 3 . 

4 . The path entering edge e at the critical angle B, = arcsin(ap/af) will continue 
along the edge when going from a expensive to cheap region . Critical reflection 
occurs when the path re-enters the same face after travelling along the edge ; 
see Fig . 25 . 

5. Critical use occurs when an edge is cheaper than its surrounding faces . It is 
possible that the path enters a low cost edge from face f at critical angle 9, = 
arcsin(ae/af), then follows the edge and finally leaves the edge at critical angle 
0' = arcsin(ae/a f,) through face f' ; see Fig . 26 . 

6. When the shortest path hits a vertex it can continue in any direction, except 
that the path will not go directly back to the face where it came from . 

3 .3 Outline of the Algorithm 

Because shortest paths so much resemble rays of light, the algorithm more or less 
simulates the propagation of a wavefront of light through the triangulation [151 . It 
is assumed that the source point is located on a vertex . If this is not the case, the 
triangulation can be easily modified in such a way that the source point is on a vertex. 
The wavefront is originated at the source point, and will initially spread in an circular 
way. It is propagated through the weighted triangulated map where Snell's law of 
refraction of light is applied each time a region boundary is crossed . 

3To minimize the cost function F(m,,) = af V(mx + sy) + af, V((tx -mx)z -{- ty) of the path 
from s to t trough m, the equation F'(mx) = 0 has to be solved . By applying some basic goniometric 
calculation this can be rewritten to Snell's Law. Note that in order to find mx the following polynom 
in q of degree 4 has to be solved (q = m,,/t., and a = of/af,) : 

z
g4 (aZ tx - tx) + g 3 (2tx - 2a Z tx) + g (a z tx + a 2 ty - sy - tx) + q(28V2) + (-s~) = 0 
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Fig. 25 : Critical reflection . 

Fig. 26 : Critical use. Fig. 27 : Snell's Law of Refraction . 

Instead of keeping track of the exact location of the wavefront, only the passing of 
the wavefront over certain locations is tracked. These locations are called events. 
Events are located at positions where the wavefront hits a vertex and at certain other 
important locations on the edges. All events which have been created, but which 
have not yet been overrun by the wavefront are kept in a priority queue sorted on 
their distance to the source . These events can be seen as the output of the algorithm 
because they can be used to efficiently trace back the shortest path from any point 
in the triangulation to the source . 

Fig. 28 : Projection of interval. Fig. 29 : Find the tie-point. 

As can be seen in Fig. 28, it may be possible that a bundle of rays hits a vertex after 
propagation and that it need to be splitted . Another interesting situation occurs 
when there are two possible and efficient bundles of rays (or intervals) which reach, 
through a different route, a certain edge from the source, then it has to be established 
which point in the overlap of two intervals is equally well reached via both intervals. 
Between any two intervals there can only be one such point. This point, which is 
called the tie-point, can be found by performing a binary search on the overlap of the 
two intervals ; see Fig. 29 . The latter operation may be quite expensive as it involves 
solving a polynom of degree 4 (see Subsection 3.2) again and again for each iteration. 
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4 Implementation and test results 
The implementation has been done in C++ with the aid of two C++ library packages : 
LEDA [16] for geometric data-structures and libg++ from GNU [24] for some other 
ADTs, e.g. the splay tree priority queue and complex numbers. The CCM-planning 
algorithms are connected to the Postgres/GEO++ GIS [23, 25] using a "close cou­
pling" [7] . Full integration is planned in the near future . In Fig. 30, the large window 
shows the terrain and some optimal paths from three sources, the upper right window 
shows the iso-time diagram, and the lower right window shows the user interface of 
the analyses modules in which the parameters can be set. 

Fig. 30 : User interface of CCM analysis programs . 

For the tests two maps have been used ; a vector data set of 181 vertices, 524 edges 
and 344 faces, and a raster data set of 512 x 512 raster cells representing the same 
area. Two sources and two destinations were chosen and after each test the average 
of the four source-destination paths was computed . In Figs . 31 and 32 examples are 
shown of paths found with a raster (32-connected) and the vector approach. The 
measured cost of the paths are: more-connected raster approach : 27.25, 22.36, 21 .76, 
21 .58, 21 .54, 21 .51 (for the connectivity values 4, 8, 16, 32, 64, 128), extended raster 
approach : 22 .34, 21 .75, 21 .62, 21.57 (for i = 0. .3), quadtree raster approach: 22 .47, 
and the vector approach : 21.895. 

'Note that the iso-time diagram of a scene with multiple sources results in a kind of Voronoi 
diagram . 

5The coordinates of the raster and vector map are slightly different . Therefore, it is dangerous 
to compare the length of the vector path with the raster paths. 
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Fig. 31 : Raster solution . Fig. 32 : Vector solution . 

More test results, with different data sets and different resolutions, can be found 
in [24] . In these tests, CPU times, memory usage, and the quality of the paths 
are measured . The results clearly follow the theoretical worst case time bound of a 
Dijkstra search O(e log v) in a graph with v vertices and e edges . With the more­
connected raster approach a connectivity rate of 16 provides the most satisfactory 
trade-off between the quality of paths and the CPU time . With the extended raster 
approach a number of intermediate search nodes of 1 provides the most satisfactory 
trade-off. The vector implementation turned out to be heavy resource user . However, 
this is not a surprise as the theoretical worst case time bound is O(n8 ) [15] . 

Hierarchical planning 

All presented solutions require a lot oftime and space to solve the problem when using 
realistic data sets, e .g . a 50K x 50K raster . A possible generic improvement to this is 
hierarchical planning : the search starts at a coarse level and is refined when required . 
This approach would not only reduce the required main memory, but also reduce 
computation time . A major drawback of most known hierarchical approaches is that 
they do not guarantee to find a global optimal solution . We present an algorithm 
that guarantees to find an optimal path . It is not an approximation or good path 
algorithm . A description for a raster implementation based on pyramid tree [19, 20] is 
given, but the same method can be applied in the vector case (based on an hierarchical 
constrained triangulation [26]) . 

The hierarchical approach is based on a hierarchical set of maps, see Fig . 33 . Note 
that both the minimum and maximum cost values are stored in the course maps . This 
set starts with a coarse representation of the terrain . The next map is a more refined 
(detailed) version of the previous map, etc . In this way a whole list of maps exist 
where the last map has enough details for the application it is needed for. Assume 
that the shortest path from s to t has to be found . 

In a hierarchical approach any cell C of a coarse version of the map will cover several 
different cells on a finer level . For every cell C we store the highest and the lowest 
resistance value of any underlying cells of the map . The following values are now 
calculated using a coarse version of the map : 
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3 6 7 8 8 8 min/max9 9 3/6 I 6/8 I 7/8 8/9
3 5 6 6 7 8 8 9 
3 3 6 6 7 7 7 7 

2/3 I 3/6 I 517 7n 2/s 5/9
2 2 3 4 5 6 7 7 
2 2 3 4 9 9 9 9 a2/3 3/6 9/9 9/9 2/8 9/9
3 3 5 6 9 9 9 9 

6 6 9 
3/6 6!F nm 03 5 9 9 9 

3 6 7 8 9 9 9 9 

Fig. 33 : Pyramid data structure with 4 levels . 

l . The shortest path from s to t using the worst-case (highest) values for every 
part of the map. This value is an upper-bound for the real length of the shortest 
path from s to t. 

2 . For every cell C, the shortest path from s to C and the shortest path from C to t 
are calculated using the best-case (lowest) values . The sum of these two values 
is a lower-bound for the shortest path from s- to t via cell C. 

If the best path ever attainable via C (as described in item 2) is longer than the 
shortest path that was guaranteed to exist (as described in item 1), then it is sure 
that the shortest path will not go via cell C. In the search for the shortest path, cell 
C, and all its subcells, need not be considered anymore and can be discarded from 
memory. Next, all cells of the map which have not been discarded are replaced by a 
more detailed version and the whole process is repeated . 
It is interesting to note that in normal cases this method discards all nodes that are 
outside an ellipse shaped cell around s and t. When s and t are close to each other 
then almost the whole map can be discarded in an early phase of the procedure, 
because the ellipse around these points will be small. If there is an obstacle between 
s and t which would force the shortest path outside this ellipse shaped cell then the 
cell is automatically adapted so that all possible shortest paths are included . An 
important issue is that only one version of the map needs to be in main memory at 
any time . When a part of the map is refined the refined version can be loaded from 
disk and replace the coarse version from memory. 

Although there are similarities between quadtree approach and hierarchical approach, 
they are fundamentally different . The quadtree is very useful in case there are uniform 
parts in the terrain : its saves space and computation time . However, it can not avoid 
visiting a part which is unrelevant in finding the optimal path . However, the quadtree 
may be used to store the data pyramid efficiently. 

6 Conclusion and Future work 
We have implemented several raster-based and one vector-based cross country move­
ment (CCM) planning algorithms . The raster-based algorithms have several advan­
tages. They are relatively easy to implement and perform reasonably well . In theory 
however, an exact solution can only be found when both the move-set and the number 
of search nodes (related to the sampling resolution) in the area under consideration 
tend to infinity. This means that in practice only an approximation of the solution 
is found. The vector-based method we implemented has the advantage that it re­
turns exact solutions. However, the performance of the vector-based method is not 
satisfactory. 



The current raster- and vector-based approaches have major performance problems 
and are too slow to be used in an interactive GIS . New methods to improve the 
performance must be found . An extended raster approach which uses quadtree-based 
techniques to reduce the number of search nodes looks very promising . Further, we 
will implement and test the new hierarchical approach . Other types of solutions are 
based on using genetic algorithms [5, 13] and parallel algorithms [22] . 

The discrete vector approach, which avoids expensive trace-back computations to 

find tie-points, can be considered a combination of the extended raster approach and 
the vector approach . Each edge, side of a face, has a fixed number of search points 
which are used to create a connectivity graph. The shortest path can be found by 
applying the Dijkstra algorithm . This path can be enhanced locally by shifting points 
in such a way that on every crossing of an edge Snell's Law is obeyed [22] . Additional 

future work might include finding solutions for the following possible extensions to 
the CCM-problem : 

Find path from source to destination which passes a "variable" go-through 
location for generating alternative paths [3] ; 

" Source or destination with different shapes : e.g. line, area, or multiple points ; 

" Path with non-zero width (e.g . a shape of 1 km width) ; 

" Take crowdedness (multiple walkers) into account ; 

Add the third dimension to the problem: the cost to travel uphill is higher than* 
the cost to travel downhill, i.e . costs are direction sensitive (anisotropic) . 
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