
A New Approach to Subdivision Simplification"

Mark de Berg Marc van Kreveld
Dept. of Computer Science Dept. of Computer Science

Utrecht University Utrecht University
P.O.Box 80.089 P.O.Box 80.089

3508 TB Utrecht 3508 TB Utrecht
The Netherlands The Netherlands

Stefan Schirra
Max-Planck-Institut fur Informatik

Im Stadtwald
D-66123 Saarbriicken

Germany

Abstract
The line simplification problem is an old and well-studied problem in car

tography. Although there are several efficient algorithms to compute a simpli
fication within a specified error bound, there seem to be no algorithms that
perform line simplification in the context of other geographical objects. Given
a polygonal line and a set of extra points, we present a nearly quadratic time
algorithm for line simplification that guarantees (i) a maximum error e, (ii) that
the extra points remain on the same side of the output chain as of the original
chain, and (iii) that the output chain has no self-intersections. The algorithm
is applied as the main subroutine for subdivision simplification.

1 Introduction
The line simplification problem is a well-studied problem in various disciplines in
cluding geographic information systems, digital image analysis, and computational
geometry (see the references). Often the input is a polygonal chain and a maximum
allowed error e, and methods are described to obtain another polygonal chain with
fewer vertices that lies at distance at most e from the original polygonal chain. Some
methods yield chains of which all vertices are also vertices of the input chain, other
methods yield chains where other points can be vertices as well. Another source of
variation on the basic problem is the error measure that is used. Well known criteria
are the parallel strip error criterion. Hausdorff distance, Frechet distance, areal dis
placement, and vector displacement. Besides geometric error criteria, in geographic
information systems one can also use criteria based on the geographic knowledge, or
on perception [Mark '89].

The motivation for studying these simplification problems is twofold. Firstly,
polygonal lines at a high level of detail consume a lot of storage space. In many
situations a high level of detail is unnecessary or even unwanted. Secondly, when
objects are described at a high level of detail, operations performed on them tend to

'This research is supported by ESPRIT Basic Research Action 7141 (project ALCOM II: Al
gorithms and Complexity), and by a PIONIER project of the Dutch Organization for Scientific
Research N.W.O.

79

be slow. An example where this problem can be severe is in the animation of moving
objects.

Our motivation for studying the line simplification problem stems from reducing
the storage space needed to represent a map in a geographic information system. We
assume the map is modelled as a subdivision of the plane or a rectangular region
thereof. In this application the main consideration is the reduction of the complexity
of the subdivision. The processing time may be a little higher, but within reason.
The size of the subdivision is a permanent cost in a geographic information system,
whereas the processing time is spent only once in many applications.

Figure 1: Part of a map of Western Europe, and an inconsistent simplification of the
subdivision.

One of the most important requirements of subdivisions for maps is that they
be simple. No two edges of the subdivision may intersect, except at the endpoints.
This poses two extra conditions on the line simplification method. Firstly, when
a polygonal chain is reduced in complexity, the output polygonal chain must be a
simple polygonal chain. Several of the line simplification methods described before
don't satisfy this constraint [Chan & Chin '92, Cromley '88, Douglas & Peucker '73,
Eu & Toussaint '94, Hershberger &: Snoeyink '92, Imai & Iri '88, Li & Openshaw '92,
Melkman & O'Rourke '88]. The second condition that need be satisfied is that the
output chain does not intersect any other polygonal chain in the subdivision. In other
words, the simplification method must respect the fact that the polygonal chain to be
simplified has a context. Usually the context is more than just the other chains in the
subdivision. On a map with borders of countries and cities, represented by polygonal
chains and points, a simplification method that does not respect the points can yield
a subdivision in which cities close to the border lie in the wrong country. In Figure 1.
Maastricht has moved from the Netherlands to Belgium. Canterbury has moved into
the sea, and at the top of the border between The Netherlands and Germany, two
borders intersect. Such topological errors in the simplification lead to inconsistencies
in geographic information systems.

In this paper we will show that both conditions can be enforced after reformulating
the problem into an abstract geometric setting. This is quite different from the
approach reported in [Zhan & Mark '93], who have done a cognitive study on conflict
resolution due to simplification. They accept that the simplification process may lead
to conflicts (such as topological errors) and try to patch up the problems afterwards.
We avoid conflicts from the start by using geometric algorithms. These algorithms
are fairly easy to implement.

80

Figure 2: A subdivision with its junctions indicated.

The remainder of this paper is organized as follows. Section 2 discusses our ap
proach to the subdivision simplification, and identifies the main subtask: a new ver
sion of line simplification. Section 3 describes the approach of Imai and Iri for the
standard line simplification problem. In Section 4 we adapt the algorithm for the new
version of line simplification. In Section 5 the conclusions are given.

2 Subdivision simplification

Let S be a subdivision that
models a map, and let P be a
set of points that model spe
cial positions inside the regions
of the map. The subdivision
S consists of vertices, edges
and cells. The degree of a ver
tex is the number of edges in
cident to it. A vertex of de
gree one is a leaf, a vertex of
degree two is an interior ver
tex, and a vertex of degree at
least three is a junction. See
Figure 2. Generally the num
ber of leafs and junctions is
small compared to the num
ber of interior vertices. Any

sequence of vertices and edges starting and ending at a leaf or junction, and with
only interior vertices in between, is called a polygonal chain, or simply a chain. For
convenience we also consider a cycle of interior vertices as a chain, where we choose
one of the vertices as start and end vertex of the chain.

Subdivision simplification can now be performed as follows. Keep the positions
of all leafs and junctions fixed, and also the positions of the points in P. Replace
every chain between a start and end vertex by a new chain with the same start and
end vertex but with fewer interior vertices. If C is a polygonal chain, then we require
from its simplification C':

1. No point on the chain C has distance more than a prespecified error tolerance
to its simplification C1 .

2. The simplification C' is a chain with no self-intersections.
3. The simplification C1 may not intersect other chains of the subdivision.
4. All points of P lie to the same side of C' as of C.
Let's take a closer look at the last requirement. The chain C is part of a subdivision

that, generally, separates two cells of the subdivision. In those two cells there may
be points of P. The simplified chain between the start vertex and the end vertex
will also separate two cells of the subdivision, but these cells have a slightly different
shape. The fourth requirement states that the simplified chain C1 must have the same
subsets of points in those two cells.

The first requirement will be enforced by using and extending a known algorithm
that guarantees a maximum error e. The other three requirements are enforced by the
way we extend the known algorithm. Roughly spoken, the simplified chain consists
of a sequence of edges that bypass zero or more vertices of the input chain. We

81

will develop efficient tests to determine whether edges in the simplified chain leave
points of P to the wrong side or not. The second requirement, finally, doesn't add
to the complexity of the algorithm. When applying the simplification algorithm to
some chain of the subdivision, we temporarily add to the set P of points all vertices of
other chains of the subdivision. One can show that—since C' has the vertices of other
chains to the same side as C—the simplified chain C' won't intersect any other chain
of the subdivision. A simplified chain that has the points of P to the correct side and
doesn't intersect other chains in the subdivision is a consistent simplification.

A disadvantage of adding the vertices to the point set P is that P can become
quite large, which will slow down the algorithm. There are two observations that can
help reduce the number of points that need be added to P. Firstly, we only have to
take the vertices of the chains that bound one of the two cells separated by the chain
we are simplifying. Secondly, it is easy to show that only points inside the convex
hull of the chain that is being simplified could possibly end up to the wrong side. So
we only have to use points of P and vertices of other chains that lie inside this convex
hull. In Figure 2, the chain that represents the border between the Netherlands and
Germany is shown with its convex hull (dashed) and some cities close to the border
(squares). No other chains intersect the convex hull, and only the cities Emmen,
Enschede, Kleve and Venlo must be considered when simplyfing the chain.

It remains to solve a new version of the line simplification problem. Namely, one
where there are extra points which must be to the same side of the original and
the simplified chain. For this problem we will develop an efficient algorithm in the
following sections. It takes O(n(n + ra)logn) time for a polygonal chain with n
vertices and m extra points. This will lead to:
Theorem 1 Given a planar subdivision S with N vertices and M extra points, and a
maximum allowed error e > 0, a simplification of S that satisfies the four requirements
stated above can be computed in O(N(N 4- M)log./V) time in the worst.case.

The close to quadratic time behavior of the algorithm is the time needed in the
worst case. Therefore, the algorithm may seem too inefficient for subdivisions with
millions of vertices. A better analysis that also incorporates some realistic assump
tions will show that the time taken in practice is much lower. It will also depend
on the sizes of the chains in the subdivision, the number of extra points inside the
convex hull of a chain, and the shapes of the chains themselves.

3 Preliminaries on line simplification
We describe the line simplification algorithm in [Imai & Iri '88], upon which our
method is based. Let vi,...,vn be the input polygonal chain C. A line segment
v^ is aclled a shortcut for the subchain u,,..., vr A shortcut is allowed if and only
if the error it induces is at most some prespecified positive real value e. where the error
of a shortcut u^ is the maximum distance from v, v} to a point Vk, where i < k < j.
We wish to replace C by a chain consisting of allowed shortcuts. In this paper we
don't consider simplifications that use vertices other than those of the input chain.

Let G be a directed acyclic graph with as the node set V = {v^,... , vn }. The arc
set E contains (t;,, v^} if and only if i < j and the shortcut v^ is allowed. The graph
G can be constructed with a simple algorithm in O(n3) time and G has size O(n2).

A shortest path from vi to vn in G corresponds to a minimum vertex simplification
of the polygonal chain. Using topological sorting, the shortest path can be computed
in time linear in the number of nodes and arcs of G [Cormen et al. '90]. Therefore,
after the construction of G, the problem can be solved in O(n2) time. We remark that

82

the approach can always terminate with a valid output, because the original polygonal
line is always a valid output (though hardly a simplification). The bottleneck in the
efficiency is the construction of the graph G. In [Melkman & O'Rourke '88] it was
shown that G can be computed in O(n2 logn) time, reducing the overall time bound
to O(n2 logn) time. In [Chan & Chin '92] an algorithm was given to construct G in
O(n2) time. This is optimal in the worst case because G can have 0(n2) arcs. We
explain their algorithm briefly.

One simple but useful observation is that the error of a shortcut tvDJ is the maxi
mum of the errors of the half-line starting at VT and containing v} , and the half-line
starting at v} and containing vt . Denote these half-lines by /,., and I.,,, respectively.
We construct a graph GI that contains an arc (i>,, v3] if and only if the error of l^ is
at most e, and a graph Ga which contains an arc (vt ,u,) if and only if the error of
I3 i is at most e. To obtain the graph G, we let (vi,v}) be an arc of G if and only if
(vi,v3) is an arc in both G\ and G?. The problem that remains is the construction
of G! and GI which boils down to determining whether the errors of the half-lines is
at most e or not. We only describe the case of half-lines 113 for all 1 < i < j < n\ the
other case is completely analogous.

accepted, the
wedge is shown
grey
Vertex vl+i
doesn't lie in
the wedge so
(i>l ,i>I +2) is not
accepted.

The reduced
wedge is shown
grey.
Vertex 1*1+3 lies
in the wedge so
(u,,wl+ 3) is ac
cepted.

V,+4

The wedge need
not be reduced.

Vertex i>t+4
lies outside
the wedge so
(v,,u,+4) is not
accepted.

The wedge
becomes empty
so no other arc
(vi, v.,) will be
accepted.

Figure 3: Deciding which arcs (v2 ,v3) with j > i are accepted to G\. Only (vl ,vljr \)
and (vt ,v,+3) will be accepted.

The algorithm starts by letting the vertices v\,... ,vn in turn be vl . Given v,, the
errors of all half-lines 1 13 with j > i are determined in the order J,(t +i), ^(t+2), • • • ,lm
as follows. If we associate with Vk a closed disk Dk centered at Vk and with radius
e, then the error of 1 13 is at most e if and only if /,., intersects all disks Dk with
i < k < j. Hence, the algorithm maintains the set of angles of half-lines starting at
Vi that intersect the disks D^...,Dr Initially, the set contains all angles (—TT.TT].
The set of angles will always be one interval, that is, the set of half-lines with error
at most € up to some vertex form a wedge with v, as the apex. Updating the wedge
takes only constant time when we take the next v3 , and the algorithm may stop the
inner iteration once the wedge becomes empty.

With the approach sketched above, the graph construction requires O(n2) time in
the worst case [Chan & Chin '92].

83

4 Consistent simplification of a chain
In this section we generalize the line simplification algorithm just described to over
come the two main drawbacks: it doesn't necessarily yield a simple chain and it
doesn't leave extra points to the correct side. We only discuss the simplification of
x-monotone chains. There are several ways to generalize our algorithms to the case of
arbitrary chains. At the end of this section we sketch one method briefly; for details
and extensions we refer to the full version of this paper.

A polygonal chain is x-monotone if any vertical line intersects it in at most one
point. In other words, an x-monotone polygonal chain is a piecewise linear function
defined over an interval. It is easy to see that any simplification of an x-monotone
polygonal chain is also an x-monotone polygonal chain. Let C be an x-monotone
simple polygonal chain with vertices vi,... , vn . We denote the subchain of C between
vertices vl and v3 by C13 . Let P be a set of m points pi,... , pm . From the definition
of consistency we observe:

Lemma 1 C' is a consistent simplification of C with respect to P if and only if no
point of P lies in a bounded region formed by C and C'.

Let Q13 be the not necessarily simple polygon bounded by C13 and the edge v^vj,
so Qtj contains j — i edges of C and one more edge ujJ^. This last edge may intersect
other edges of QtJ . The general approach we take is to compute a graph G3 with
{vi,...,vn } as the node set, and an arc (v% ,v3 } whenever the bounded regions of
QtJ contain no points of P. So we don't consider the error of the shortcut uJJJ.
This is done only later, when we determine the graph G on which the shortest path
algorithm is applied. The graph G can be determined from the graphs GI and G2
from the previous section, and the graph G3 defined above. G has an arc (vi,v3) if
and only if (vt , v3] is an arc in each of the graphs GI, G2 , and G3 .

To compute arcs of the graph G3 , we consider for each vertex u, the shortcuts u^T,.
We keep vl fixed, and show that all arcs (vlt v3] with i < j < n can be computed in
O((n + m) logn) time. The first step is to sort the shortcuts vt vl+1 , ..., uJJ^ by slope.
Here we consider the shortcuts to be directed away from vt . Since C is x-monotone,
all shortcuts are directed towards the right. The shortcuts are stored in a list L.

The second step of the algorithm is to lo
cate all tangent segments from v,. We define a

u'+i —----'\v«+3 ^\" I shortcut uJJj' to be tangent if v3 -\ and v3 +\ lie
in the same closed half-plane bounded by the
line through t\ and v3 , and i + I < j < n. The
shortcut u^ is always considered to be tangent.
The tangent shortcuts in Figure 4 are vlvt+s,
I'ti'j+G, vt , fj-t-7, and 1^+9. A tangent shortcut
u^Tj is minimal (in slope) if v3 -\ lies above the
line through vt and v,. If i>,_i lies below that

Figure 4: A part of a chain with ^ then - t ig m(mmgl (m ^^ ̂ . f
four tangent splitters. ^ Qn the Une it ig degenerate (it has length

zero). The tangent splitter is the line segment
w} v.j defined as the maximal closed subsegmcnt of ViV3 that does not intersect C in a
point interior to tZT/yJ. So the point w3 is an intersection point of the chain C and the
shortcut ufij, and the one closest to v3 among these, see Figure 4. If v3 -i lies on the
shortcut u^vj then w3 v3 degenerates to the point v3 . A tangent splitter is minimal,
maximal, or degenerate when the tangent shortcut is.

84

Vi+9 -» Let 1^1^(1),..., vt v7 (r) be the nondegenerate tan
gents. The corresponding set of tangent splitters
and C together define a subdivision Sl of the plane
of linear size, see Figure 5. The subdivision has r
bounded cells, each of which is bounded by pieces
of C and one or more minimal or maximal tangent
splitters.

For every cell of S1,, consider the vertex with high-
Figure 5: The correspond- est index bounding that cell. This vertex must define
ing subdivision 5, with cells a tangent splitter, so it is one of v7(i),... ,Uy(r)- As-
-y(l) = i + 5,7(2) = i+ sumeit is ^(6). Then we associate with that cell the
6, 7(3) = i + 7, and 7(4) = number b. The subdivision and its numbering have
i + 9. some useful properties.

Lemma 2 Every bounded cell of the subdivision Sz is ^-monotone with respect to vz ,
that is, any half-hne rooted at vl intersects any bounded cell of Sl in zero or one
connected components.
Lemma 3 Every bounded celt of the subdivision 5t has one connected subcham of C
where half-lines rooted at VT leave that cell.
Lemma 4 Any directed half-line from 11, intersects cells in order of increasing num
ber.

The points w3 can be found in linear time as follows. Traverse C from vl towards
vn . At every vertex v3 for which u^ is tangent (and non-degenerate), walk back along
C until we reach vt or find an intersection of tvDJ with C. In the latter case, the fact
that C is x-monotone guarantees that the point we found is the rightmost intersection,
and thus it must be wr Then we continue the traversal forward at v3 towards vn .
This approach would take quadratic time, but we use the following idea to bring it
down to linear. Next time we walk back to compute the next tangent splitter, we use
previous tangent splitters walk back quickly. For a new maximal tangent splitter we
only use previously found maximal tangent splitters, and for a new minimal tangent
splitter we only use minimal ones. One can show that the skipped part of C never
contains the other endpoint of the tangent splitter we are looking for.

The total cost of all backward walks is O(n), which can be seen as follows. During
the walks back we visit each vertex which is not incident to a splitter at most twice
(once when locating w3 for a maximal tangent splitter v} uij, and once for a minimal
tangent splitter). Each splitter is used as quick walk backwards only once. So we
can charge the cost of the backwards walks to the O(n) vertices of C and the O(ri)
tangent splitters.

The third step of the algorithm is to distribute the points of P among the cells
of the subdivision St . Either by a plane sweep algorithm where a line rotates about
•v,, or by preprocessing 5, for point location, this step requires O((n + m)logn) time
[Preparata & Shamos '85]. All points of P that don't lie in a bounded cell of 5t can
be discarded; they cannot be in a bounded region of the polygon Q^ for any shortcut
tvuj. But we can discard many more points. For every cell of 5,, consider the tangent
splitter with the vertex of highest index. If that tangent splitter is minimal, we discard
all points in it except for the point p that maximizes the slope of the directed segment
vrf, see Figure 6. Similarly, if the tangent splitter with highest index is maximal, we
discard all points in the cell except for the point p that minimizes the slope of the
directed segment v^p. Now every cell of St contains at most one point of P.

85

Figure 6: In each cell, only the point indicated by a square is maintained.

Lemma 5 Any shortcut vlvj is consistent with the subchain Ct] with respect to P if
and only if it is consistent with respect to the remaining subset of points of P,

Vl+ 2

Figure 7: Only the shortcuts
vt Vi+i, vt ,vt+2, and vtvl+3 are
accepted.

In the fourth step of the algorithm we decide
which shortcuts u^ are consistent and should be
present in the graph G% in the form of an arc (vt ,v3).
We treat the cells of St in the order of increasing
associated number. When treating a cell, we will
discard any shortcut uJJJ that has not yet been ac
cepted and is inconsistent with respect to the one
remaining point of P in that cell (if any). Then we
accept those shortcut vlv] that have v} on the bound
ary of the cell and have not yet been discarded. For
discarding shortcuts, we use the order of shortcuts
by slope as stored in the list L in the first step. For

accepting shortcuts, we use the order along the chain C.
In more detail, the fourth step is performed as follows. Iterate through the cells

Si, . . . , sr of S,. Suppose that we are treating Sb- If there is no point of P in the cell
Sb, then we skip the discarding phase and continue immediately with the accepting
phase. Otherwise, let pb be the point of P that lies in sh . Assume first that the
tangent splitter ^7(6)^7(6) is minimal. Consider the list L of shortcuts starting at
the end where shortcuts have the smallest slope. Repeatedly test whether the first
shortcut at that end of the list L has larger or smaller slope than the line segment
vtfi,. If the shortcut has smaller slope, then discard that shortcut by removing it from
L. If the shortcut has larger slope, stop the discarding. In Figure 7, the shortcuts
that are subsequently discarded when cell s\ is treated are vtvl+5 , 1^ vz vl+7 ,
and vtvl+& . If the tangent splitter is maximal then similar actions are taken, but on
the end of the list L where the shortcuts have largest slope.

Lemma 6 Every discarded shortcut v^UJ is inconsistent with the subchain C13 with
respect to the points of P.

After the discarding phase the accepting phase starts. For all vertices v} with
7(6 — 1) < j < 7(6) on C, if the shortcut v^U] is still in L, accept it by removing it
from L and letting (v,, v.,) be an arc in the graph G3 .

Lemma 7 Any accepted shortcut u^ is consistent with the subchain Cl} with respect
to the points of P.

The fourth step requires O(n) time, which can be seen as follows. For each cell, we
spend O(d + 1) time for discarding if d segments in L are discarded. This is obvious
because discarding is simply removing from an end of the list L. To accept efficiently,

86

we maintain pointers between the list L and the chain C so that shortcuts—once they
are accepted—can be removed from L in constant time. Then we spend O(a + 1)
time if a shortcuts are accepted. Since any shortcut is discarded or accepted once,
and there are a linear number of cells in 5,, it follows that the fourth step takes linear
time.

If we perform the above steps for all vertices vlt then combine the obtained graph
GZ with the graphs G\ and G2 (as denned in the previous section) to create the graph
G, we can conclude with the following result.
Theorem 2 Given an x-monotone polygonal chain C with n vertices, a set P of
m points, and an error tolerance (. > 0, it is possible to compute the minimum link
simplification of C that is consistent with respect to P and that approximates C within
the error tolerance e m O(n(n + m) logn) time.

The simplification is also simple, but this is automatic because every or-monotone
polygonal chain is simple. There are, however, several ways to generalize our results
so that they can be applied to arbitrary, not x-monotone chains. Let C be such a
chain, and let vt be a vertex for which we wish to compute good shortcuts. One can
determine a subchain vt ,..., Vk of C that is x-monotone after rotation of C. To assure
that shortcuts u&] with j < k don't intersect edges before vt or after ufc in the chain
C, we add the vertices before vl and after Vk to the set P of extra points. Then we
run the algorithm of this section. One can show that any shortcut v^UJ with j < k
that is consistent with respect to the extra points must be a consistent shortcut for
the whole chain C, and it cannot intersect any edges of C. The generalized algorithm
also runs in close to quadratic time.

5 Conclusions
This paper has shown that it is possible to perform line simplification in such a
way that topological relations are maintained. Points lie above the original chain
will also lie above the simplified chain, and points that lie below will remain below.
Futhermore, the line simplification algorithm can guarantee a user specified upper
bound on the error, and the output chain has no self-intersections. The method
leads to an efficient algorithm for subdivision simplification without creating any false
intersections. To obtain these results, we relied on techniques from computational
geometry. We have also developed more advanced algorithms for simplifying arbitrary
chains that allow of more reduction than the algorithm based on the idea described
here. These extensions are given in the full paper.

With ideas similar to ours, some other line simplification methods can also be
adapted to be consistent with respect to a set of tag points. In particular, the algo
rithm in [Douglas &: Peucker 73] can be extended.

The given algorithm takes O(n(n + m)logn) time to perform the simplification
for a chain with n vertices and m extra points. This leads to an O(N(N + M) log N)
time (worst case) algorithm for simplifying a subdivision with N vertices and M
extra points. There are many ideas that can be used to speed up the algorithm in
practice. Therefore, we expect that the algorithm performs well in many situations,
but probably not in real-time applications. Much depends on whether the quadratic
time behavior of the method will actually show up on real world data.

The study in this paper has been theoretical of nature. Yet the given algorithms
should be fairly straightforward to implement. We plan to implement our algorithm
and run it on real world data. This way we can find out in which situations the
efficiency of the method is satisfactory.

87

References
[Asano & Katoh '93] T. Asano and N. Katoh, Number theory helps line detection, in digital

images - an extended abstract. Proc. 4th ISAAC'93, Led. Notes in Comp. Science 762,
1993, pp. 313-322.

[Buttenfield '85] B. Buttenfield, Treatment of the cartographic line. Cartographica 22
(1985), pp. 1-26.

[Chan & Chin '92] W.S. Chan and F. Chin, Approximation of polygonal curves with min
imum number of line segments. Proc. 3rd ISAAC'92, Lect. Notes in Comp. Science
650, 1992, pp. 378-387.

[Cormen et al. '90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algo
rithms, MIT Press, Cambridge, 1990.

[Cromley '88] R.G. Cromley, A vertex substitution approach to numerical line simplifica
tion. Proc. 3rd Syrap. on Spatial Data Handling (1988), pp. 57-64.

[Douglas & Peucker '73] D.H. Douglas and T.K. Peucker, Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature. The Cana
dian Cartographer 10 (1973), pp. 112-122.

[Eu & Toussaint '94] D. Eu and G. Toussaint, On approximating polygonal curves in two
and three dimensions. Graphical Models and Image Processing 5 (1994), pp. 231-246.

[Guibas et al. '93] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, and J.S. Snoeyink, Ap
proximating polygons and subdivisions with minimum-link paths. Int. J. Computa
tional Geometry and Applications 3 (1993), pp. 383-415.

[Hershberger &: Snoeyink '92] J. Hershberger and J. Snoeyink, Speeding up the Douglas-
Peucker line simplification algorithm. Proc. 5th Symp. on Spatial Data Handling
(1992), pp. 134-143.

[Hobby '93] J.D. Hobby, Polygonal approximations that minimize the number of inflections.
Proc. 4th ACM-SIAM Symp. on Discrete Algorithms (1993), pp. 93-102.

[Imai & Iri '88] H. Imai and M. Iri, Polygonal approximations of a curve - formulations
and algorithms. In: G.T. Toussaint (Ed.), Computational Morphology, Elsevier Science
Publishers, 1988, pp. 71-86.

[Kurozumi & Davis '82] Y. Kurozumi and W.A. Davis, Polygonal approximation by the
minimax method. Computer Graphics and Image Processing P19 (1982), pp. 248-264.

[Li &: Openshaw '92] Z. Li and S. Openshaw, Algorithms for automated line generalization
based on a natural principle of objective generalization. Int. J. Geographical Informa
tion Systems 6 (1992), pp. 373-389.

[Mark '89] D.M. Mark, Conceptual basis for geographic line generalization. Proc. Auto-
Carto 9 (1989), pp. 68-77.

[McMaster '87] R.B. McMaster, Automated line generalization. Cartographica 24 (1987),
pp. 74-111.

[Melkman & O'Rourke '88] A. Melkman and J. O'Rourke, On polygonal chain approxima
tion. In: G.T. Toussaint (Ed.), Computational Morphology, Elsevier Science Publishers.
1988, pp. 87-95.

[Preparata &: Shamos '85] F.P. Preparata and M.I. Shamos, Computational Geometry - an
introduction. Springer-Verlag, New York, 1985.

[Zhan & Mark '93] F. Zhan and D.M. Mark, Conflict resolution in map generalization: a
cognitive study. Proc. Auto-Carto 13 (1993), pp. 406-413.

88

