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ABSTRACT

The Hausdorff distance between two objects is a mathematically true dis 
tance. When both objects are punctual, it does not differ from the Euclid 
ean distance between points; otherwise it takes into account the mutual 
positions of the objects relatively to each other. Its main interest for 
automated cartography, besides quantifying spatial relations between ob 
jects, lies in the fact that it expresses remoteness. How far are features 
from each other ? How far is a generalized feature from its original posi 
tion ? After spotlighting on some properties of the Hausdorff distance 
applied to geographical features, the paper describes an algorithm for 
computing the Hausdorff distance in vector mode between two polylines.
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INTRODUCTION

While the classical Euclidean distance is of foremost importance in sur 
veying issues, GISs have revealed that the point-to-point relation is too 
limited for cartographic applications. Most geographical features zigzag 
across the background or swell and bump against each other - they are 
definitely not points. Distance between features is a difficult concept 
which has been approximated through various indicators: minimum 
Euclidean distance [PEUQUET-92], reworked with e-bands [PULLAR- 
92], surface "in between" [MCMASTER-92] ... Even if these measures 
are well adapted to the applications they are meant for (mainly proximity 
and accuracy evaluations), they all lack at least one of the three prerequi 
sites for being a true mathematical distance : that of separateness, which 
means that the distance between two objects is zero if and only if those 
objects are strictly identical (fig. 1). It can be argued that this condition 
is pointless in cartography, since features will never be strictly the same: 
attributes or symbolization, if not geometry, will always differ. How 
ever, from a geometric point of view, the fulfilment of all criteria for a 
"gap-quantification" function makes it a safe and systematic distance. 
The Hausdorff distance is such a mathematical distance - surely not the 
best, but anyhow a very convenient one.
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Figure 1.
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HAUSDORFF'S DISTANCE
Definition
Felix Hausdorff (1868-1942) was a German mathematician whose contribu 
tion is most remarkable in the field of topology (pure "abstract" topology 
would be clearer in our GIS and spatial relations context). He built up a 
distance between objects in finite space as:

DH(A,B) = Max(supxE.A d(x,B) , supxeB d(x,A)\

where A and B are closed sets and d (x,B) the classical Euclidean dis 
tance from point x to object B (proof that it is a distance in the mathemati 
cal sense can be found in most topology manuals). Two components can 
be defined (figure 2):

distance from A to B : 

distance from B to A : 

and: DH =

DA-*B

= (supy(EB (infxE.A d(x,y)\

Figure 2.
The two components.
Vx e A, d(x,B) < d(a,B)
Vy G fi, d(y,A) <. d(b,A)

The two components are not necessarily of a same value. This is illus 
trated in the figure above. Other properties of the Hausdorff distance will 
now be listed, with the examples of polylines, which are closed objects 
from a mathematical point of view, and a most common representation of 
geographic features in vector GIS.



Properties
Asymmetry, (fig. 2) The two components usually have different values. 
Orthogonality, (fig. 3) The vector representing the Hausdorff compo 

nent from one object to the 
other is perpendicular to the 
second object (or points onto a 
vertex of the second object). 
This is a property inherited 
from the Euclidean distance 
from point to line.

B

Figure 3.

Sensibility, (fig. 4) Tails make the Hausdorff distance very unstable.

Figure 4.
A

B B

Tricks, (figure 5) Contrary to intuition, and to what the figures above 
can suggest, the Hausdorff distance may be achieved between any points 
of the polylines, and not only on vertices. This makes the computation 
more difficult.

Figure 5.

Tangency. An interesting property of say component A to B of the Haus 
dorff distance between polylines is that when the distance vector starts 
from a point of A that is not a vertex, there are several distinct points on 
B which are at the same distance. In other words, there are several dis 
tance vectors, as indicated in figure 5. This result was found while trying 
to simplify the computation of the distance. An illustration of the proof, 
rather than the full tiresome demonstration, is given in the appendix.

Applications in automated cartography
The Hausdorff distance between polylines is currently used for feature 
matching between multi-scale layers [STRICHER-93], for statistical qual 
ity controls on linear objects [HOTTIER-92] [ABBAS-94], for the con 
trol of generalizing algorithms (current work at our COGIT laboratory).



In cartography, asymmetry shows up spectacularly : a generalized line 
(fig. 6) is closer to the initial line, and the initial line remains far from 
the generalized line.

Figure 6. B is the original line, 
A its generalization.

Statistically, [HOJTIER-92],

Since all maps and models are generalizations of the real world, Hottier 
[HOTTIER-92] even states that "maps approach reality but reality re 
mains far from maps" - a truth about resemblance that was already 
sensed, far from any mathematical justifications, by Edmund Spenser in 
1590 [SPENSER-90], in the mouth of the False Fox, to Sir Ape :

And where ye claim yourself for outward shape 
Most like a man, man is not like an ape.

Sensibility is a critical issue when comparing objects. The problem is 
similar to that of the delineation of the area "between" two objects when 
computing the area distance. Where to cut the lines ? Solutions 
[STRICHER-93] , [ABBAS-94] are often dependent on the applications.

The tricky aspects of some configurations make the computation of the 
Hausdorff distance ticklish and time-consuming. Hottier has developed a 
raster algorithm, and Abbas [ABBAS-94] a vector algorithm, the optimiza 
tion of which is based on the introduction of a likelihood threshold 
suited to the statistically expected result. The following algorithm also 
works on vector polylines, first on the vertices, and then if necessary on 
the inter-lying segments.

AN ALGORITHM

The two components of the Hausdorff distance may have different val 
ues, but the way to compute them is the same. The algorithm given here 
finds one component, from polyline A to polyline B. To find the Haus 
dorff distance, the computation must also be applied reciprocally from B 
to A, and the final distance is the greatest of the two results.

The algorithm to find DA   proceeds in three stages :
A *D

1. Computation of the distances from the vertices of A to polyline B.

2. Tests to detect whether further calculation is required or a vertex of A 
bears the greatest distance from A to B.

3. When no vertex bears the greatest distance, computation of the great 
est distance on likely segments.



1. Distances from the vertices of A to polyline B.

From each segment sb = [bl b2] of B can be defined a band perpendicular 
to the segment, with a width equal to the length of the segment (fig. 7). 
If a vertex al of A lies in this band, the distance can be computed from 
the scalar product between vector bl al and the unitary vector orthogo 
nal to sb. When al lies outside the band, it is closer to a vertex of 5, 
with which the Euclidean distance is achieved.

al
Figure 7
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For a vertex of A, the distances to all segments of B have to be calcu 
lated, the smallest being the Euclidean distance from the vertex to B.

1. Check tests.
When computing the distance of each vertex of A, a trace must be kept of 
the component of B on which hits the Euclidean distance (a component 
being either vertex or segment, identified for example by its position 
number along the polyline : 1st vertex, 1st segment, 2nd vertex, 2nd seg 
ment ...). Thus at this stage, all vertices of A have their associated compo 
nents on B. The tests will consist in eliminating all segments of A which 
cannot be farther from B than their end-points. The tests check all pairs 
(al , a2) of successive vertices of A. Such a segment needs no closer 
analysis if (fig. 8)

Comp(al) = Comp (a2) [ctl] 
or Comp(al) and Comp(a2) are successive vertices of B [ct2].

[Comp(a) being the number of the component on B breeding the Euclid 
ean distance between a and B].

Such an elimination is justified by the fact that the distance function be 
tween two segments is either increasing or decreasing.

Figure 8
ctl

a2

al

This case requires closer observation :

al



If all successive segments of A are thus discarded, it means that the Haus- 
dorff component is achieved from a vertex of A, that with the greatest 
Euclidean distance. Otherwise, further calculation is required.

3. Detail analysis

For the remaining segments of A, there is suspicion that points between 
vertices may be farther from B than the vertices. For each segment there 
will be computed the greatest Euclidean distance from B - the greatest 
for all segments being the Hausdorff component.

So now the basic problem is : considering a segment [al a2] of A, the 
extremities of which are close to different components of B, to find the 
farthest point in-between. For this we will consider all the distance func 
tions to all segments and vertices of B from [al a2], each point P on 
[al a2] being identified by its kp parameter so that :

VP e [ala2] ,31 kp £ [01] / olP = fcpolal 
The distance function d(k) from [al a2] to a segment is (fig. 9) :

Figure 9.

d(k) = Abs ((k- kj) * d(al,a2) * sin<57

k(al) = 0
81 '• i / ^ i j —i—— k(a2) = 1

al k a2

The distance function d(k) from [al a2] to a vertex is (fig. 10) : 

Figure 10.

,1/2

11
= ((k-kj)d(k) = [(k-kr)2 *d(al,a2)2

al

Thus, two numbers have to be computed for each component of B : if it is 
a segment, the k-parameter for the intersection of the two directions, and 
the sine of the angle; if it is a vertex, the k-parameter of the shortest dis 
tance from (al a2) to the vertex, and this distance (11). Let's call this pair 
of indicators the distance representation of the component.

However, it is not necessary to compute all the representations : thanks 
to the orthogonality property of the Euclidean distance, this computation 
is required only for the segments which see part of [al a2] or for the 
vertex protruding toward [al a2]. The test at this stage can consist in



computing, for each segment of B, the k-parameters of the intersections 
with line (al a2) of the perpendiculars at both ends : the effectiveness 
interval (fig. 11). The configurations, and the way to recognize them, are 
described in fig. 12.

kb is solution of the system : 

Flgure 1L a\M = k.ala2 and btf. bltf = 0

sin8 is the absolute value of the scalar prod 
uct between a unitary vector of [bl b2] and 
a unitary vector orthogonal to [al a2].

Let's rename kbl if necessary, and take 
kbi a j kb2 kbl = Min (kbl , kb2) and kb2 the other

one. [Max (O.kbl) Min (I,kb2)] is the effec 
tiveness interval of component [bl b2].

a2
—4

Figure 12. 

bl/*> b2

al

kbl and kb2 are both greater than 1 or smaller 
than 0 : no use trying to find the distance func 
tion to segment [bl b2]. One of the extremities 
will be nearer anyway, and treated with the 
vertices.

a2

al a2

kb'1 > kb2 : no use trying to find the 
distance function to vertex b2. Points 
on [al a2] are closer to one of the seg 
ments.

kb'1 < kb2 : this vertex points towards 
[al a2], its distance representation 
has to be kept.

Its effectivness interval is : 
[Max (0 , kb2) Min (1 , kb'l)].

So, for one segment [al a2], the steps above provide a list of potential 
components on B. For each of these, the distance representation has to be 
computed - and the effectiveness interval stored.
Before describing the algorithm itself, another tool requires description : 
computation of the intersection between two distance representations.
Intersection of two segment distance representations :
Let the first representation be: (kl, sin 81), and the second: (k2 , sin 82).



The resulting k are : k = ^Tf'*2 ork = kl+a- K1 where a =. l-ff 1+or
If a sine is nul, it has to be checked whether the segment is strictly paral 
lel to [al a2] or not. If it is, its distance is a constant different from 
zero, and k is easy to find. If the segment is on (al a2), the common part 
cannot compete for achieving the greatest distance from [al a2] to B.

Intersection of two vertex distance representations :
Let the first representation be: (kl , 111), and the second: (k2 , 112).

The resulting k is : k = 2 * (kl - kl)

If k2 = kl, check if 112 = 111. If the two values are different, there is 
intersection. Otherwise (al a2) is equally distant from both vertices.

Intersection of vertex - segment distance representations :
(kl, sin dl) is the segment distance representation, (k2 , 112) is the vertex 
distance representation, k is the root(s) of the following equation :

- ll . k2 + [2 . k - 2 . k\ . sirtdl] .k+kl 2 . sin^dl - Jt22 - ^ . = 0 J L J d(al,a2)2

Core of the algorithm.
Now that the tools are ready, the algorithm is straightforward :
Start from al . Find its associated component on B, its distance function 
dfc and effectiveness interval eic [which by construction has 0 for lower 
bound). We are going in fact to follow the lowest possible path from al 
to a2 along B (fig. 13).
For all other components, find the intersection of their distance function 
with dfc. If the intersection k lies without their effectiveness interval or 
without eic, it has to be discarded. For all remaining k, the smallest, 
kmin, is the new starting bound. The associated component on B is the 
new component. The search interval becomes [kmin , kb2] where kb2 is 
the upper bound of the effectiveness interval of the new component. The 
distance between the intersection point and the component has to be 
stored.
Loop: In this new interval, intersections and new components have to be 
found on the same criteria.
When no intersection occurs within an interval ending before 1, the fol 
lowing component along polyline B has to be found : after a segment, its 
end-point, after a vertex, the following segment. If the upper bound of 
the interval is 1, and no intersection occurs, the algorithm has stopped 
running.

The Hausdorff component is the greatest of all the distance values stored 
during this pass.



FIGURE 13.

segment 6

vertex 5 
vertex 2

segment 3 
segment 4

Both extremities of segment b are closer to segment 6 of polyline B : no use investigating 
on b. However, a has to be looked closely. On the right, the representation of the dis 
tance functions from a to the components ofB, In this case, there are bound to be inter 
sections, because of the tangency property of the Hausdorff distance. The lowest possi 
ble path describes the successive Euclidean distances from atoB; its highest peak is the 
Hausdorff component.

CONCLUSION

The two components of the Hausdorff distance between polylines give an 
indication of the mutual remoteness of the polylines, which is a new way 
of looking at spatial relations. The Hausdorff distance can be an interest 
ing measure on geographical objects - points, lines and contours. The 
complexity of the algorithm described for finding the component from a 
polyline with m vertices to a polyline with n vertices is in most desperate 
cases O( m.n 2 ).
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APPENDIX : CLUE TO THE TANGENCY PROPERTY

Here is illustrated the fact that when a Hausdorff component does not 
start from a vertex, it reaches the other polyline in several distinct 
points.
[ ^i i Sj 1+1 ] is a segment of polyline A, and component DA_^B is achie 
ved between point PI on ] Sj, S, 1+1 [ and point P2 on polyline B.

d(Pl,P2)

B, d(Pl, Q) ;» d(fl, P2)
First consequence (Al) : VP 
Second consequence (A2) : VQ
This means that for every point P on ] Sj , S, 1+1 [ , and especially in the 
most remote part of the segment, there have to be parts of B both out of
the disc centered on PI, which for radius (because of A2, disc
Cpl in fig. 14), and inside the similar disc centered on P (because of Al, 
disc Cp in fig. 14). In other words, there have to be parts of B inside the 
grey crescent Fp illustrated in figure 14 below.

This is especially true when P comes close to PI. When P draws on to 
PI, Fp will fuse with the semi-circle of Cpl limited by T, the perpendicu 
lar to ( Sj , Sj 1+1 ) in PI. P2 does not belong to it (P moves on the most 
distant part of the segment), so there has to be at least one other point of 
B on this semi-circle : one other point at the same distance.
a = 0 is a special but not revolutionary case (when dealing with polyli 
nes).

Figure 14.

Cp
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