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ABSTRACT

Increasingly, geoscientific data is being measured in three dimensional (3D) space and 
time for studies of spatial and temporal relationships in landscapes. To support the 
analysis and communication of these data, a new approach to cartographic modeling is 
emerging from the integration of computer cartography and scientific visualization. 
This approach, which we call in this paper multidimensional dynamic cartography 
(MDC), is based on viewing data processed and stored in a Geographical Information 
System (GIS) in 3D space and visualizing dynamic models of geospatial processes 
using animation and data exploration techniques. Such techniques help researchers 
refine and tune the model in addition to making the model easier for others to 
understand. We describe various aspects of MDC implementation within GRASS GIS 
and illustrate its functionality using example applications in environmental modeling. 
Images, animations and other work associated with this paper may be viewed on the 
World Wide Web at URL: http://www.cecer.army.mil/grass/viz/VIZ.html

INTRODUCTION

Current standard GIS offer sophisticated tools for creating high quality cartographic 
output in the form of standard 2D maps. While such maps fulfill the requirements of 
GIS as an information retrieval and maintenance system, they are not adequate for 
application of GIS as a tool for analysis of spatio-temporal data and simulation of 
landscape processes which occur in 3D space and time. (McLaren 1989). To support 
such applications, GIS has been linked to various visualization systems. However, such 
links require the user to learn two different environments - one for processing the data 
and a second one for visualization. To increase efficiency and convenience for the 
researcher in using visualization for routine modeling and analytical work we have 
chosen to build visualization tools within GIS and design them to fulfill specific needs 
of geoscientific data.

Three levels of GIS and visualization integration are defined by (Rhyne 1994): 
rudimentary, operational and functional. The rudimentary level is based on data 
sharing and exchange. The operational level provides consistency of data and removes 
redundancies. The functional form provides transparent communication between the 
two software environments. We would add that at the functional level, data 
manipulation and derived data from visualization should be able to be written back to 
the GIS as new data layers, so that visualization can be used for data development.

Our MDC environment, integrated at the operational level, uses GIS to easily do 
transformations between coordinate systems, manage spatial data, run simulations, and 
derive statistical or other visually meaningful layers such as cross validation error or 
profile convexity (Wood 1993). The visualization tools use known characteristics of 
geographic data types to speed data exploration algorithms and provide more
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meaningful responses to interactive data queries. Customized visualization techniques 
are incorporated to meet common needs of researchers doing cartographic modeling.

An integrated approach also encourages verification of modeled scenarios with actual 
measured data by providing a common computational/display environment. Well 
tested models developed in this way are less likely to be dataset-specific because it 
should be easier to test the model with a variety of datasets under various geographic 
conditions.

MULTIDIMENSIONAL DYNAMIC CARTOGRAPHY

MDC may be thought of as a special case of scientific visualization; while more 
confining as to its requirements of data types (to conform to types supported by the 
GIS), MDC offers a specialized palette of data manipulation and viewing tools and 
symbolic representations that are meaningful to cartographers.

MDC can be used as either a process of research and discovery or a method of 
communicating measured or modeled geographic phenomena. As a process of 
discovery, the MDC process is cyclical in nature, with visualizations feeding a 
refinement of the model. As a method of communication, MDC is used to demonstrate 
complicated processes through the use of images and animations.

Combinations of various graphical representations of raster, vector, and point data 
displayed simultaneously allow researchers to study spatial relations in 3D space. At 
the same time, visual analysis of data requires the capability to distort this spatial 
relation by changing vertical scale, separating surfaces, performing simple 
transformations on point or vector data for scenario development, etc.

Multiple surfaces are quite useful to visualize boundaries of layers. For example, 
surfaces may be created that represent soil horizons so that thickness of layers may be 
displayed. This presents a technical challenge in terms of dimensional scale, as 
demonstrated by figure 1. The vertical dimension is often quite small relative to the 
other two, so is often exaggerated when a single surface is displayed. This 
exaggeration is usually adequate to add relief to an otherwise featureless surface, but in 
order to separate close stratified layers, the required exaggeration grossly distorts the 
modeled layers. If vertical translation of a surface is used to separate surfaces enough 
that they may be viewed separately, intersections between surfaces and relative 
distances are misrepresented. This is unacceptable since these may actually be the 
features we are interested in viewing. To study differences between two similar 
surfaces, we use a scaled difference approach where only the spatial distance between 
surfaces is exaggerated, maintaining correct surface intersections.

Animation is an important tool for exploring large and complex data sets, especially 
when they involve both spatial and temporal dimensions. Recent progress in graphics 
technology and emerging standards for animation file formats have made desktop 
animations easier to produce and share with colleagues. Animation is useful for 
representation of change in time, change in a modeling parameter (Ehlschlaeger 1994), 
change in viewer position (fly-bys) or change in visible data (fence cuts, slices). 
Figure 2 shows several frames from an animation where a fence cut is moved through 
data to better view underlying surface structure.

IMPLEMENTATION

General Description

GRASS (Geographic Resources Analysis Support System) as an open, public domain 
system with a full range of GIS capabilities has provided a sound basis for testbed 
development of visualization tools for MDC. Each GRASS data type (raster, vector, 
and site) plus our own 3D grid format may be used for visualization in a single 3D 
space. In our implementation, there are four object types and various ways to represent
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No exaggeration yields 
little information about 
spatial differences between 
surfaces.

Uniform 10X exaggeration 
overly distorts surfaces.

No exaggeration, surfaces 
separated - surface 
intersections are lost.

10X exaggeration of 
difference between 
surfaces yields better 
visualization of relative 
differences.

Fig. 1 Attempts to visualize two similar surfaces
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Fig 2. Moving a cutting plane through a group of surfaces 
to examine underlying spatial relationships

each.

Surfaces. A surface requires at least one raster data set to represent topography and 
may use other raster data sets to represent attributes of color, transparency, masking, 
and shininess. These data sets may have been derived from vector (e.g., countour) or 
scattered point data using tools within the GIS. Users are allowed to use a constant 
value in the place of any raster data set to produce, for example, a flat surface for 
reference purposes or a constant color surface.

Vector sets. 3D vector sets are not currently supported, so in order to display 2D 
vector sets in 3 dimensions, they must be associated with one or more surfaces. The 
2D vector sets are then draped over any of these surfaces.

Site Objects. Point data is represented by 3D solid glyphs. Attributes from the 
database may be used to define the color, size, and shape of the glyphs. 2D site data 
must be associated with one or more surfaces, and 3D site data may be associated with 
a surface (e.g., sampling sites measured as depth below terrain).

Volumes. 3D grid data may be represented by isosurfaces or cross sections at 
user-defined intervals. Color of the isosurfaces may be determined by threshold value 
or by draping color representing a second 3D grid data set over the isosurfaces.
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For interactive viewer positioning, scaling, zooming, etc., we use custom GUI widgets 
and a "fast display mode" where only wire mesh representations of the data are drawn. 
When rendering a scene, the user may select various preset resolutions for better 
control over rendering time. For positioning we also chose to use a paradigm of 
moving viewer rather than moving object because we think it is more intuitive when 
modeling a reality of generally immobile geography. To focus on a particular object, 
the user simply clicks on the object to set a new center of view.

Scripting is used to create animations from series of data (e.g. time series or a changing 
modeling parameter), automatically loading the data sets and rendering frames for the 
animation. A keyframe technique is used to generate animations when there is no 
change in data, e.g., to create fly-bys or show a series of isosurfaces in volumetric 
data.

Interface

In addition to providing the functionality necessary for viewing various forms of data, 
it is also necessary to provide a usable front-end. In particular, we require the 
following features:

Intuitive: should employ user's preconceived notions of menus, buttons, etc.
Flexible: should be available on a variety of platforms and terminal configurations.
Extensible: should provide a natural mechanism for incorporating user supplied code.
Scripting: should be able to recreate complex interaction in order to automatically 

produce animations.

To satisfy these requirements our current interface is being developed using the Tcl/Tk 
toolkit written by John K. Ousterhout, and available via anonymous ftp. Tcl/Tk is an 
X windows based scripting and widget environment built on Xlib. Tcl/Tk provides a 
standard library of common widgets such as menus, buttons and the like, as well as a 
mechanism for developing arbitrarily complex custom widgets. Moreover, Tcl/Tk 
provides a natural mechanism for extension by allowing the creation of new 
commands via scripts or C code. Using this mechanism, we have incorporated our 
visualization library as an extension to Tcl/Tk. Thus, user's have access to 
visualization tools at the Tcl/Tk level, as well as the ability to extend Tcl/Tk with 
custom code.

Graphics Library

GRASS is designed to use various output devices for graphic display, via use of a 
display driver. The most commonly used is the X driver, for output to any X Window 
System display device. The GRASS driver interface is not currently capable of using 
24-bit "true color" mode, as it was originally designed for display of a limited number 
of grid category values as a pseudocolor raster image. The GRASS driver only 
supports a limited set of graphic primitives, and only for a two dimensional, flat 
screen. While it is possible in such a system to display 3D objects and surfaces using a 
perspective projection, as was implemented in d.3d (USACERL 1993), all projection 
calculations have to be done explicitly and it is impossible to take advantage of 
specialized accelerated graphics hardware. Therefore we chose to use a separate 
display mechanism for visualization.

Fast graphics are required for effective interactive use of MDC. These graphics 
capabilities were identified early on as being integral in the development of MDC 
tools:

direct color as opposed to using a color lookup table
fast matrix manipulations for establishing perspective views and transforming object 

geometry
simulated lighting and material reflectance characteristics
depth buffer for hidden surface removal
double buffering: a scene is drawn in an invisible frame buffer (back buffer), then 

when the scene is complete, the entire frame buffer is quickly swapped with the visible
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frame buffer (front buffer).

As our work progressed into rendering multiple surface and volume data, we 
identified these additional capabilities that are highly desirable:

simulated transparency
user-defined arbitrary clipping planes

For our early tools we used IRIS GL, a software interface specific to Silicon Graphics 
hardware which took full advantage of hardware acceleration to provide the required 
functionality and offered an easy-to-use programmers' interface.

As the importance of hardware acceleration for common 3D graphics calculations is 
being recognized by more hardware vendors, standard software interfaces become 
necessary in order to increase portability of software and standardize expected 
rendering behavior. Two such standards are the PHIGS extension to X (PEX), and 
OpenGL. While PEX is a library, OpenGL is a specification for an application 
programming interface (API)(Neider 1993). As such, it is up to each hardware vendor 
to provide an implementation of OpenGL which takes advantage of proprietary 
hardware acceleration. For current development we chose to use OpenGL and GLX, 
the OpenGL extension to X, partly because of the ease of porting IRIS GL to OpenGL 
(enabling re-use of earlier software development) and partly because of our 
impression that OpenGL implementations would be more likely to provide superior 
performance on a wide variety of platforms.

EXAMPLES OF IMPLEMENTATION DETAIL

Computer Memory Considerations

Environmental data sets are very large, often involving several million data values for 
a single time step (Rhyne 1993). In order to effectively interact with this data, much 
of it needs to be loaded into computer memory to make access faster. The rendering 
process also adds additional memory overhead. During development of our tools, we 
tried to limit memory requirements for a typical application to 16-48 Mbytes, which is 
a common configuration for an average workstation.

In our implementation, 2D data sets are loaded into memory at the resolution defined 
by the user within the GIS. 3D data sets are not kept in memory, and the user may 
define whether specific vector or point data should be loaded into memory or read 
from the GIS whenever needed.

As an example, consider a simple 2D grid data set which is to be rendered as a surface 
with another 2D data set used for pseudocolor of the surface. In order to render a 
regular polygonal surface from this data, each data value will need to be located in 3D 
space by three coordinates with floating-point accuracy to represent a vertex of the 
surface. In order to simulate lighting, a three-component surface normal also needs 
to be calculated for each vertex. Assuming the data used to represent color is four 
byte data and floating point numbers occupy four bytes, the storage requirements for 
each surface vertex would be 28 bytes. So in the case of a 1000 X 1000 surface, we 
would already be using 28 Mbytes.

To reduce this requirement we can use known information about the data. Since we 
know the data represents a regular grid, with offset and resolution obtainable from the 
GIS, the east and west coordinates may be quickly calculated on-the-fly. We can 
interrogate the GIS to find the range and accuracy of the data and use the smallest data 
type possible to store the elevation and color of the surface. We could also calculate 
the surface normals on-the-fly, but the normals only change when the user adjusts 
resolution or exaggeration so we chose to pre-calculate and store surface normals to 
avoid repetitive calculations and speed rendering. However, we found through 
experimentation that the resolution of the surface normals could be reduced so that 
each normal may be stored in a single packed 4 byte field instead of three 4 byte
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floating point numbers. In the case of surface normals, we use 11 bits for each of the 
east and west components of the normal and 10 bits for the vertical component (taking 
advantage of our knowledge that a normal to a regular gridded surface will never be 
negative in the vertical component). Using these figures, the estimated requirements 
for a 1000 X 1000 surface reduce to 6-12 Mbytes.

When viewing multiple surfaces it is often common to use a data set more than once 
(perhaps topography for one surface and color for another). Our implementation shares 
data in such cases, freeing memory when a surface is deleted from the display only 
after checking that other surfaces aren't using the same data.

Mesh optimization was considered and rejected as a method of reducing memory 
requirements due to several conflicts: 1) In order to realistically render a mesh with 
widely varying polygon size, Phong shading is required for lighting calculations so that 
the surface normals are smoothly interpolated across the surface of each polygon. 
OpenGL only supports Gouraud shading, which interpolates color across the polygon 
from the color calculated at each vertex. 2) Draping 2D vector data on a surface 
requires finding the intersections of the vector lines with the edges of surface polygons. 
Using a regular mesh enables us to use faster intersection algorithms with less memory 
overhead. 3) In order to use a second data set for surface color, polygons of the 
optimized mesh would either have to be texture mapped, a feature fewer platforms 
support, or the two optimized meshes would need to be intersected, again a time 
consuming and overhead intensive process. 4) Use of an optimized mesh results in 
some degradation of data which is not easily quantifiable for accurate representation to 
the user.

Even using the lowest estimates, a surface that is 3000 X 6000 cells would require 108 
Mbytes of main memory. So in practice, the user specifies a lower resolution and the 
data is automatically resampled by the GIS when loading. Given that the average 
workstation display only has about one million pixels, the whole data set at full 
resolution can not be completely displayed. Although there is an advantage to being 
able to browse the full data set, then zoom in on a small area at full resolution, in 
general we have found that users can be made aware of memory constraints and use 
the regular GIS display to either define a smaller region or reduce the resolution as 
necessary.

In the future we hope to explore the possibilities of using a surface with variable 
resolution. For example, a user could identify a region of special interest which would 
be drawn at full resolution within a broader region displayed at lower resolution.

Surface Querying

Querying a 2D data set displayed as a raster image can be thought of as a scale 
operation and a translation operation. When a user clicks on a pixel, the relative 
position in the image is scaled by the resolution of a pixel and the north and east 
offsets are added to obtain the geographical position. When displaying surfaces in 3D 
space with perspective, however, clicking on a pixel on the image of the surface really 
represents a ray through 3D space. The point being queried is the intersection of this 
ray with the closest visible (unmasked) part of one of the surfaces in the display.

One method for 3D querying provided by OpenGL is a "selection" method, where 
objects are "redrawn" without actually drawing to the screen, and any objects drawn at 
the query point are returned as the "selected" objects. This method is slow and at best 
the returned object is a polygon rather than a specific point on the polygon. Therefore, 
we require the user to specify the type of data they are querying (surface, point, or 
vector) and then use our knowledge of the geometry of that data to perform a 
geometric query in 3D. Figure 3 shows that using cutting planes can allow the user to 
query a specific location on a surface that is covered by another surface.
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This specialized point-on-surface algorithm can be outlined as follows:
1) transform point on view plane to a view ray
2) intersect view ray with convex polyhedron defined by the intersection of the 

parallelepiped view region with any user defined cutting planes.
3) if ray enters this polyhedron, trace ray to find any intersections with visible 

(unmasked) parts of any surfaces
4) choose closest intersection to viewer (or return an ordered list)

Such point-on-surface functionality is useful for 3D data querying, setting center of 
view and setting center of rotation for vector transformations.

EXAMPLES OF APPLICATION

Examples of applications illustrating how a multidimensional dynamic approach to 
cartography increases its power for study of complex landscape processes are 
presented in a World Wide Web (WWW) document at 
http://www.cecer.army.mil/grass/viz/VIZ.html, accessible through Internet via 
browsers such as NCSA Mosaic. We have chosen to use the WWW to present and 
communicate applications of integrated GRASS GIS and visualization tools because of 
the opportunities to include full color images and animations which vividly illustrate 
the use of techniques discussed in this paper. The document covers several aspects of 
integration of GIS and visualization as they relate to applications in environmental 
modeling.

The first 3 documents ("Surface Modeling", "Multidimensional Interpolation", and 
"3D Scattered Data Interpolation") represent modeling of spatial and spatio-temporal 
distribution of continuous phenomena in 2D and 3D space. Animations illustrate the 
properties of interpolation functions (Mitasova & Mitas 1993) used to transform the 
scattered site data to 2D and 3D rasters and show the difference between trivariate and 
4-variate interpolation for modeling spatio-temporal distribution of chemicals in a 
volume of water (Mitasova et al. 1993).

Animation based on changing data is illustrated by a dynamic surface representing 
change in monthly precipitation in tropical South America and by changing color map 
representing monthly temperatures on a static terrain surface in the same area. 
"Multidimensional Interpolation" also includes examples of a method for visualizing 
predictive error of interpolation along with the interpolated and animated surfaces 
using glyphs in data points. Images in "3D Scattered Data Interpolation" show the 
combination of all data types (2D, 3D raster, vector and sites), allowing users to study 
the spatial relationships between high chemical concentrations and terrain, railroads 
and wells (Fig 4). Animation is used to change the viewing position for better 
perception of spatial distribution of well sample sites in 3D space.

Terrain analysis and simulation of landscape processes related to fluxes of water and 
material are illustrated by "Terrain Analysis and Erosion Modeling" and "Rainfall 
Runoff", which include dynamic surfaces and multiple dynamic surfaces representing 
waterflow accumulation, change in sediment transport capacity and results of 
hydrologic simulation (rainfall, runoff and infiltration)(Saghafian 1993). Use of 
multiple surfaces with animated cutting planes for modeling of soil geomorphology 
and for evaluation of an erosion/deposition model by comparing it with the measured 
depth of colluvial deposits is illustrated by "Soil Geomorphology".

All documents include references to manual pages and tutorials in experimental HTML 
form. References to scientific papers and ftp sites for software distribution are also 
included.
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Fig. 3 Querying multiple surfaces.
View of surfaces as seen by user 
(above). Two cutting planes, (cl) and 
(c2), are used to see lower surfaces 
better. When the user querys the image 
at point (P), the view ray intersects with 
the visible space enclosed by the convex 
polyhedron (V) at points (E) and (X). 
The resulting line is then traced for 
intersections with surfaces and the 
intersection nearest to the viewing 
position is used to query the database.
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Fig. 4 Several georeferenced data types in one 3D space.

CONCLUSION

As the quantity of spatial data has grown in recent years due to more efficient data 
collection techniques such as remote sensing and Global Positioning Systems, GIS has 
played a vital role in managing this data. GIS capabilities such as user querying of 
data to obtain such metadata as coordinate system, scale and accuracy, or names of 
geographical features are sometimes taken for granted by modern cartographers, yet 
such features are often missing from generic modeling & visualization application 
programs.

When we speak of integration of GIS and scientific visualization, we are not talking 
about improved ways of accessing spatial data for visualization. Rather, we have 
identified opportunities for creating specialized custom visualization tools built for 
detailed analysis of georeferenced data. By integrating advanced visualization 
capabilities and modeling tools with the traditional spatial query and analysis functions 
of GIS, researchers are better able to evaluate a model's validity, explore possible 
causes of unexpected exceptions, tune modeling parameters, and re-visualize the 
results in a methodical, intuitive way.
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