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ABSTRACT

Measurement is commonly divided into nominal, ordinal, interval and 
ratio 'scales' in both geography and cartography. These scales have been 
accepted unquestioned from research in psychology that had a particular 
scientific agenda. These four scales do not cover all the kinds of 
measurements common in a geographic information system. The idea of 
a simple list of measurement scales may not serve the purpose of 
prescribing appropriate techniques. Informed use of tools does not depend 
on the nature of the numbers, but of the whole 'measurement 
framework1 , the system of objects, relationships and axioms implied by a 
given system of representation.

Introduction

The approach to measurement in certain social sciences is still strongly 
influenced by Stevens' (1946) paper in Science. His 'scales of 
measurement' form the basis for geography (Unwin 1981) and for 
cartography (Muehrcke 1976; Chang 1978). While measurement has 
continued to develop in social science research (Churchman and Ratoosh 
1959; Coombs 1964; Ellis 1966; Krantz et al. 1971; Narens 1985; Suppes et al. 
1989; 1990), these continuing developments have not been followed in 
the cartography and GIS literature.

Development of theories of measurement
The 'classical' school of measurement developed in physics and other 
sciences by the end of the nineteenth century. In the classical view, 
measurement discovered the numerical relationship between a standard 
object and the one measured. The property was seen as inherent in the 
object. This viewpoint is deeply ingrained in our language and society.

Let us take the attribute 'length'. Every entity in space can be measured by 
comparing its length to some other length. If we adopt a 'standard' 
measuring rod, we can obtain numbers (the ratio between the length of 
the rod and the objects measured) by a physical procedure that mimics 
addition - laying the rod successively along the edge. Nineteenth century 
physics was able to build up a rather complex model of the world with 
remarkably few of these fundamental properties (length, mass, electrical 
charge, etc.). These properties were termed 'extensive' because they 
extended in some way as length does in space. Other properties (like
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density) were built up as ratios of the extensive properties and were thus 
'derived'. The laws of physics prescribed the rules for derived measures.

Extensive properties are rather restrictive, and the idea of a universal 
standard measuring rod in Sevres, France is not very practical for all the 
properties that must be measured. Physicists began to move beyond the 
classical concept that the meter was an intrinsic property of one particular 
rod. The method of measurement became just as important as the 
physical standard, thus separating the object and the measurement. A 
twentieth-century philosophy of measurement called 'representation- 
alism' saw numbers, not as properties inherent in an object, but as the 
result of relationships between measurement operations and the object.

Exclusive focus on extensive measurement in physics left almost no 
room for the social sciences to develop a measurement theory. The 
physicists could not consider phenomena like perceived loudness of 
sounds as a measurement, since it did not involve extensive properties 
like addition. Stevens' system arises from this context, a part of the 
movement to create a quantitative social science.

This paper will begin with a quick review of Stevens1 scheme, followed 
with some examples of measurements in one and more dimension 
which require another approach. At one end, the 'ratio' level is not the 
highest level, nor is it so unified. At the other, the nature of categories 
need to be reexamined. Stevens' hierarchy also fails to treat the 
circumstances of multidimensional measurement.

Stevens' Scales of Measurement

Table 1: verbatim copy of Stevens' (1946, 678) Table 1

Scale

NOMINAL

Basic Empirical 
Operations

Determination of 
equality

Mathematical 
Group Structure

Permissible statistics 
(invariantive)

Permutation group Number of cases 
x' = f(x) Mode 

f(x) means any 
one-to-one substitution

ORDINAL Determination of 
greater or less

Isotonic group Median
x' =f(x) Percentiles 

f(x) means any 
monotonic increasing function

INTERVAL Determination of General linear group Mean
equality of intervals x' = ax + b Standard deviation 
or differences Rank-order correlation

Product-moment correlation

RATIO Determination of 
equality of ratios

Similarity group 
x' =ax

Coefficient of variation

Stevens adopted the representationalist philosophy in a 'nominalist' 
form (Michell 1993), defining measurement as the 'assignment of 
numbers to objects according to a rule'. Table 1 reproduces Stevens 1
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original table exactly so that his presentation is not clouded by the 
reinterpretations developed over the past fifty years.

The scales are defined by groups of mathematical operations that were 
increasingly restrictive. The focus was upon 'groups' of transformations 
under which the meaning of the scale remains invariant. A nominal 
scale could be replaced by any other scale that could be mapped one-to-one 
onto the original one. One subset of those operations are 'isotonic' 
[meaning monotonic]; a subset of these are linear, and a subset of these 
are simply multiplicative. From the start, the levels of measurement can 
be associated with an attempt to bring mathematical order into fields that 
do not seem to be as rigorous as physics, which had controlled the earlier 
developments of measurement theory (Campbell 1920; Bridgeman 1927; 
Michell 1993).

A key element of Table 1 is the connection between the 'scales' and 
'permissible statistics'. Many textbooks on statistics for social sciences 
(beginning with Siegel's (1956) classic on non-parametric methods) 
adopted this connection between a variable and appropriate techniques. 
At the root, measurement is seen as a choice to represent an entity by a 
number, relationships were simplified to those inherent in the number 
system chosen. The association between numbers and methods may not 
be as simple as Stevens and Siegel conceived, particularly when dealing 
with geographic information.

Stevens tried to expunge the distinction that physicists had drawn 
between 'extensive' and 'derived' measurement. In Stevens' reductionist 
viewpoint, the properties applied to the number system, not the method 
by which it was generated [this had been the viewpoint of the 
operationists like Percy Bridgeman (1927)]. It is ironic that cartographers 
teach Stevens' system, with a unified 'ratio' level, then must make a 
distinction between those attributes permissible on choropleth maps 
(densities and other derived measures) and those permissible on 
proportional symbol maps ('extensive' measures where addition is the 
underlying mechanism). Using Stevens for cartography has been 
established for years (Muehrcke 1976; Chang 1978), and the inadequacies 
do not seem to be recognized.

Above Ratio
Stevens' four 'scales' are usually presented as a complete set, but they are 
far from exhaustive. Stevens (1959) himself proposed another scale at the 
same level as interval for logarithmically scaled measures. The 
invariance is the exponent, while the zero is fixed. This 'logarithmic- 
interval' scale is not cited in any of the geographic literature, though it is 
used for earthquake intensities and similar measurements. Following 
Stevens' invariance scheme to its conclusion, ratio is not the highest 
level of measurement. The ratio scale has one fixed point (zero) and the 
choice of the value of 'one' is essentially arbitrary. A higher level of 
measurement can be obtained if the value of one is fixed as well. Then 
the whole scale is predetermined or 'absolute' (Ellis 1966) and no 
transformations can be made that preserve the meaning of the 
measurement. One example of an absolute scale is probability, where the
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axioms fix the meaning of zero and one simultaneously. Bayes' Law of 
conditional probability works because the scale is fixed between zero and 
one. Probability is just one example of a scale not recognized by Stevens.

Another class of geographic measurements consist of counts aggregated 
over some region in space. Counts are discrete, since there is no half 
person to count, but a count captures more mathematical structure than 
the other discrete levels (nominal and ordinal). Since the zero is a fixed 
value, counts may seem ratios, but, being tied to the discrete unit counted, 
it cannot be rescaled. Counts have different properties from the absolute 
scale, as well. Ellis (1966, p. 157) points out the difference between ratio 
scales and counting with the example that it is acceptable to posit a unit by 
saying "Let this object be 1 minch long", but it is not possible to say "Let 
this group contain one apple", since it either has one apple or some other 
number when you start. As I will demonstrate below, the process of 
counting depends upon the recognition of objects, a procedure tied to 
nominal measures.

Cyclical measures
While Stevens' levels deal with an unbounded number line, there are 
many measures which are bounded within a range and repeat in some 
cyclical manner. Angles seem to be ratio, in the sense that there is a zero 
and an arbitrary unit (degrees, grads or radians). However, angles repeat 
the cycle. The direction 359° is as far from 0° as 1° is. Any general 
measurement scheme needs to recognize the existence of non-linear 
systems. Some aspects of time, have repeating or cyclical elements. In 
environmental studies of all kinds, the seasons play an important role. 
Stevens' scheme does not allow for measurements that can be ordered 
spring-summer-fall-winter-spring or fall-winterspring-summer-fall. 
The seasonal relationships are invariant to the starting point in the cycle.

Spatial measurement raises questions about measurement scales. In the 
one-dimensional world of Stevens, the open-ended ratio scale seems to 
provide the most information content. A real number line contains the 
most promise for mathematical relationships. When representing a two- 
dimensional space, the normal scheme, attributed to Descartes, uses two 
orthogonal number lines. Analytical geometry can demonstrate the 
conversion between coordinates on two orthogonal axes and a radial 
system (Figure 1). These two representations are equivalent even though 
the units of measurement do not seem equivalent. The reason is that the 
two orthogonal distances create a triangle. The radial coordinates specify 
that same triangle using the hypotenuse and an angle. The theorems of 
geometry demonstrate that the two triangles are congruent, a finding that 
would not be apparent from their measurement scales.

h theta

theta = arc tan (Y/X) 

Figure 1: Cartesian axes convert to radial reference without loss
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The conversion from two ratio scales to one ratio scale plus an angle is 
not unique to geometric constructions. Potentially infinite vectors can be 
simplified into lower dimensional renditions, adding great complexity to 
the intuitive structure propounded by Stevens. For example, all the 
gravitational forces from various directions can be resolved into a 
resultant force measured in three space. Similarly, radiant energy at 
various wavelengths coalesce into a particular color that can be 
represented in a simple conical object (Munsell's space or equivalent). 
The color cone is thus a "fact of nature, not a mathematical trick" (Suppes 
et al. 1989, p. 226). Multidimensional measurements create interactions 
not imagined in the simple linear world of Stevens. Since GIS is 
inherently multidimensional, the linear model limits our understanding 
concerning the interactions of measurements.

If there is any theory to GIS, it would have to start from the storage of 
attribute values in their spatial context. Tomlin (1983; 1990) has built a 
complex range of tools around the raster model of values stored for an 
array of point/areas. Goodchild (1987) contrasts the object view (isolated 
objects in a void) and the 'field' view (a z value for all pairs x,y). This 
commonality of thinking is strongly influenced by the storage systems 
that we have invented. We must remember that the slope of a surface is 
characterized by two numbers [gradient and aspect to use the terminology 
of Burrough (1986)]. We lose much understanding by the reductionism 
that treats these as arrays of numbers, not the vector space that the two 
numbers taken together portray. GIS is still stuck with scalar values as the 
basic conception, while vector fields and tensor fields are necessary to 
connect the representations to process. Higher numbers of dimensions 
require more complex spatial data structures (Pigot and Hazelton 1992; 
Worboys 1992, for example).

Rethinking nominal measurement
While Stevens' top end, the ratio scale, leads off in the direction of 
multidimensional measures, the bottom end is equally problematical. 
The nominal scale is not even considered to be a kind of measurement in 
many theoretical discussions (Ellis 1966; Krantz et al. 1971; Narens 1985). 
Social scientists had much discussion about identifying numbers, such a 
'football numbers' (Lord 1953). A strictly arbitrary string assigned to each 
object is not really a category that groups together any individuals. Thus, 
it does not support Stevens' 'equality' operator. Furthermore, most 
numbering systems (like Lord's football team numbers) provide some 
kind of ordinal information about the sequence in which they are 
assigned or some other logic internal to the authority responsible. 
Identifying numbers are not really the categories that concern this 
discussion. Basically, a nominal category defies the logic expected of a 
'scale'; order, systems of inequalities and some concatenation operations 
(Krantz, Luce et al. 1971, p. 4). These are the ingredients of ordinal 
measurement or higher.

Does this mean that nominal measurement must be abandoned? In a 
careful reading of measurement theory, the tide has changed from 
Stevens' simplification. For Stevens, the numbers determined the nature 
of the methods. Even some theorists who ignore nominal measures
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provide a basic definition that leads in another direction. Volume 1 of 
Foundations of Measurement (Krantz et al. 1971, p. 9) defines a scale as a 
construct of "homeomorphisms from empirical relational structures of 
interest into numerical relational structures that are useful". The key 
issue is not the invariance of some algebraic properties, but the 
invariance of the underlying relationships. Though restricted to numbers, 
this definition can be broadened to deal with categories. If the 
measurement preserves the empirical relationships and provides a useful 
structure for analysis, a nominal categorization fits the general 
requirements for a scale of measurement.

The trouble has been the oversimplification of nominal distinctions. In 
most treatment, Aristotle's rules are applied. Each member of a set must 
share common characteristics. Stevens adopts this rule by requiring that 
all members of a nominal group are equivalent. Certainly there is plenty 
of precedent for these kinds of rigid categories, but representations of the 
world do not always fit the simplicity of this logic. Many scientific 
categories, and even more of the categories of every-day life, do not live 
up to the purity of 'shared attribute' categories. Modern category theory 
(Johnson 1987; Lakoff 1987) describes at least two other alternatives; 
probabilistic and prototypes. While classical set theory assigns an object 
either as a full member or not in each category, a probability approach 
provides for a gradation of membership. The purest application of 
probability states a likelihood that an object will be discovered to belong 
in the classical sense. This is the approach taken to interpret soils classes 
by Fisher (1991). Goodchild (1992) suggests a gradation of membership that 
moves from the strict interpretation of probability towards a fuzzy set 
membership interpretation. Taken strictly, fuzzy memberships do not 
have to sum to one, though this normalization is often implied 
(Burrough 1989). This is a fracture zone for cartographers. Partial 
membership is often implied, and the specific model, whether probability 
or fuzzy sets, is rarely articulated.

On many occasions that cartographers refer to fuzzy sets or probability of 
membership, they really are using a 'prototype' approach to categories. 
The prototype refers to a 'central' example that represents the ideal form 
of the category. Objects are not matched attribute by attribute, but assigned 
to the prototype that fits most closely. There is some measure of 'distance' 
involved that may be mistaken for probability. The difference is that 
probability normalizes the separation so that every object sums to one. 
Distances from a prototype do not have to sum to any particular value. 
Some objects are just closer than others. Classification in remote sensing 
usually uses prototypes and distance based analysis internally before 
sending a sharp set out for final consumption. Supervised classification 
establishes the prototypes directly, then assigns each pixel to the 'closest' 
using the distance in spectral space. An unsupervised classification looks 
for the smallest set of clusters that will partition the spectral space, but 
pixels are also seen as more or less central to the cluster. The key trick, as 
always, is assigning the category names to the clusters; a process that often 
involves a complex interpretation of the spatial context. Lakoff and 
Johnson point out that the human mind tends to use prototype logic,
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rather than the rigid formalism of classical categories. The nature of 
human cognition is not the issue here, but the question of which 
relationships must be modeled to make the categories represent the 
scientific intentions.

Probability and prototype approaches to categories may dominate the real 
applications of geographic information, though classical categories 
pervade the explanation. There is a lot of literature talking about the 
inflexibility of categories, as if all geographic categories involve exact 
matches to a list of defining characteristics. Actual practice is far different. 
Categories are conceived in taxonomies, as a comprehensive system. All 
land is presumed to fit in a category, even if it is 'Not Elsewhere 
Classified' - a category that certainly does not share attributes amongst its 
members. The landscape is assigned to the closest fit category, or maybe to 
the most likely category. To return to measurement theory, geographers 
should remember that categories are not used to share formal properties 
along the Aristotelian scheme, but to partition a space into a nearest 
grouping. Geographic categories are developed to generalize.

Stevens' four scales of measurement are not the end of the story. The 
concept of a closed list of 'scales' arranged on a progression from simple to 
more complex does not cover the diversity of geographic measurement. 
Still, Stevens' terminology is so deeply entrenched that it may remain in 
use when it applies.

A larger framework for measurement

The largest difficulties with Stevens' scheme come not from the specific 
'scales' of measurement, but with the overall model of the process. The 
levels of measurement presume a rather simple framework; the classical 
social science 'case' 'has' attributes. Such a model was proposed for most 
social sciences in the early quantitative period. The version proposed in 
geography was called the 'Geographical Matrix' (Berry 1964), simply a 
matrix with 'places' on one axis and attributes on the other. But all 'cases' 
or places do not have the same attributes. A more fruitful model sees 
measurement not in terms of properties, but in terms of relationships. 
Geographic information involves many more kinds of measurement. 
These distinctions have usually been discussed as 'data models', with an 
emphasis on representation. Viewed from the perspective of 
measurement, these old issues take on a new clarity.

This paper proposes a scheme of measurement frameworks developed 
from the simple taxonomy presented by Sinton (1978). Each model or 
framework for geographic measurement must account for each of these 
elements interacting in the roles of fixed, controlled and measured. In 
Sinton's scheme, in order to measure one component, one of the others 
had to be 'fixed' and one served as 'control'. At the most basic, Sinton's 
scheme distinguishes vector from raster because the first controls by 
object (attribute), while the later controls by space. This rough division 
provides a starting point, but it does not explain the divisions within 
these two approaches.
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A Taxonomy for measurement: Object as control
When the attribute serves as the control, the spatial location is the subject 
of the measurement. While this is the common framework for a vector 
representation, there are large differences between the situation with an 
isolated category and a connected system of categories. Table 2 
summarizes the distinctions.

Table 2: Object Control Frameworks 
Isolated Objects
Spatial Object Single category distinguishes from void 
Isoline Regular slices of continuous variable 
Connected Objects
Network Spatial objects connect to each other, form topology

(one category possible)
Categorical Coverage Network formed by exhaustive classification 

(multiple categories, forming an exhaustive set)

The simplest object control framework involves isolated objects, 
distinguished by a single category. While 'cartographic feature' might be 
apt, this framework will be termed 'spatial object'. Each point or area 
object is described as a geometric whole, since it will forcibly occur in 
isolation. The message of the object framework is: 'Here is an airport'; 
'Here is another airport.' and so on. In the pure form of this framework, 
the only relationship is between the object and a position; there are no 
relationships between objects. Linear objects depart from this to some 
extent, creating the need for the network framework discussed below.

Isolines are formed by controlling for a specific value on a surface. Since 
isolines follow the contours and do not intersect, they have no 
topological relationships, beyond the ordering of nested contours.

In the creation of advanced GIS software, it was important to recognize 
that there were relationships between the objects in a database. When a 
coverage is formed with multiple categories, there will be topological 
relationships. Similar structure can be created by linear networks. The 
basic topology is required whether the categories form strict equivalence 
classes or some form of probabilistic or prototype categories. The 
distinction between the isolated coverages and connected coverages is not 
a matter of database design, but a recognition of the underlying 
measurement structure of the source material.

Spatial Control
Control can also come from a set of predefined spatial objects (Table 3).

Table 3: Spatial Control Frameworks 
Point-based Control
Center point Systematic sampling in regular grid 
Systematic unaligned Random point chosen within cell 
Area-based Control
Extreme value Maximum (or minimum) of values in cell 
Total Sum of quantities (eg. reflected light) in cell 
Predominant type Most common category in cell 
Presence / absence Binary result for single category 
Percent cover Amount of cell covered by single category 
Precedence of types Highest ranking category present in cell
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Control by a set of points has different rules compared to control by areas. 
While both would be encoded in a raster representation, they must be 
understood differently. With a point-based control there are not too many 
rules. Center point provides a regular sampling of a landscape. Digital 
Elevation Matrices tend to use a point-based sample, though the 
photogrammetric equipment may actually work on a tiny area to match 
the photographs. Systematic unaligned is recognized in textbooks, but 
rarely performed.

Control by area is more common for remote sensing and other 
applications of grid sampling. In each cell there is some rule that has been 
applied to all the possible values. Some sensors add up all the reflectance 
in a certain band width; other gridding takes the highest or lowest value. 
A system that optimizes each cell by taking the most likely value for the 
cell may remove all traces of linear features and the minority elements. 
Unless these rules are known to the analyst, the information can be sorely 
misconstrued.

Other kinds of control
Control by object and control by space seem to be the only options, but 
they do not cover all the cases found in existing geographic information. 
The well-known choropleth map is an example of a composite 
framework, in that the base map is created using a categorical coverage for 
the set of collection units, then these objects serve as a secondary form of 
spatial control to tabulate the variable in question. Due to these two 
stages, the spatial measurements of the boundaries have little bearing on 
the precision of the measurement.

Triangular Irregular Networks (TIN) do not fit the scheme either. While the 
points may come from an isolated bunch of measurements, the TIN 
represents a set of relationships that cover space. The ideal TIN is 
constructed so that the triangles represent zones of uniform slope and 
aspect, within the resolution available. Thus, a TIN represents a novel 
class of measurement frameworks where relationships form the control, 
not the values of the attribute or the location.

Conclusions

The list of measurement scales developed by Stevens do not serve the 
purpose of providing a structure for geographic measurement. Any 
scheme to handle geographic measurement must deal with relationships 
between attribute and location, and eventually with time. A system of 
'measurement frameworks' may provide a clearer focus on the design 
and implementation of geographic information systems. The frameworks 
proposed here place the measurement in the context of axioms and 
relationships to preserve.
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