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Abstract
The line simplification problem is an old and well-studied problem in car 

tography. Although there are several efficient algorithms to compute a simpli 
fication within a specified error bound, there seem to be no algorithms that 
perform line simplification in the context of other geographical objects. Given 
a polygonal line and a set of extra points, we present a nearly quadratic time 
algorithm for line simplification that guarantees (i) a maximum error e, (ii) that 
the extra points remain on the same side of the output chain as of the original 
chain, and (iii) that the output chain has no self-intersections. The algorithm 
is applied as the main subroutine for subdivision simplification.

1 Introduction
The line simplification problem is a well-studied problem in various disciplines in 
cluding geographic information systems, digital image analysis, and computational 
geometry (see the references). Often the input is a polygonal chain and a maximum 
allowed error e, and methods are described to obtain another polygonal chain with 
fewer vertices that lies at distance at most e from the original polygonal chain. Some 
methods yield chains of which all vertices are also vertices of the input chain, other 
methods yield chains where other points can be vertices as well. Another source of 
variation on the basic problem is the error measure that is used. Well known criteria 
are the parallel strip error criterion. Hausdorff distance, Frechet distance, areal dis 
placement, and vector displacement. Besides geometric error criteria, in geographic 
information systems one can also use criteria based on the geographic knowledge, or 
on perception [Mark '89].

The motivation for studying these simplification problems is twofold. Firstly, 
polygonal lines at a high level of detail consume a lot of storage space. In many 
situations a high level of detail is unnecessary or even unwanted. Secondly, when 
objects are described at a high level of detail, operations performed on them tend to

'This research is supported by ESPRIT Basic Research Action 7141 (project ALCOM II: Al 
gorithms and Complexity), and by a PIONIER project of the Dutch Organization for Scientific 
Research N.W.O.
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be slow. An example where this problem can be severe is in the animation of moving 
objects.

Our motivation for studying the line simplification problem stems from reducing 
the storage space needed to represent a map in a geographic information system. We 
assume the map is modelled as a subdivision of the plane or a rectangular region 
thereof. In this application the main consideration is the reduction of the complexity 
of the subdivision. The processing time may be a little higher, but within reason. 
The size of the subdivision is a permanent cost in a geographic information system, 
whereas the processing time is spent only once in many applications.

Figure 1: Part of a map of Western Europe, and an inconsistent simplification of the 
subdivision.

One of the most important requirements of subdivisions for maps is that they 
be simple. No two edges of the subdivision may intersect, except at the endpoints. 
This poses two extra conditions on the line simplification method. Firstly, when 
a polygonal chain is reduced in complexity, the output polygonal chain must be a 
simple polygonal chain. Several of the line simplification methods described before 
don't satisfy this constraint [Chan & Chin '92, Cromley '88, Douglas & Peucker '73, 
Eu & Toussaint '94, Hershberger &: Snoeyink '92, Imai & Iri '88, Li & Openshaw '92, 
Melkman & O'Rourke '88]. The second condition that need be satisfied is that the 
output chain does not intersect any other polygonal chain in the subdivision. In other 
words, the simplification method must respect the fact that the polygonal chain to be 
simplified has a context. Usually the context is more than just the other chains in the 
subdivision. On a map with borders of countries and cities, represented by polygonal 
chains and points, a simplification method that does not respect the points can yield 
a subdivision in which cities close to the border lie in the wrong country. In Figure 1. 
Maastricht has moved from the Netherlands to Belgium. Canterbury has moved into 
the sea, and at the top of the border between The Netherlands and Germany, two 
borders intersect. Such topological errors in the simplification lead to inconsistencies 
in geographic information systems.

In this paper we will show that both conditions can be enforced after reformulating 
the problem into an abstract geometric setting. This is quite different from the 
approach reported in [Zhan & Mark '93], who have done a cognitive study on conflict 
resolution due to simplification. They accept that the simplification process may lead 
to conflicts (such as topological errors) and try to patch up the problems afterwards. 
We avoid conflicts from the start by using geometric algorithms. These algorithms 
are fairly easy to implement.
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Figure 2: A subdivision with its junctions indicated.

The remainder of this paper is organized as follows. Section 2 discusses our ap 
proach to the subdivision simplification, and identifies the main subtask: a new ver 
sion of line simplification. Section 3 describes the approach of Imai and Iri for the 
standard line simplification problem. In Section 4 we adapt the algorithm for the new 
version of line simplification. In Section 5 the conclusions are given.

2 Subdivision simplification

Let S be a subdivision that 
models a map, and let P be a 
set of points that model spe 
cial positions inside the regions 
of the map. The subdivision 
S consists of vertices, edges 
and cells. The degree of a ver 
tex is the number of edges in 
cident to it. A vertex of de 
gree one is a leaf, a vertex of 
degree two is an interior ver 
tex, and a vertex of degree at 
least three is a junction. See 
Figure 2. Generally the num 
ber of leafs and junctions is 
small compared to the num 
ber of interior vertices. Any

sequence of vertices and edges starting and ending at a leaf or junction, and with 
only interior vertices in between, is called a polygonal chain, or simply a chain. For 
convenience we also consider a cycle of interior vertices as a chain, where we choose 
one of the vertices as start and end vertex of the chain.

Subdivision simplification can now be performed as follows. Keep the positions 
of all leafs and junctions fixed, and also the positions of the points in P. Replace 
every chain between a start and end vertex by a new chain with the same start and 
end vertex but with fewer interior vertices. If C is a polygonal chain, then we require 
from its simplification C':

1. No point on the chain C has distance more than a prespecified error tolerance 
to its simplification C1 .

2. The simplification C' is a chain with no self-intersections.
3. The simplification C1 may not intersect other chains of the subdivision.
4. All points of P lie to the same side of C' as of C.
Let's take a closer look at the last requirement. The chain C is part of a subdivision 

that, generally, separates two cells of the subdivision. In those two cells there may 
be points of P. The simplified chain between the start vertex and the end vertex 
will also separate two cells of the subdivision, but these cells have a slightly different 
shape. The fourth requirement states that the simplified chain C1 must have the same 
subsets of points in those two cells.

The first requirement will be enforced by using and extending a known algorithm 
that guarantees a maximum error e. The other three requirements are enforced by the 
way we extend the known algorithm. Roughly spoken, the simplified chain consists 
of a sequence of edges that bypass zero or more vertices of the input chain. We
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will develop efficient tests to determine whether edges in the simplified chain leave 
points of P to the wrong side or not. The second requirement, finally, doesn't add 
to the complexity of the algorithm. When applying the simplification algorithm to 
some chain of the subdivision, we temporarily add to the set P of points all vertices of 
other chains of the subdivision. One can show that—since C' has the vertices of other 
chains to the same side as C—the simplified chain C' won't intersect any other chain 
of the subdivision. A simplified chain that has the points of P to the correct side and 
doesn't intersect other chains in the subdivision is a consistent simplification.

A disadvantage of adding the vertices to the point set P is that P can become 
quite large, which will slow down the algorithm. There are two observations that can 
help reduce the number of points that need be added to P. Firstly, we only have to 
take the vertices of the chains that bound one of the two cells separated by the chain 
we are simplifying. Secondly, it is easy to show that only points inside the convex 
hull of the chain that is being simplified could possibly end up to the wrong side. So 
we only have to use points of P and vertices of other chains that lie inside this convex 
hull. In Figure 2, the chain that represents the border between the Netherlands and 
Germany is shown with its convex hull (dashed) and some cities close to the border 
(squares). No other chains intersect the convex hull, and only the cities Emmen, 
Enschede, Kleve and Venlo must be considered when simplyfing the chain.

It remains to solve a new version of the line simplification problem. Namely, one 
where there are extra points which must be to the same side of the original and 
the simplified chain. For this problem we will develop an efficient algorithm in the 
following sections. It takes O(n(n + ra)logn) time for a polygonal chain with n 
vertices and m extra points. This will lead to:
Theorem 1 Given a planar subdivision S with N vertices and M extra points, and a 
maximum allowed error e > 0, a simplification of S that satisfies the four requirements 
stated above can be computed in O(N(N 4- M)log./V) time in the worst.case.

The close to quadratic time behavior of the algorithm is the time needed in the 
worst case. Therefore, the algorithm may seem too inefficient for subdivisions with 
millions of vertices. A better analysis that also incorporates some realistic assump 
tions will show that the time taken in practice is much lower. It will also depend 
on the sizes of the chains in the subdivision, the number of extra points inside the 
convex hull of a chain, and the shapes of the chains themselves.

3 Preliminaries on line simplification
We describe the line simplification algorithm in [Imai & Iri '88], upon which our 
method is based. Let vi,...,vn be the input polygonal chain C. A line segment 
v^ is aclled a shortcut for the subchain u,,..., vr A shortcut is allowed if and only 
if the error it induces is at most some prespecified positive real value e. where the error 
of a shortcut u^ is the maximum distance from v, v} to a point Vk, where i < k < j. 
We wish to replace C by a chain consisting of allowed shortcuts. In this paper we 
don't consider simplifications that use vertices other than those of the input chain.

Let G be a directed acyclic graph with as the node set V = {v^,... , vn }. The arc 
set E contains (t;,, v^} if and only if i < j and the shortcut v^ is allowed. The graph 
G can be constructed with a simple algorithm in O(n3 ) time and G has size O(n2 ).

A shortest path from vi to vn in G corresponds to a minimum vertex simplification 
of the polygonal chain. Using topological sorting, the shortest path can be computed 
in time linear in the number of nodes and arcs of G [Cormen et al. '90]. Therefore, 
after the construction of G, the problem can be solved in O(n2 ) time. We remark that
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the approach can always terminate with a valid output, because the original polygonal 
line is always a valid output (though hardly a simplification). The bottleneck in the 
efficiency is the construction of the graph G. In [Melkman & O'Rourke '88] it was 
shown that G can be computed in O(n2 logn) time, reducing the overall time bound 
to O(n2 logn) time. In [Chan & Chin '92] an algorithm was given to construct G in 
O(n2 ) time. This is optimal in the worst case because G can have 0(n2 ) arcs. We 
explain their algorithm briefly.

One simple but useful observation is that the error of a shortcut tvDJ is the maxi 
mum of the errors of the half-line starting at VT and containing v} , and the half-line 
starting at v} and containing vt . Denote these half-lines by /,., and I.,,, respectively. 
We construct a graph GI that contains an arc (i>,, v3 ] if and only if the error of l^ is 
at most e, and a graph Ga which contains an arc (vt ,u,) if and only if the error of 
I3 i is at most e. To obtain the graph G, we let (vi,v} ) be an arc of G if and only if 
(vi,v3 ) is an arc in both G\ and G?. The problem that remains is the construction 
of G! and GI which boils down to determining whether the errors of the half-lines is 
at most e or not. We only describe the case of half-lines 113 for all 1 < i < j < n\ the 
other case is completely analogous.

accepted, the 
wedge is shown 
grey
Vertex vl+i 
doesn't lie in 
the wedge so 
(i>l ,i>I +2) is not 
accepted.

The reduced 
wedge is shown 
grey.
Vertex 1*1+3 lies 
in the wedge so 
(u,,wl+ 3) is ac 
cepted.

V,+4

The wedge need 
not be reduced.

Vertex i>t+4 
lies outside 
the wedge so 
(v,,u,+4 ) is not 
accepted.

The wedge 
becomes empty 
so no other arc 
(vi, v., ) will be 
accepted.

Figure 3: Deciding which arcs (v2 ,v3 ) with j > i are accepted to G\. Only (vl ,vljr \) 
and (vt ,v,+3) will be accepted.

The algorithm starts by letting the vertices v\,... ,vn in turn be vl . Given v,, the 
errors of all half-lines 1 13 with j > i are determined in the order J,( t +i), ^(t+2), • • • ,lm 
as follows. If we associate with Vk a closed disk Dk centered at Vk and with radius 
e, then the error of 1 13 is at most e if and only if /,., intersects all disks Dk with 
i < k < j. Hence, the algorithm maintains the set of angles of half-lines starting at 
Vi that intersect the disks D^...,Dr Initially, the set contains all angles (—TT.TT]. 
The set of angles will always be one interval, that is, the set of half-lines with error 
at most € up to some vertex form a wedge with v, as the apex. Updating the wedge 
takes only constant time when we take the next v3 , and the algorithm may stop the 
inner iteration once the wedge becomes empty.

With the approach sketched above, the graph construction requires O(n2 ) time in 
the worst case [Chan & Chin '92].
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4 Consistent simplification of a chain
In this section we generalize the line simplification algorithm just described to over 
come the two main drawbacks: it doesn't necessarily yield a simple chain and it 
doesn't leave extra points to the correct side. We only discuss the simplification of 
x-monotone chains. There are several ways to generalize our algorithms to the case of 
arbitrary chains. At the end of this section we sketch one method briefly; for details 
and extensions we refer to the full version of this paper.

A polygonal chain is x-monotone if any vertical line intersects it in at most one 
point. In other words, an x-monotone polygonal chain is a piecewise linear function 
defined over an interval. It is easy to see that any simplification of an x-monotone 
polygonal chain is also an x-monotone polygonal chain. Let C be an x-monotone 
simple polygonal chain with vertices vi,... , vn . We denote the subchain of C between 
vertices vl and v3 by C13 . Let P be a set of m points pi,... , pm . From the definition 
of consistency we observe:

Lemma 1 C' is a consistent simplification of C with respect to P if and only if no 
point of P lies in a bounded region formed by C and C'.

Let Q13 be the not necessarily simple polygon bounded by C13 and the edge v^vj, 
so Qtj contains j — i edges of C and one more edge ujJ^. This last edge may intersect 
other edges of QtJ . The general approach we take is to compute a graph G3 with 
{vi,...,vn } as the node set, and an arc (v% ,v3 } whenever the bounded regions of 
QtJ contain no points of P. So we don't consider the error of the shortcut uJJJ. 
This is done only later, when we determine the graph G on which the shortest path 
algorithm is applied. The graph G can be determined from the graphs GI and G2 
from the previous section, and the graph G3 defined above. G has an arc (vi,v3 ) if 
and only if (vt , v3 ] is an arc in each of the graphs GI, G2 , and G3 .

To compute arcs of the graph G3 , we consider for each vertex u, the shortcuts u^T,. 
We keep vl fixed, and show that all arcs (vlt v3 ] with i < j < n can be computed in 
O((n + m) logn) time. The first step is to sort the shortcuts vt vl+1 , ..., uJJ^ by slope. 
Here we consider the shortcuts to be directed away from vt . Since C is x-monotone, 
all shortcuts are directed towards the right. The shortcuts are stored in a list L.

The second step of the algorithm is to lo 
cate all tangent segments from v,. We define a

u'+i —----'\v«+3 ^\" I shortcut uJJj' to be tangent if v3 -\ and v3 +\ lie
in the same closed half-plane bounded by the 
line through t\ and v3 , and i + I < j < n. The 
shortcut u^ is always considered to be tangent. 
The tangent shortcuts in Figure 4 are vlvt+s, 
I'ti'j+G, vt , fj-t-7, and 1^+9. A tangent shortcut 
u^Tj is minimal (in slope) if v3 -\ lies above the
line through vt and v,. If i>,_i lies below that 

Figure 4: A part of a chain with ^ then - t ig m(mmgl (m ^^ ̂  . f
four tangent splitters. ^ Qn the Une it ig degenerate (it has length

zero). The tangent splitter is the line segment
w} v.j defined as the maximal closed subsegmcnt of ViV3 that does not intersect C in a 
point interior to tZT/yJ. So the point w3 is an intersection point of the chain C and the 
shortcut ufij, and the one closest to v3 among these, see Figure 4. If v3 -i lies on the 
shortcut u^vj then w3 v3 degenerates to the point v3 . A tangent splitter is minimal, 
maximal, or degenerate when the tangent shortcut is.
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Vi+9 -» Let 1^1^(1),..., vt v7 ( r ) be the nondegenerate tan 
gents. The corresponding set of tangent splitters 
and C together define a subdivision Sl of the plane 
of linear size, see Figure 5. The subdivision has r 
bounded cells, each of which is bounded by pieces 
of C and one or more minimal or maximal tangent 
splitters.

For every cell of S1,, consider the vertex with high- 
Figure 5: The correspond- est index bounding that cell. This vertex must define 
ing subdivision 5, with cells a tangent splitter, so it is one of v7(i),... ,Uy(r )- As-
-y(l) = i + 5,7(2) = i+ sumeit is ^(6). Then we associate with that cell the 
6, 7(3) = i + 7, and 7(4) = number b. The subdivision and its numbering have 
i + 9. some useful properties.

Lemma 2 Every bounded cell of the subdivision Sz is ^-monotone with respect to vz , 
that is, any half-hne rooted at vl intersects any bounded cell of Sl in zero or one 
connected components.
Lemma 3 Every bounded celt of the subdivision 5t has one connected subcham of C 
where half-lines rooted at VT leave that cell.
Lemma 4 Any directed half-line from 11, intersects cells in order of increasing num 
ber.

The points w3 can be found in linear time as follows. Traverse C from vl towards 
vn . At every vertex v3 for which u^ is tangent (and non-degenerate), walk back along 
C until we reach vt or find an intersection of tvDJ with C. In the latter case, the fact 
that C is x-monotone guarantees that the point we found is the rightmost intersection, 
and thus it must be wr Then we continue the traversal forward at v3 towards vn . 
This approach would take quadratic time, but we use the following idea to bring it 
down to linear. Next time we walk back to compute the next tangent splitter, we use 
previous tangent splitters walk back quickly. For a new maximal tangent splitter we 
only use previously found maximal tangent splitters, and for a new minimal tangent 
splitter we only use minimal ones. One can show that the skipped part of C never 
contains the other endpoint of the tangent splitter we are looking for.

The total cost of all backward walks is O(n), which can be seen as follows. During 
the walks back we visit each vertex which is not incident to a splitter at most twice 
(once when locating w3 for a maximal tangent splitter v} uij, and once for a minimal 
tangent splitter). Each splitter is used as quick walk backwards only once. So we 
can charge the cost of the backwards walks to the O(n) vertices of C and the O(ri) 
tangent splitters.

The third step of the algorithm is to distribute the points of P among the cells 
of the subdivision St . Either by a plane sweep algorithm where a line rotates about
•v,, or by preprocessing 5, for point location, this step requires O((n + m)logn) time 
[Preparata & Shamos '85]. All points of P that don't lie in a bounded cell of 5t can 
be discarded; they cannot be in a bounded region of the polygon Q^ for any shortcut 
tvuj. But we can discard many more points. For every cell of 5,, consider the tangent 
splitter with the vertex of highest index. If that tangent splitter is minimal, we discard 
all points in it except for the point p that maximizes the slope of the directed segment 
vrf, see Figure 6. Similarly, if the tangent splitter with highest index is maximal, we 
discard all points in the cell except for the point p that minimizes the slope of the 
directed segment v^p. Now every cell of St contains at most one point of P.
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Figure 6: In each cell, only the point indicated by a square is maintained.

Lemma 5 Any shortcut vlvj is consistent with the subchain Ct] with respect to P if 
and only if it is consistent with respect to the remaining subset of points of P,

Vl+ 2

Figure 7: Only the shortcuts 
vt Vi+i, vt ,vt+2, and vtvl+3 are 
accepted.

In the fourth step of the algorithm we decide 
which shortcuts u^ are consistent and should be 
present in the graph G% in the form of an arc (vt ,v3 ). 
We treat the cells of St in the order of increasing 
associated number. When treating a cell, we will 
discard any shortcut uJJJ that has not yet been ac 
cepted and is inconsistent with respect to the one 
remaining point of P in that cell (if any). Then we 
accept those shortcut vlv] that have v} on the bound 
ary of the cell and have not yet been discarded. For 
discarding shortcuts, we use the order of shortcuts 
by slope as stored in the list L in the first step. For 

accepting shortcuts, we use the order along the chain C.
In more detail, the fourth step is performed as follows. Iterate through the cells 

Si, . . . , sr of S,. Suppose that we are treating Sb- If there is no point of P in the cell 
Sb, then we skip the discarding phase and continue immediately with the accepting 
phase. Otherwise, let pb be the point of P that lies in sh . Assume first that the 
tangent splitter ^7(6)^7(6) is minimal. Consider the list L of shortcuts starting at 
the end where shortcuts have the smallest slope. Repeatedly test whether the first 
shortcut at that end of the list L has larger or smaller slope than the line segment 
vtfi,. If the shortcut has smaller slope, then discard that shortcut by removing it from 
L. If the shortcut has larger slope, stop the discarding. In Figure 7, the shortcuts 
that are subsequently discarded when cell s\ is treated are vtvl+5 , 1^ vz vl+7 ,
and vtvl+& . If the tangent splitter is maximal then similar actions are taken, but on 
the end of the list L where the shortcuts have largest slope.

Lemma 6 Every discarded shortcut v^UJ is inconsistent with the subchain C13 with 
respect to the points of P.

After the discarding phase the accepting phase starts. For all vertices v} with 
7(6 — 1) < j < 7(6) on C, if the shortcut v^U] is still in L, accept it by removing it 
from L and letting (v,, v.,) be an arc in the graph G3 .

Lemma 7 Any accepted shortcut u^ is consistent with the subchain Cl} with respect 
to the points of P.

The fourth step requires O(n) time, which can be seen as follows. For each cell, we 
spend O(d + 1) time for discarding if d segments in L are discarded. This is obvious 
because discarding is simply removing from an end of the list L. To accept efficiently,
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we maintain pointers between the list L and the chain C so that shortcuts—once they 
are accepted—can be removed from L in constant time. Then we spend O(a + 1) 
time if a shortcuts are accepted. Since any shortcut is discarded or accepted once, 
and there are a linear number of cells in 5,, it follows that the fourth step takes linear 
time.

If we perform the above steps for all vertices vlt then combine the obtained graph 
GZ with the graphs G\ and G2 (as denned in the previous section) to create the graph 
G, we can conclude with the following result.
Theorem 2 Given an x-monotone polygonal chain C with n vertices, a set P of 
m points, and an error tolerance (. > 0, it is possible to compute the minimum link 
simplification of C that is consistent with respect to P and that approximates C within 
the error tolerance e m O(n(n + m) logn) time.

The simplification is also simple, but this is automatic because every or-monotone 
polygonal chain is simple. There are, however, several ways to generalize our results 
so that they can be applied to arbitrary, not x-monotone chains. Let C be such a 
chain, and let vt be a vertex for which we wish to compute good shortcuts. One can 
determine a subchain vt ,..., Vk of C that is x-monotone after rotation of C. To assure 
that shortcuts u&] with j < k don't intersect edges before vt or after ufc in the chain 
C, we add the vertices before vl and after Vk to the set P of extra points. Then we 
run the algorithm of this section. One can show that any shortcut v^UJ with j < k 
that is consistent with respect to the extra points must be a consistent shortcut for 
the whole chain C, and it cannot intersect any edges of C. The generalized algorithm 
also runs in close to quadratic time.

5 Conclusions
This paper has shown that it is possible to perform line simplification in such a 
way that topological relations are maintained. Points lie above the original chain 
will also lie above the simplified chain, and points that lie below will remain below. 
Futhermore, the line simplification algorithm can guarantee a user specified upper 
bound on the error, and the output chain has no self-intersections. The method 
leads to an efficient algorithm for subdivision simplification without creating any false 
intersections. To obtain these results, we relied on techniques from computational 
geometry. We have also developed more advanced algorithms for simplifying arbitrary 
chains that allow of more reduction than the algorithm based on the idea described 
here. These extensions are given in the full paper.

With ideas similar to ours, some other line simplification methods can also be 
adapted to be consistent with respect to a set of tag points. In particular, the algo 
rithm in [Douglas &: Peucker 73] can be extended.

The given algorithm takes O(n(n + m)logn) time to perform the simplification 
for a chain with n vertices and m extra points. This leads to an O(N(N + M) log N) 
time (worst case) algorithm for simplifying a subdivision with N vertices and M 
extra points. There are many ideas that can be used to speed up the algorithm in 
practice. Therefore, we expect that the algorithm performs well in many situations, 
but probably not in real-time applications. Much depends on whether the quadratic 
time behavior of the method will actually show up on real world data.

The study in this paper has been theoretical of nature. Yet the given algorithms 
should be fairly straightforward to implement. We plan to implement our algorithm 
and run it on real world data. This way we can find out in which situations the 
efficiency of the method is satisfactory.
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