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ABSTRACT 
Spatial interpolation is a valuable and now more frequently used function 
within GIS . A number of data sources for GIS include interpolated values (e.g . 
DEM's) and a number of the output products from GIS are the results of some 
form of interpolation . Since interpolated results in,' one way or another play a 
role in GIS analysis, users can benefit from some assessment of the reliability 
of interpolated values . The accuracy of an interpolation depends on several 
factors including : sampling scheme, number of sample points, interpolation
method, measurement error in the observed x, y, z values and the nature and 
complexity of the observed phenomena . 

Most interpolation methods provide no information on the reliability of the 
estimated values . Kriging is one exception which produces estimates of 
values at unrecorded places without bias and with minimum and known 
variance . Results of kriging reported in the literature typically show kriged
values and error estimates as separate isarithmic maps making assessment of 
the results difficult . This paper describes visualization techniques for 
examining the reliability of interpolated values . Visual displays are presented
which account for the number and distribution of sampling points, the 
interpolation method, and measurement error in observed values . 
Additionally, the paper addresses displays for kriged results which combine 
kriged values and error estimates . 

INTRODUCTION 
Ideally a GIS should indicate graphically and numerically the reliability of 
each analysis . Spatial interpolation defined as a process for estimating values 
at unsampled locations from a set of sample points should be no exception . 
Results of an interpolation function are commonly displayed as isolines . 
Lacking other evidence the assumption is that these isolines and the 
underlying interpolated values are uniformly reliable over the interpolated 
area . If we have knowledge that this is not the case, then the differential 
uncertainty in the results should be communicated . Users should be able to 
ascertain which areas are least reliable and where possible be provided with 
information to understand why these values are less reliable. 

Interpretations of reliability may utilize 'several imaging functions to display
the data in different ways and to provide complementary information' 
(Farrell,1987,175) . With respect to interpolation, one can envisage a 
progression of graphical representations to convey variability and reliability
in the resulting values . At the simplest level, graphical representation of the 
location of sample points provides clues to spatial variation in the reliability
of interpolated values. Regions of sparse data are unlikely to produce 
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accurate interpolations irrespective of technique. Indeed several interpolation 
methods depend substantially on the selection of appropriate neighbors 
(Gold 1989). Thus conveying the spatial distribution of measured points is an 
important indicator of reliability . Traditionally interpolation functions have 
treated sample points as having uniform positional accuracy and uniformly 
accurate z values . Simple displays of sample point locations can be extended 
through symbology to indicate variation in positonal or attribute accuracy of 
the sampled points . The information on positional and attribute accuracy can 
arise through adjustment analysis (e .g . the creation of error ellipses - Hintz 
and Onsrud 1990), or through comparison of data collected using different 
technology or degrees of accuracy . 

Finally, display may be designed to communicate information on the actual 
interpolation method . The various interpolation methods themselves can 
generate varying patterns of reliability in the results . Interpolation methods 
(see reviews by Lam 1983, Burrough 1986, Ripley 1981) produce different 
spatial patterns of reliability through their underlying assumptions and 
parameters . The next sections of the paper presents a suite of displays to 
communicate the quality of interpolations across the different levels just
summarized . 

DISPLAYS OF SAMPLED POINTS 
Since the number and distribution of sampling points contribute substantially 
to the interpolation outcome, a simple but effective visual assessment tool is a 
capability to toggle on and off the sample point locations (see Figure 1) . 

Figure 1. Sample points locations displayed with isolines . 

As an extension to this display, points may be classified and color codedby 
their Z values ., A similar color coding of isolines can then clearly indicate 
deviations from measured values as well as indicate the areas of sparse data . 
Figure 2 illustrates such a display using gray values . 
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Figure 2. Gray scale version ofsample points values displayed with isolines . 

When data sets of mixed heritage are combined to form the point set for 
interpolation, displays may be designed to document variations in accuracy 
among these points . For example, water quality samples taken over a ten 
year time period may have different accuracies due to the sampling 
technique, laboratory quality control procedures, instrument calibration or 
other factors . In this case the sample points may be color coded or otherwise 
symbolized by an accuracy measure . From this sort of display, spatial clusters 
of sample points with lower accuracies may be identified and hence locations 
where interpolated results may be- less reliable. Variation in the positional 
certainty of sample points may be displayed in a similar fashion . 

DISPLAYS OF INTERPOLATION METHOD RELIABILITY 
A variety of interpolation methods have been documented in the literature. 
By understanding the behavior of these methods or through the actual 
computation of these methods, error estimates may be generated and 
subsequently displayed . Table 1 extracted from Burrough (1986) summarizes 
these methods . 

Method DeterministiclStochastic Local/Global Exact Interpolator 

Proximal deterministic global no 
Trend surface stochastic global no 
Fourier Series stochastic global no 
B-splines deterministic local yes 
Moving average deterministic local no 
Optimal (kriging) stochastic local yes 

Table 1 Interpolation methods summarized from Burrough 1986 . 



Visual displays which illustrate the spatial reliability of interpolated results 
are developed for two of these methods: weighted moving average and 
kriging. 

WEIGHTED MOVING AVERAGE 
This method uses a set of data points in proximity to an interpolation location 
and performs an averaging process. The averaging process includes weights 
proportional to the distance of the data point from the estimation point. 
The important parameters which need to be specified for this method are the 
size of the neighborhood and the appropriate weighting function . Both of 
these factors can have significant effects on interpolation results . The other 
important factor is the distribution of sample points with respect to the 
estimation point as results are very sensitive to clustering in the sample 
points . (Ripley 1981). One visualization method can not capture all these 
influences, but a technique which captures the distance factor is displayed in 
Figure 3. In this figure, distances were computed from sampling points and 
displayed as a gray shade image. When displayed as a backdrop to isolines, 
darker areas indicate areas whichmaybe less reliable . 

Figure 3. Shading is based on a distance function computed from sample points . 
Moving weighted average interpolated values in darker areas are less reliable . 

KRIGING 
There are numerous papers that cover the topic of kriging in various levels of 
detail (for example Oliver and Webster 1986, Dunlap and Spinazola 1984 ; 
Doctor 1979; Cressie and Hawkins 1980; Bridges 1985 ; Ripley 1981 ; McBratney 
and Webster 1986 ; Royle et al. 1981). Kriging is an interpolation technique 
that generates an estimated surface from a regular or irregular set of points . 
The principle advantage of Kriging over the many other interpolation 
techniques in existence is that it provides an indication of the error associated 
with interpolated values and is the only method that uses statistical theory to 
optimize the interpolation (Clarke 1990). Kriging has been successfully used 
in the spatial prediction of soil properties (Burgess and Webster 1980), 
mineral resources, aquifer interpolation (Doctor 1979; Dunlap and Spinazola 
1984), soil salinity through interpolation of electrical conductivity 
measurements (Oliver and Webster 1990), meteorology and forestry . 



Deterministic models assume that we know a great deal about the behavior of 

the variable which is rarely the case in the geographical sciences . In contrast 
to deterministic models, Kriging makes no attempt to describe the physical 

mechanism of the underlying phenomenon . The advantage of Kriging over 

polynomial fitting procedures (such as Trend Surface Analysis- TSA) is that 
Kriging uses a correlation structure among the observations and is more 

stable over sparsely sampled areas whereas estimates in TSA are greatly 
affected by the location of data points and can produce extreme fluctuations 

in sparse areas . 

Kriging is based on the regionalized variable theory (Matheron 1971) that 
accounts for spatial variation in three parts : an underlying structure, a 
random but spatially correlated component and noise . The regionalized 
variable theory assumes the spatial variation in the phenomenon represented 

by the z value is statistically homogenous throughout the surface - the same 
pattern of variation can be observed across the entire surface . Thus datasets 
known to have pits and spikes or abrupt changes are not appropriate for use 
with Kriging . 

Kriging requires a number of steps ; first the underlying structure is estimated 
using the semi-variogram. 

THE SEMI-VARIOGRAM 
Kriging requires that we first compute the semi-variogram, and this is then 
used to determine the weights and search extent when predicting a value at 
an unrecorded place . The semi-variogram provides information of the form 
of the relationship between two observations as a function of intervening 
distance . The semi-variogram is a graph of the variability of the difference of 
the regionalized data versus distance between points (known as the lag) . The 
semi-variogram is approximated from the given set of measured values of a 
regionalized variable . A variety of functions can be used to model the semi­
variance and there are a number of theoretical semi-variograms (for 
discussion see McBratney and Webster 1986) . The three most commonly used 
are the linear, spherical and exponential models . 

The regionalized variable is isotropic when the semi-variograms is a function 
only of distance between data points . To determine whether there is any 
appreciable change in variance with direction, it is common to generate and 
compare the variograms of two and sometimes eight cardinal directions . Thus 
kriging is an exploratory technique requiring some experimentation . As 
McBratney and Webster observe, 'choosing an appropriate semi-variogram is 
still something of a mystery' (McBratney and Webster 1986, 618) selecting an 
appropriate model requires some trial and error and thus requires a good 
understanding of the ontology of the phenomenon under interpolation . 

DISPLAYING KRIGING ERRORS OF ESTIMATE 
Kriging gives a variance estimate at each interpolated point (called kriging 
error or errors of estimate) . They define confidence intervals about the 
interpolated points if the errors are assumed to be normally distributed, and 
kriging errors tend to be greatest in areas of sparse data. Generating the error 
of estimates helps identify areas in need of further sampling and can thus 
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improve the quality of sampling in a very specific way(Wright 1983; Keith 
1988). 

In the following figures error estimates are generated from a series of seismic 
profiles recorded from a ship within the Gulf of Maine in the Casco Bay area 
(Kelley et al . 1987) . The z values were digitized from these seismic profiles; 
three 'layers' were identified - the bedrock, the Holocene and the 
glaciomarine. In processing the data, the first stage was to find the semi­
variogram model that best fit the data. The exponential model was found to 
be the best fit for bedrock and Holocene layers, and Gaussian for the 
Glaciomarine . Figure 4shows two semi-variograms; the Gaussian semi­
variogram for Glaciomarine and Exponential for the bedrock and island data 
set (both generated using Arc/Info ). 

semi-variance 
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Figure 4. Experimenting tofind the best model of the semi-variogram . 

The variogramwas used to generate a regular matrix of both the interpolated 
values and the error estimates associated with each value (using SpyGlass 
Transform*) . A contour module within Transform generated the isopleth 
maps and a inverted greyscale was used to create the variance map. In this 
map, light areas are regions of low variance and dark patches are conversely 
high . The estimation variance, when overlayed with the resulting contours (as 
in Figure 5) reveals areas of poor control and is an important factor in the 
rejection of unreliable edge points . This display assimilates both variables, 
and has the advantage that the dark regions conceal from view those areas for 
which the interpolated values are less reliable . 

Mention of software products is not an endorsement of their use. 
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Figure 5. Contour map of Bedrock and Island bathymetry with variance values 
overlayed in. greyscale . 

Though the variance matrix can be toggled off so as to reveal the results in 
areas of high variance, an alternative approach is to combine the two 
variables such that the error of estimates is conveyed either through line fill 
pattern or thickness of line . Thus the isolines themselves carry the 
information on reliability. This approach is illustrated in Figure 6 . This 
method summarizes the results of kriging from Oliver and Webster (1990) . In 
this figure the lighter fuzzier portions of the isolines correspond to areas with 
higher error estimates . Using either method it is possible to incorporate 
additional information on the map . 
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Figure 6. Combining semi variance value with kriged values through the use of line 
shading . 

CONCLUSION 
The integrity and general worth of any type of analysis is dependent on 
several factors . These include the quality of first abstraction (sampling 
regime, resolution of sampling), data manipulation prior to storage, 
subsequent abstraction (for example digitizing or subsampling), techniques 
used in the analysis (and degree with which parametric requirements are 
met), recording of error and subsequent visualization of each of these steps. 
Thus the concept of 'quality' pervades the entire research design and an 
overall picture requires knowledge of error and potential variation associated 
with each stage of processing . This paper has focused on one component of 
the 'quality chain', namely degree of certainty associated with interpolation . 

This paper has illustrated a sampling of techniques that in combination 
may be used to display the reliability of interpolated values. Themethods 
range from displaying sample point locations, values, and accuracy, to ; 
displaying the variation in reliability which is produced as a function of the 
interpolation method itself. Kriging has the advantage of generating error 
estimates as the result of the process. However, few tools have been 
available to view the interpolated values in combination with the error 
estimates. Two techniques are illustrated to view estimated values and 
their reliability simultaneously . This represents a small sample of 
possibilities, yet examples which could be easily incorporated within 
systems to assist users in their decision making . 
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