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ABSTRACT

A three-dimensional, multilateral data structure based on Morton sequencing, two-dimen 
sional run-length encoding, and Dutton's Quaternary Triangular Mesh (QTM) was devel 
oped, implemented and assessed. This data structure, called the Triangulated Quadtree 
Sequence, or TQS, was developed to map a global raster dataset onto the surface of a three 
dimensional solid octahedron. TQS provides the means to translate from Morton Codes to 
QTM and to TQS structures. To implement the triangulated quadtree sequence, a modified 
interrupted Collignon map projection was developed to project the world into eight equilat 
eral triangular facets. To assess the TQS, the regular latitude/longitude grid of the land por 
tion of the ETOP05 global relief database was translated and compressed into the TQS 
triangular lattice. The validity and usefulness of the model is assessed, and its potential uses 
discussed.

INTRODUCTION

Why do pixels always have to be squares, or why tessellate with squares? Since the first 
applications of computer science to automated mapping, cartographers have preferred to 
measure and model the Earth using square-based coordinate grids and to perform analyses 
on grids. As a result, most of today's research in hardware (and software) design is based on 
square structures such as quadtrees (Samet, 1990a). A square-based structure, although 
excellent for planar geometry and two-dimensional coordinate systems (such as the Carte 
sian Grid), is one of the least suitable geometric models available for developing a data 
structure to store, link, and aggregate global scale three-dimensional data. A multilateral 
data structure using a geometric building object other than the square (such as a hexagon, 
octahedron, or triangle) is almost always better suited for the modeling of three-dimensional 
data (Wuthrich and Stucki, 1991).

The main objective of this study was the implementation of a hierarchical indexing 
method for assigning a unique set of geocodes to a global scale database-given a set of 
coordinates and the level of resolution desired-and to propose a method by which the index 
ing system can be developed into a powerful analytical tool for rendering global datasets 
onto a three-dimensional Earth model. This geocoding method is based on the tessellation 
of equilateral triangular facets after an initial division of the earth into an octahedral struc-
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ture, as proposed by Dutton (1984). The storage method is hierarchical, and therefore is able 
to reference different tessellation levels, with each level having a higher resolution (Tobler 
and Chen, 1986).

A quadtree structure was used for the proposed planetary indexing system, since the 
planetary relief model is referenced based on a hexagonal/triangular coordinate system. 
Various alternate quadtree structures were initially compared, including the B+-Tree (Abel, 
1984), Morton Sequencing (Morton, 1966), the PM3' quadtree for vector data (Samet and 
Webber, 1985), the Quaternary Triangular Mesh (Dutton, 1989a), and many others (Samet, 
1990a and 1990b). Each of these quadtrees were weighted using Tobler and Chen's (1986) 
requirements for a global coordinate system.

The Quaternary Triangular Mesh (QTM) is a spatial data model developed by Geof 
frey Dutton for global data modeling and measurement of locational uncertainty (Dutton, 
1988). Even though the QTM data structure is similar to the quadtree in that it is based on a 
fourfold branching hierarchical structure (representable by only two binary digits), similari 
ties end there. Dutton's spatial data model is unique because it uses a triangulated, numeri 
cal scheme for geocode addressing within a spherical rather than a planar system (Dutton, 
1984).

The QTM is especially important to this study because it matches the design goal of a 
nontraditional data structure, and has remained a model not yet fully implemented. 
Although other quadtree variations exist for storage of global data, such as the cubic 
quadtree structure discussed by Tobler and Chen (1986) and Mark and Lauzon (1985), and 
Lauzon et al.(1984) these models tend to ignore the modeling of global phenomena in favor 
of accessing and retrieving map and image data (Dutton, 1989a). Goodchild (1988) also 
pointed out the need for a spherical model for point pattern analysis based on Theissen poly 
gons and for the tessellation of polyhedral skeletons.

In the current work, Dutton's QTM addressing was implemented, with some modifica 
tions, and extended into a quadtree sequence based on recursively divided triangles. The ini 
tial mapping was onto a global octahedron in a near equal area projection (the Modified 
Collignon), and the test implementation consisted of building software and testing it using 
the land portion of the ETOPO5 global terrain data set.

TRIANGULAR TESSELATION AND QUADTREES

Triangles, unlike squares, have corners that match important surface nodes, and in spherical 
coordinate systems, their edges touch the global great circles. Therefore, triangle edges can 
represent linear features that are easily translated into a topological vector structure (e.g., 
the Triangulated Irregular Network (Peucker, et al. 1978; Peucker, et. al., 1986).

Given the task of representing a global data base, the first step is to build an initial set 
of triangles. The simplest solid figure with equilateral triangles for sides and with nodes on 
the surface of a sphere is the octahedron. Each of the facets on the octahedron's surface was 
tessellated into four geometrically identical triangles. If the edge midpoints of a triangle are 
connected, the result will be four new triangles-with an identical geometric structure to 
their parent triangle-every time the original triangle is tessellated. Following the Morton 
Sequencing quadtree method, Dutton assigned values of 0 (center), 1 (apex corner), 2 and 3 
(opposite corners) to each subset triangle (Figure 1). Labeling the subsets from 0 to 3 allows 
the model to store each tessellated triangle into a 2-bit binary code. Since a triangular tessel 
lation always produces four sub-triangles, it is possible to follow any triangular quadtree 
address from a chosen global quadrant down to any level of resolution desired. Each facet 
on the octahedron (or octant) after the first tessellation always has its center triangle labeled 
0 and its apex labeled 1, while the other vertices are assigned 2 and 3 (counterclockwise).
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Figure la: A tessellated 
triangle produces more 
triangles

Figure Ib: Facet 
Breakdown Numbering. 
(Dutton, 1988)

APPLIED MAP PROJECTIONS

A major concern in developing a planetary relief model from an octahedron is the apparent 
error that may be introduced if the model does not account for the Earth being a geoid or 
ellipsoid rather than a perfect sphere. As discussed by Dutton (1984), every time an octahe 
dron is sequentially tessellated it more closely resembles a multilateral globe. Dutton (1984) 
proposed to solve the geoid dilemma by first tessellating an octahedron to several thousand 
facets, then projecting it onto a geodesic projection. No specific projection was suggested in 
any of Dutton's papers (1984 to 1991); he claimed that more research was needed to deter 
mine a feasible solution.

To solve the riddle of what projection gives a feasible solution, over one hundred pro 
jections were examined, using A n Album of Map Projections (Snyder and Voxland, 1989). It 
was determined that only a pseudo-cylindrical, triangular projection with straight parallels 
and meridians-such as the Collignon Projection-permits the world's outline to be projected 
onto a three-dimensional octahedron. It is especially important that latitude be represented 
as near linear steps and orthogonal at all points to the projection's central meridian, for the 
use of the triangle rotation algorithm in TQS. After several modifications, the Collignon 
projection was used to georeference both the World Data Bank and the ETOPO5 Global 
Relief Dataset into eight triangular lattice structures (octants).

The modifications involved on the Collignon require that the globe be first interrupted 
and that each quadrant be located and tested to determine whether it belongs to the northern 
or southern hemisphere. If it falls below the Equator, the quadrant is inversely projected (all 
points y values are multiplied by -1.0). The chosen central meridian is then used to deter 
mine the coordinates that define the longitudinal range of the quadrant's base, or equator. A 
C language program was written using the modified Collignon projection to project the 
world into eight equilateral triangular octants of an octahedral skeleton. As a result, the 
octahedral facets may be applied either collectively or individually. An algorithm was writ 
ten that returned both a global octant number and a projected location within the octant.

The most important modification to this projection was the rescaling of the original 
projection to fit an equilateral triangle; the Interrupted Collignon is no longer completely 
equal-area. As a result, the Interrupted Collignon provides the specific Collignon location 
for any given latitude/longitude (x,y) coordinate in an equilateral triangle lattice. This fea 
ture not only locates all coordinate points on the globe, but serves as the method by which 
Morton, QTM and TQS addresses may be issued to every node on the octahedral skeleton. 
The quadrants can be seen in Clarke's Butterfly Projection (see Figure 2), where each quad 
rant is arranged by translation and rotation to resemble a butterfly. This projection can also 
be assembled into the shape of a three-dimensional paper octahedron.
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Figure 2: The Interrupted Collignon(Clarke's Butterfly) Projection.

Copyright Keith C. Clarke, 1994

The Triangulated Quadtree Structure (TQS)

The proposed three-dimensional model requires a quadtree structure capable of georefer- 
encing coordinates and elevation data to the triangle nodes within the octahedral structure, 
up to any level of tessellation. Such a quadtree must also be capable of linking large num 
bers of entities, attributes and relationships between the dataset and the octahedral facets. 
The Triangulated Quadtree Sequence is a combination of Morton sequencing, two-dimen 
sional run-length encoding, and the QTM structure, modified to fit the previously defined 
specifications.

In order to store the outline of the world in the octahedral structure of the Interrupted 
Collignon Projection, the geocode given to each triangular quadrant must follow a static 
pattern similar to a rectangular Morton sequence (see Figure 3a). With a static pattern it is 
then possible to automatically assign Morton numbers and QTM addresses simultaneously. 
First, the center facet of each tessellated triangle was labeled zero [0] (Dutton, 1988); its 
north-south orientation is always opposite to the location of the central triangle's base. Sec 
ond, the apex (labeled one [1]) shares the same base with the center facet (note that both tri 
angles face in opposite directions).

Finally, the remaining facets are labeled by assigning the numbers two [2] and three 
[3] in a counterclockwise direction beginning at the apex. This step differs from Dutton's 
labeling scheme, where facets [2] and [3] may be arbitrarily labeled (Dutton, 1988). The 
result is a static addressing pattern that allows a triangular tessellation to be stored directly 
into a quadtree structure and vice versa, and which can also be stored using either Morton or 
QTM numbers. As seen in Figure 3, a raster image was originally stored using Morton 
sequences in a two-dimensional run-length encoding (2DRE) format. Note that the sequenc 
ing scheme used is logically identical to the Morton/2DRE addressing method in Figure 3a. 
The only difference is the applied geometric base. The next step is to apply the QTM 
addressing method. Once the raster image has been transferred from a square to a triangular 
lattice, it is a simple matter of substituting the Morton numbers for QTM addressing num 
bers. The results are shown in Figures 3b and 3c.
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Figure 3: Although both a) and b) and c) are identical tessellations, 
a) is a 2DRE/Morton Quadtree, b) is a Triangular Quadtree 
Structure (TQS), and c) is a QTM triangular structure. 

The original image shown in 3a was directly imposed on 
3b following the addressing pattern between Figures 3a 
and 3b. Each number shown in every one of these figures 
labels the highest value assigned to each particular quadrant, 
and based on the original image. 
Source for a) is Mark & Lauzon, 1985. T) 1

13

47

143

175

48

50

49

51

59

52

54

31

53

$a

a*

196

191

87

72

74

73

75

71

79

IH

192

194

200

302

1S.1

195

20

202

t*l

198

16S

199

207

239

93

127

223

255

a) 2DRE/Morton Sequencing

b) 2DRE/Morton Sequencing (TQS) C) QTM Addressing

IMPLEMENTATION AND TESSELLATION OF THE TRIANGULATED 
QUADTREE STRUCTURE (TQS)

Recursive Tessellation for Determination of a TQS Address

First, each point is transformed from its original (x,y) coordinate (squared) lattice into a tri 
angular lattice with the modified Collignon algorithm. The original raster image of the 
ETOPO5 dataset was transformed and stored into a set of eight separate octant quadtree 
files (one octant per quadtree). Each of the quadtrees in turn represents one of the facets of 
the global octahedron. After each latitude and longitude coordinate was computed from the
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original image (a 16-bit ERDAS "lan" format file, figure 4) and transformed into a triangu 
lar Collignon coordinate; the C program assigned a QTM address to each point within 
ETOPO5. The Collignon coordinate was then tested recursively to determine where within

Figure 4: The original ETOPO5 raster image, global topography, land portion.

each triangle (facets 0, 1,2, or 3) did the point belong. To save computing time, the maxi 
mum number of tessellations needed was determined before a TQS address was assigned 
for each point. Once the desired resolution was known, each point was transformed from a 
square-based lattice to the Collignon triangular lattice. Figure 5 shows the boundaries of an 
octant after a point is fitted through the Collignon algorithm. The most prominent feature is 
the grouping of points as one moves from the triangle base up to the apex (see Figure 2).

Figure 5: Transformation from a) square-based raster image, to
b) triangle-based lattice structure, to
c) Butterfly Projection, 
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In Figure 5 a, the ETOPO5 data points are located in a rectangular, latitude-longitude 
model. Each rectangular octant was then projected into the model shown in Figure 5b, 
which is later arranged into its proper position within Figure 5c through eight separate rota 
tion algorithms. The implementation of the triangulated quadtree structure began with the 
assignment of QTM addresses to each ETOPO5 point. The addressing scheme used differs 
from Dutton's model in that triangle addresses are always assigned in a counterclockwise
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order-Dutton's schema varied from triangle to triangle (Dutton, 1984; 1991). The order of 
facets through each tessellation is shown in Figure 6. This method was selected for two rea 
sons: 1) a regulated order is essential if TQS is to be linked to any type of hierarchical struc 
ture, and 2) the computer algorithm method used to detect triangle location is based on this 
ordering scheme.

a) QTM: Address Ordering b) QTM: Bit-Addressing 

Figure 6: TQS Addressing Scheme.

The function assigns TQS addresses to ETOPO5, point by point, by determining 
whether the y-value falls between the midpoint's y-range and the maximum y- value. If so, 
this point is 1) assigned a QTM number representing its triangle location, and then 2) its x- 
and y-values are divided in half, along with the x- and y-ranges. This coordinate division 
allows for the subsequent tessellation of this point's location until the full QTM address is 
determined up to the level of resolution desired, or maximum depth is achieved; see Figure 
7. If the point fails to fall above the midpoint range, then the point is continually rotated 
240° counterclockwise until the correct corner triangle location is determined. And, if it 
again fails to fall in a corner triangle, then by default it must fall in the center triangle. 
Therefore, by continually rotating and tessellating each x- and y-value, this method assigns 
a quaternary hierarchical address to every point in the dataset.

Figure 7: Triangle Rotations and Translations 
Triangle rotation and translation for a point falling in the center facet. 
Note that the last translation inverts the point, then reduces its value 
by half (literally moving the point to the next tessellation level).

240° 240° 240° 180°

base

+ Note. The last rotation yields this position such that, if the point
falls in the center facet, it is automatically readied for the next 
tessellation.

Each time a point gets translated to determine whether it belongs to the facet that is 
currently above the midpoint range, it must be rotated counterclockwise 240°, its x- coordi 
nate gets subtracted one fourth of the xrange value, and its y-coordinate gets added one half 
the y-range value. These additions and subtractions translate the octant back to its original 
position, except that the next triangle in the tessellation order is now at the apex (abbve the 
midpoint range). Note that while it seems that a full triangle gets translated, only one point 
gets translated at a time. Triangles are used to help visualize the area being processed. Since 
geometric translation and rotation of points requires that all calculations be performed in
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radians, each point is first translated into radians, and then rotated using standard affine rota 
tion formulae. Each point went through this process twelve times at increasing resolution to 
determine the full TQS address (12 tessellation levels).

Discussion of the TQS Addressing Method

Dutton's Quaternary Triangular Mesh provided the means to develop and assign a TQS 
address for every coordinate point on the ETOPO5 global relief dataset. Each TQS address 
can be stored into a maximum of three bytes (24 bits), for a global resolution of approxi 
mately 4,883 meters, or 5 minutes. This is accomplished by assigning a 2-bit value (from 0 
to 3) each time a point gets tessellated. This 2-bit value gets bit-shifted to the left (twice) 
and then appended to the previous value until the TQS address consists of twenty four 
binary digits (0 or 1). Therefore, TQS addressing eliminates the need for a pointer to each 
tessellation level since each pair of binary digits represent each level-with the leftmost pair 
indicating the root node. As a result, this method allows the user to recursively select any 
level of resolution desired.

The TQS address is now explained. Beginning from the left (root node) of the TQS 
number, each pair of binary digits represents the image's tessellation level up to the maxi 
mum pixel resolution; the two rightmost digits indicate the tessellation depth with the high 
est resolution. The TQS number is compressed even further by storing it in hexadecimal, 
rather than binary notation. This method introduces another source of compression into the 
geocoding process, though. When the binary number gets translated into hexadecimal nota 
tion, all leading zeroes get truncated from the number.

The result is a much smaller number than originally anticipated. For example, say that 
a point falls in TQS binary number 00 00 00 01 01 11 10 01 00 00 00. Translated into 
hexadecimal notation, this number becomes [5E40]. If this number is again translated into a 
binary location, it becomes 1 01 11 10 01 00 00 00. Note that, instead of the original 24 
bits, the number now consists of only 15 bits. The missing levels are computed by adding 
the number of zeroes missing to the left of the binary address, until the number of binary 
pairs is equal to the maximum depth desired by the user (24 bits in this example). Sorting 
the TQS strings by length then allows maximal compression and multiresolution resam 
pling.

Results From the Application of the TQS Addressing Method

The raster image of ETOPO5 as an ERDAS 16 bit lan file is 18,662,913 bytes. The small 
size of this data set comes from the fact that coordinates are implicit by order from the grid, 
not explicit. As such, reordering or sorting for resolution becomes impossible. With 4320 
columns and 2160 rows, this file would expand to 214,617,600 bytes in ASCII with explicit 
coordinates before all points below sea level were excluded. Using just the land segment of 
the file, designed to test the multi-resolution aspect of TQS, left an explicit reference coordi 
nate file of 52,254,720 bytes. The TQS, by storing an exact locational code for each point in 
hexadecimal notation, reduced the amount of storage needed to 48,540,279 bytes at twelve 
levels of recursion, equivalent to the same approximate resolution, stored as eight individual 
files (one for each octant).

Since the original coordinates were excluded from the octant files, the resulting files 
contain implicit location, instead of explicit location (octant number, elevation, and TQS 
address; no coordinates), and use binary form, not ASCII. Instead of storing the floating 
point elevation value (plus its link) required for representing each point in ASCII format at 
a 5-minute resolution, the TQS method stored the same point into a 24-bit binary value 
(three bytes instead of sixteen bytes). At a 5-minute resolution, the original coordinate and
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elevation values (in ASCII format) were stored as+/-DD.MM +/- ODD.MM EEEE[EOL] 
Degrees, Minutes, Elevation or the equivalent of twenty bytes. The same value in TQS for 
mat ranges from one to nine bytes, depending on resolution. ETOPO5 was further simpli 
fied for TQS by eliminating all those points with identical x- and y-coordinates within the 
ERDAS image file.

Elimination of data redundancy within a raster image was crucial because the original 
raster image adds identical x, y and elevation values as the image reaches the poles to 
account for the stretch caused by transposing the Earth's surface onto a flat grid. For exam 
ple, the x, y and elevation values are identical for every pixel along the latitudes for the 
north and south poles, while every point is unique along the Equator. The Interrupted Colli- 
gnon projection, unlike the original image, transposed the (x,y) coordinates closer and 
closer together as the points reached the poles, thus compressing the high latitudes into the 
apex of each triangle. Although it may seem as if accuracy is lost by concentrating more 
points in smaller and smaller areas, actually there is no more space at the poles than any 
where else on Earth. The error of reduction in areal resolution can be solved by implement 
ing a three-dimensional planetary relief model (see Dutton, 1988; Lugo, 1994).

CONCLUSION

In conclusion, the Triangulated Quadtree Sequence (TQS) structure successfully linked the 
land portion of ETOPO5 to the Interrupted Modified Collignon Projection. The accuracy 
and precision of the TQS addressing numbers increased with every tessellation, until each 
address represented each elevation point up to the resolution of the original dataset. Once 
the georeferenced data is stored in the triangulated quadtree structure, areas with little relief 
can be generalized, while areas with high relief can be further tessellated up to the highest 
level of resolution.

The result has been a model that fitted the Earth's surface onto the surface of a map 
projection that was easily transformed into an octahedron. This accomplishment will even 
tually lead to a three-dimensional model capable of providing an image of the globe for any 
number of attributes, including population density, income, meteorological data, spread of 
disease, and others. In other words, this model may be viewed as a 2.5-dimensional chorop- 
leth map of the world. On the other hand, while this method offers simplicity and geoloca- 
tional precision, it lacks the ability to measure scale throughout the octahedron's surface. As 
the levels of tessellation change, so does the length of every triangular segment, meaning 
that scale continues to change throughout the globe's surface and becomes impossible to 
measure (Dutton, 1989b). In other words, while a coordinate may tell the user where an 
object is, it fails to reveal the actual size of the object.

Despite this weakness in scale measurement, the achievement of the stated goals 
makes the proposed application a new step toward the development of a fully functional 
multilateral data structure for three-dimensional study. Although people today take for 
granted that a coordinate system is a always a discrete rather than continuous set of points, 
there will always be feasible alternatives to be researched, developed and implemented.
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