
AUTOMATIC MAP FEATURE EXTRACTION 
USING ARTIFICIAL NEURAL NETWORKS

Itthi Trisirisatayawong and Mark R. Shortis
Department of Geomatics
University of Melbourne

Parkville VIC 3052 AUSTRALIA
Mark_Shortis@mac.unimelb.edu.au

ABSTRACT
This paper describes the implementation of and experimentation with multi-layer 
feedforward neural networks to extract particular map features from scanned topographic 
maps. Commercial scan-conversion systems for automatic map input exist, but their 
capabilities are limited to vectorisation and other post-conversion processes on clean single- 
theme map images. This limitation impedes their application on paper maps which are in 
far more common use than single-theme images. The central issue of this paper is a 
technique that can be used as generally as possible as a mechanism to extract single-theme 
data from multi-theme documents. Backpropagation neural networks can establish any 
complex decision boundaries and therefore can be applied in any classification problem, 
which makes the technique attractive as a base for the development of such a mechanism. 
Experiments are carried out on scanned images of two topographic maps at different scales. 
The results demonstrate that neural networks have the potential to be implemented for 
automatic map data acquisition for GIS.

INTRODUCTION
The creation of a clean digital databases is a most important and complex task, upon which 
the usefulness of GIS depends (Burrough, 1988, p.56). Of the number of sources that can 
be used as input to GIS, secondary data like maps has been the most important source 
because of the variety, accuracy and effectiveness of maps to convey information about 
real-world phenomena, and their relationships, to the users. However, although maps are 
very efficient stores of information, it is surprisingly difficult to obtain certain types of 
numeric information from them (Goodchild, 1990). To date, the tool normally offered by 
commercial GISs to capture map data is manual digitisation using a hand-held cursor. It is 
well known that data capture by this method is slow, inconsistent and error-prone, so 
spatial database creation is expensive. Screen-based or head-up digitisation may eliminate 
the inefficiency of looking back and forth between the digitising table and screen, but in 
order to achieve the accuracy required, it is necessary to magnify feature data. The time 
required to change view windows in high magnification modes often makes capture of 
spatial features more time-consuming with screen digitising than similar accuracies 
achieved by using conventional digitising tablets (Skiles, 1990).
Since the early 1970s, many commercial systems have been offering automated line- 
tracing, a technique for rapid generation of vector data from line maps. The line-tracing 
system may be controlled by special hardware devices and software, or purely by software. 
The core of a scan-con version system is vectonsation, whose fundamental requirement is 
that clean single-theme maps such as map separates are available. This assumption leads to 
a very narrow, well-defined problem domain which allows commercial development. For 
many reasons, however, clean single-theme maps may not be available (Faust, 1987). 
This situation is more severe in most developing countries where map separates are strictly 
controlled, mainly for reasons of national security. Consequently, the application of 
automatic conversion systems on multi-theme map documents, which in are far more 
common use than map separates, are impeded by the same assumption that allows their 
commercial development.
Automatic map-conversion systems can be used more widely if the assumption about the 
availability of single-theme maps is removed. In other words, a process that can extract 
particular features from scanned map images and feed them to a vectorisaUon process is 
needed. The demand on this missing component will accelerate due to the fall in prices of 
commercial desktop scanners in recent years, since this means that most organisations now
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can afford to routinely capture map data in an automatic manner. Unfortunately, the level 
of automation of feature extraction is far behind vectonsation and other processes 
thereafter. This creates a situation in which single-theme data may be reproduced by 
manual tracing on original multi-theme documents before being scanned and vectorised. It 
can be clearly seen that this practice is in fact equivalent to manual digitisation and thus 
suffers all the same drawbacks.
There has been little reported research concerned with automatic feature extraction from 
images produced by scanning multi-theme maps. Fain (1987) addressed pixel 
classification as part of a solution to automatic data conversion, but no indications about 
source documents, techniques and results were given and the emphasis was on interactive 
editing rather than automatic methods. In the paper of Konty et al (1991), some 
information about test documents was available but the core work is a benchmark test of 
commercial systems without any attempt to evaluate the underlying techniques. Of the 
more technical work, Eveleigh and Potter (1989) reported a preliminary study of using the 
Bayes technique to classify a USGS 7.5 minute quadrangle covering a rural area. The 
study, however, did not indicate whether the RGB intensity values of the map image had 
the normal distribution assumed by the Bayes classification technique and neither was any 
classified result nor quantitative information revealed.
Previous research in automatic map feature extraction concentrates on the implementation of 
techniques that can be possibly used for particular test maps. The important issue of the 
generality of the employed techniques has not yet been systematically studied. This paper 
investigates neural network techniques, which have the potential to be implemented as a 
general feature extraction mechanism. The property of neural networks that makes it a 
powerful technique is described first, followed by discussion of the experiments carried out 
on test maps.

NEURAL NETWORK FEATURE EXTRACTOR
Feature extraction is achievable by classification. This popular scheme in pattern 
recognition employs a classifier to classify image objects according to their characteristics. 
A classifiable characteristic is any numeric information used to distinguish one part of 
image from other parts. The objects may be single pixels or groups of contiguous pixels 
depending on the level of abstraction at which classification is performed. The derived 
characteristics are fed into the classifier which produces class labels for objects.
A classification technique may be categorised as supervised or unsupervised. Basically, an 
unsupervised classification is a data clustering technique whose fundamental idea is that 
different feature classes should form different clusters in characteristic space. Thus, 
unsupervised classification is done by grouping objects into clusters based on the criterion 
that the clusters should be formed as compactly or tightly grouped as possible. Other 
criteria or additional processing may be employed to enhance the separation between 
clusters. These techniques are called unsupervised because they make no use of external 
knowledge or the characteristics of feature classes.
Unsupervised classification is mainly used when there is little information regarding what 
features the scene contains. This is particularly true for satellite images which may cover 
inaccessible areas and, in such circumstances, it is impractical or too expensive to obtain 
sample data. The drawback of unsupervised techniques is that feature classes may only be 
marginally separable or may not form obvious clusters at all. Unsupervised classification 
cannot provide correct results in such situations and this problem prevents the technique 
from being used as a general tool.
On scanned map images, the problem of the unavailability of sample data is certainly not 
the case and supervised techniques are the obvious choice for the classification task. 
Instead of relying on compactness, which may not truly reflect the data structure, 
supervised techniques utilise information contained in the sample data to establish decision 
boundaries between feature classes.
The classification process can be geometrically interpreted as the establishment of decision 
boundaries in the characteristic space. The more complex the decision boundaries a 
classifier can establish, the more general it is. The most important of traditional supervised
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classifications is the Bayes technique. In the Bayes technique, the sample data is used to 
estimate the parameters, for instance the mean vector and covariance matrix, of the 
multivariate normal distribution. The bell shapes of normal probability density functions in 
two dimensional space mean that the decision boundaries drawn by the Bayes technique are 
hyper-ellipsoids in n dimensional space.
A new and increasingly important technique is backpropagation neural networks. The 
interest in the application of backpropagation neural networks for classification problems is 
driven by the analysis shown in Lippmann (1987) that a single hidden-layer 
backpropagation neural network can form any, possibly unbounded, convex region in n 
dimensional space. A simple extension to a two hidden-layer network can establish 
arbitrarily complex decision boundaries which can separate even meshed classes. Although 
the latter case is not explored in this paper, this capability means that, in theory, 
backpropagation neural networks can be used for virtually any classification problem 
regardless of the statistical distribution of data. It follows that the backpropagation neural 
network technique is a more general technique than the Bayes technique, which is based on 
the assumption that the data is normally distributed.
However, accuracy also needs to be taken into account to assess the validity of the 
generality. It has long been known that when the underlying assumption about the 
statistical distribution is met, the Bayes classifier provides an optimum result. This 
important property has established the Bayes technique as a benchmark against which any 
newly proposed technique has to measure. The next section compares performances of 
both techniques when applied to a scanned topographic map.

FEATURE EXTRACTION AT PIXEL LEVEL
The performance analysis of backpropagation neural network classifiers has been 
undertaken on remotely-sensed data by a number of reported research works, many 
including a comparison with the Bayes technique (Howald 1989; Hepner et al 1990; 
Heermann and Khazenie 1992; Bischof et al 1992). However, despite the importance of 
these two techniques, little attention has been paid by the mapping/GIS community for such 
studies on map data. The comparison of Bayes and backpropagation neural network 
techniques on the segmentation of real map images was probably first reported by 
Tnsirisatayawong and Shortis (1993). The study used RGB spectral characteristics to 
classify a portion of 1:100,000 Australian topographic map which was scanned at a 
resolution of 150 dots per inch. The advantages and disadvantages of both methods in 
practical issues were discussed, but a detailed analysis of data and performance of each 
method on each feature was beyond the scope of the paper.
The analysis below is an extension of the above-mentioned work. Figure 1 illustrates the 
test map which is shown in grey-scale. The statistics of map features are shown in table 1. 
Some of the results from Bayes and one hidden-layer neural network classifiers are shown 
in figure 2.
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Figure 1: Test map (from the colour original at 1:100,000 scale).
Crown Copyright reproduced with the permission of the General Manager, Australian Surveying and Land 

Information Group, Department of the Arts and Administrative Services, Canberra, Australia
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Feature

Built areas
Contours
Forest
Roads
Water
Dark

Number 
of 

Samples
39
29
50
42
39
36

Mean

R
237
216
222
213
161
80

G
153
172
233
106
193
70

B
155
140
155
87

244
83

Standard Deviation

R
8

19
21
45
35
35

G
14
25
16
39
32
24

B
14
34
36
43
25
28

Skew

R
-0.5
-0.5
-0.7
-2.2
-0.8

1.8

G
0.0
0.0
1.6
0.2

-1.2

1.1

B
-0.4

0.6
0.8
0.3

-3.7

0.2
Table 1: Statistics of spectral characteristics of features on the test map shown in figure 1.

Skewness, the magnitude of which indicates the degree of deviation of the data from a 
symmetrical distribution, of RGB charactensties is computed for each feature class. Large 
skewness values mean that the data is significantly skewed whereas smaller values indicate 
otherwise. Using skewness values as indicators, it can be seen that for the feature classes 
such as water, roads and forest, the sample data distributions are substantially skewed and 
therefore cannot be normal. It is therefore expected that the backpropagation neural 
network produces more accurate results, and this is evident in figure 1, particularly for the 
water image of rivers and lakes. On the layers of built areas and contour lines, whose 
spectral characteristics can be properly assumed to have normal distributions because of 
small skewness, the results from the two techniques are essentially similar.

Figure 2a: From top to bottom: Classified images of the features of water bodies and 
roads respectively. The images on the left and right hand sides are results from the Bayes 
and backpropagation neural network techniques respectively.
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Figure 2b: From top to bottom: Classified images of the features of forest, built areas and 
contour lines respectively. The images on the left and nght hand sides are results from the 
Bayes and backpropagation neural network techniques respectively.

The results indicate that a backpropagation neural network with one hidden-layer can be 
implemented for map-feature extraction at the pixel level. In the non-normal cases, the 
neural network provides better results, but even when the characteristics have a normal 
distribution, results provided by the Bayes bench mark are satisfactorily approximated by 
the neural network. Thus, the statistical distribution constraint in the Bayes technique is 
removed when the alternative neural network technique is applied, solving the same 
problem with equivalent accuracy. The proposition that neural networks are a general 
classifier is supported by the experimental results
However, not every feature can be extracted using a multispectral classification. Different 
features may have the same colour and it is not possible to differentiate one feature from 
another regardless of the technique used. An example of this problem is shown in figure 3 
in which railway, text, house symbols and tracks are incorrectly assigned into the same 
class. Another example of the same situation is shown figure 4, which is an image resulted 
from a neural network multispectral classification of another scanned topographic map 
(original scale 1:50000, scanned at 300 dots per inch). The fact that these features hold the
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same spectral characteristics means that there is no way at pixel level to avoid the 
misclassification. Thus, multispectral classification provides only partial solution to the 
problem of map-feature extraction. Other techniques need to be utilised to resolve 
ambiguities resulting from the initial spectral classification.

Figure 3 (left) and 4 (right): Images of mixed features resulting from a multispectral
classification.

FEATURE EXTRACTION BY SHAPE ANALYSIS
Further extraction on the image of mixed features must be carried out to produce single- 
theme images. If the appearances of map features are somewhat consistent, templates 
which define their likely pixel arrangement can be used in a classification by looking at the 
degree of match or similarity between the image part under consideration and the template 
being applied. The serious disadvantage of this simple technique is its inability to handle 
variations in shape and size of each feature type, which is normally the case m most maps. 
A very large number of templates must be defined to cover all possible occurrences and this 
may incur extremely heavy computational load. This may lead to an unacceptable situation 
m which even a high-speed processor will take several hours to locate features within the 
image. Another situation in which template matching techniques are not suitable is when 
the appearance of one feature is a part of another larger-sized feature. For example, the 
letter I also appears in the left portion of the letters B, D, P. Misidentifications (or false 
alarms) will occur when B, D, P are matched by the template of I. There is no universally 
effective solution for this problem.
Intuitively, sets of contiguous foreground pixels displayed as regions, identified by a pixel 
level classifier, can be treated as individual image objects. These objects can be further 
classified based on the similarities and differences in shapes. Thus, the concept that feature 
extraction can be formulated as a classification is still applicable, provided that shape 
information is properly quantified.
The shape characteristics must be tolerant to transformation and uniquely defined by the 
objects if the problems of the template matching method are to be avoided. Basic shape 
characteristics are those related to size such as area, perimeter and extent. These 
characteristics are invariant to translation and rotation but are affected by scale. A possible 
way to obtain scale-invariant characteristics is by relating the given measurements of 
objects to some well known geometric figure such as a circle. The result is dimensionless 
shape measurements which are invariant under magnification or reduction. For example, a 
compactness ratio could be derived by dividing the area of the object by the area of the 
circle having the same perimeter as the object. However, although it is possible to produce 
characteristics which are invariant to translation, rotation and scale in this way, there is no 
guarantee that two different object types will not produce the same character!sties. The use 
of shape values which are not uniquely defined by objects prevents the implemented 
classification technique on a particular test map to be subsequently applied to different map 
images.
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The theory of moment invariants can be applied to produce object characteristics that are 
invariant under transformation and uniquely defined by objects. This analytical method 
was first introduced to the classification problem by Hu (1962). Details of moment 
invariants is omitted here but can be found in Hu (1962). Since its introduction, moment 
invariants have been used in aircraft identification (Belkasim et al, 1991), detection of ships 
in remotely sensed images (Smith and Wright 1971), and optical character recognition (El- 
Dabi et al 1990). All of this research applied moment characteristics in conjunction with 
conventional supervised or unsupervised classifiers. The performance of the technique 
combining moment characteristics with neural networks has not yet been explored.
In theory, coupling a neural network classifier with moment characteristics should result in 
a general classification technique. Of the infinite number of moments that can be chosen, 
only three, namely mOO (area or number of pixels comprising an object), Ml (spread) and 
M2 (elongation), are employed. The selection of this subset of moments is based on the 
consideration that these three values carry substantial shape information and should contain 
discrimination power adequate for classifying objects within a map image. Statistics of the 
three moment characteristics of the test image of figure 3 are shown in table 2 and the 
classified image results from using a one hidden-layer backpropagation neural net are 
shown in figure 5.

Railways Dashed lines 
Figure 5: Images of the object classifications of the map image shown in figure 3.

The results clearly illustrate that extraction of features from the test image is achieved with a 
high degree of accuracy and completeness. However, there are what seem to be 
misclassifications appearing in each classified image. If the classification of objects into a 
class is posed as the null hypothesis in statistical test, then it can be seen that most of the 
misclassifications are type-two errors. The classified images of house symbols and 
railways are free of type-one errors. In the text image, there are a few type-one errors but 
all of them occur from characters having similar shapes to dashed lines. This is reasonable
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since there is no way for the classifier to identify these characters without the help of extra 
information, such as context.

Object

Dashed lines
Houses
Railway

Text

Mean
mOO
49
38

2719
111

Ml
60
16

1526
226

M2
57
3

1414
21

Standard Deviation
mOO

7
5
0

50

Ml
13
1
0
16

M2
12
2
0

23

Skew
Ml

-0.38
0.00
0.00
0.34

M2
-0.42
0.25
0.00
0.41

Table 2: Statistics of moment characteristics of map objects in figure 3.

Every classified image suffers from a different degree of type-two errors. The most 
serious case is the text image. However, almost all of the errors occur from compound 
objects which are an incorrect aggregation of two or more objects. Considering that there is 
no class representing them and they are not used in the training phase, these type-two 
errors are not mistakes of the classifier. In fact, a visual inspection reveals that, except in 
one instance where two characters on the railway image are mistakenly joined by the pixel 
classification, all compound objects appear on the original document or are a result of the 
finite sampling size of the scanning process.
A similar process of classification by moment characteristics performed on the test image of 
figure 4 produces similar results. In this case a slight modification is made. The number 
of classes of line features is restricted to one only, since each line type has only a few 
objects. So, there are three classes representing points, lines and text with another class 
being assigned as a noise channel. The results are illustrated in figure 6 below.

Points Lines Text 
Figure 6: Images of the object classifications of the map image shown in figure 4.

Like the previous analysis, it can be seen that most of the features have been correctly 
classified. Except for two point symbols being misclassified into the layer of text and three 
elongated characters being incorrectly assigned to the line layer, most of the problems are 
caused by compound objects. White noise appearing in the classified images can be simply 
removed by size criterion. The classification accuracy of both text and point symbols are in 
the high 90 percent range and this is achieved without any extra information, such as 
contextual information, which certainly will enhance the results.
A number of further processes are required to convert the classified objects into features 
appropriate for the generation of a spatial database. Aggregated objects must be separated 
using, for example, mathematical morphology techniques (Trisirisatayawong, 1994). Line 
objects must be vectorised, text must be recognised and linked to associated map features
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(Shortis and Trisirisatayawong, 1994), and a final phase of attribute tagging must be 
conducted (Trisirisatayawong, 1994).

CONCLUSIONS
Neural networks re-formulate all problems by finding the correct internal weights, so the 
technique can be viewed as a black-box problem solver in which the weights have no 
obvious physical meaning in the context of problem. The statistical distribution of data is 
insignificant compared to other traditional classifiers. This means that neural networks can 
be universally applied to all classification problems, provided the network is properly 
trained by appropriate and accurate sampling.
A drawback of the neural network technique is that it is often difficult to determine whether 
the neural network is correctly trained. Learning error is the only information used by the 
neural network to indicate the degree of success. There is no guarantee that when the error 
has converged to a particular value that it is the global, rather than a local, minimum. So, 
the magnitude of error often does not truly reflect the degree of learning. One widely-used 
practice is to set an acceptable error threshold and the network is accepted as adequately 
trained once the learning error has converged to a value less than this threshold. Thus, the 
amount of training of the network is subjectively determined by the operator, who must 
specify the threshold based on experience or any other suitable guideline.
Neural networks are extremely flexible in solving a wide variety of problems. The key 
factor determining the accuracy of a neural network is its structure, which can be 
constructed as single hidden-layer, multiple hidden-layer, partial inter-layer connection, full 
connection or other varieties. However, it also means that different neural networks may 
be constructed to solve the same problem and so, in mathematical sense, the technique of 
neural networks does not provide a unique solution. There is no general rule to determine 
whether the chosen structure is optimum. The most serious problem in practice is the 
determination of the learning rate, the initial weights and especially the structure of neural 
networks. All of these factors must be pre-determined by the operator who will in general 
set them from prior knowledge and experience.
Nevertheless, the drawbacks of neural networks occur mostly because the technique is still 
a relatively young science. The problems will dissipate as the knowledge of neural 
computing expands. For example, some guidelines about the determination of learning rate 
can be found in Kung and Hwang (1988), although the final settings must still be 
determined on a trial and error basis. Also, research on the automation of the determination 
of structure and the removal of redundant elements in the network to improve efficiency are 
under way (Wen et al 1992). The efforts in these areas will lead to less time and frustration 
incurred from training neural networks in the future.
Overall, the advantages of neural networks as a general classifier outweigh the 
disadvantages. As the experimental results on real map data shown here firmly support the 
theoretical claims, it is believed that neural networks can be further developed as general 
map feature extraction mechanism.
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