
Improving the Performance of Raster GIS:
A Comparison of Approaches to 

Parallelization of Cost Volume Algorithms.

Daniel F. Wagner 
Michael S. Scott

Department of Geography
The University of South Carolina

Columbia SC 29208

phone: (803) 777-8976
fax: (803) 777-4972 

{dan, mike} @lorax.geog.scarolina.edu

ABSTRACT
Performance evaluation and improvement are increasingly being recognized as critical 
elements for the success of Geographic Information Systems. This research examines one 
strategy for improving the efficiency of spatial algorithms: parallelization. The very nature 
of spatial data and operators is such that decomposition has obvious benefits. However, 
identifying the most beneficial approach for parallel decomposition of spatial operators is not 
obvious. This research examines the parallelization of a cost volume operator in raster space. 
Two distinct approaches to decomposition of the algorithm are undertaken on the 64-node 
MIMD Intel Paragon Supercomputer at the University of South Carolina. The different 
approaches are compared on several test workloads. Performance metrics include execution 
time, speed-up and efficiency. In addition, the relationship between data volume and the 
benefits of parallelization are considered.

1. Introduction
Performance evaluation and improvement are increasingly being recognized as critical 
elements for the success of Geographic Information Systems (GIS). As workloads continue 
to increase, performance constraints become more acute. Further, as system capabilities 
continue to expand, performance tends to actually decrease due to increased overhead of user 
interfaces, advanced spatial modeling capabilities, etc. Incremental advances in hardware 
technology can no longer be relied upon to provide the solution to GIS performance problems. 
Efforts must be made to increase the efficiency of spatial algorithms. Further, alternative 
hardware solutions must be considered.

As capabilities of GIS systems expand, for example true handling of three spatial dimensions, 
alternative platforms such as parallel processors will become requirements rather than options. 
Many spatial algorithms exhibit latent parallelism. This inherent parallelism is identified by 
Armstrong (1994) as one area of future work in the realm of GIS and High Performance 
Computing. Specifically, Armstrong asks the question "are there collections of code that can 
be translated simply into parallel versions - the so called embarrassingly parallel algorithms?" 
It is our assertion that the nature of many spatial algorithms are inherently parallel. 
Specifically, geometric strategies such as plane sweeping (Preparata and Shamos, 1985) in 
vector and roving windows in raster possess a high degree of parallelism. However, even 
among such 'embarrassingly parallel' algorithms a number of strategies are possible.

Algorithms are parallelized through decomposition. Decomposition may be carried out on the 
program code itself as well as on the problem space operated on. Further, both may be
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attempted in the same algorithm. No single strategy is best, and the considerations are many. 
Particularly acute is the number of processors available. In general, the more processors 
available the more options for decomposition, however, more processors only come at the 
expense of power or cost. In addition scalability must be considered. Scalability refers to 
how well an algorithm can be mapped to different numbers of processors. Algorithms which 
scale well show consistent improvements in performance as more processors are utilized. 
However, not all algorithms, nor all spatial algorithms scale well. Thus, the ideal system is 
not necessarily the one with the most processors.

This paper is arranged in several parts. This section has introduced the importance of parallel 
processing for overcoming the performance constraints of spatial algorithms, and has reviewed 
several applications of parallel processing of spatial algorithms. In the next section, the major 
issues in parallel processing are reviewed. Following this a brief survey of parallel processing 
of spatial algorithms is presented. The spatial algorithm which forms the focus of this 
research, 3-D raster cost volume generation is then introduced. Following this, the 
experimental design for the performance testing is presented. This is followed by the results 
of our preliminary analysis. Lastly, a discussion of these results and conclusions are provided.

2. Issues in Parallel Processing
2.1 Parallel Architectures
Two principle architectures for parallel processing machines exist. These are the Single 
Instruction Multiple Data stream (SIMD) and the Multiple Instruction Multiple Data stream 
(MIMD). In SIMD machines, all processors execute the same instructions in lock-step. Such 
systems, often referred to as array processors, are only suitable for a narrow set of 
applications. In MIMD machines each processor executes its own set of instructions. This 
may be the same set of instructions as other processors - but not executed synchronously - or 
processors may have different sets of instructions -in effect the processors do different jobs. 
MIMD machines may be further divided into shared and distributed memory systems. Shared 
memory has the effect of limiting the number of processors and performance is affected by 
competition for memory. In distributed memory systems, each processor has its own local 
memory and data is shared among processors through messaging. Such communication can 
result in processors being idle for long periods while waiting for data to be passed from other 
processors.

2.2 Decomposition Strategies
Parallelization strategies are commonly divided into control, domain, and hybrid.
In control decomposition, different functions are assigned to different processors. A common
approach is pipe-line processing in which data flows from function to function and processor
to processor sequentially. Another approach involves a manager-worker strategy in which one
processor (the manager) assigns jobs to other processors (workers). In domain decomposition
the data is partitioned among processors and each partition is assigned to a processor.
Performance is largely a function of communication and balance and is affected by the
granularity or size of the data partitions. Ideally, the partitioning strategy should conform to
the problem/data. Since geographic problems are multi-dimensional, they provide a wealth
of opportunities for partitioning.

2.3 Communication
Communication represents one potential bottleneck in parallel processing. Through message 
passing data can be shared across processors. Communication may take place either 
synchronously or asynchronously. For synchronous messaging both processors must be 
prepared. If the sending processor is not ready the receiving processor must wait. In 
asynchronous communication the receiver issues a request for data and can continue 
processing, however if the data has not been (fully) received by the time the receiver needs 
it problems will arise. Communication is related to partition size in that finer grain potentially
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requires more communication and may result in a poor communication/computation ratio. 
Some inherently parallel algorithms require little or no communication, while some inherently 
sequential algorithms will always run faster on sequential machines due to the communication 
bottleneck.

2.4 Balance
Balance refers to the distribution of workload among processors. If some processors are idle 
while others are active, poor balance exists. The total execution time for an application is 
equivalent to the execution time of the last processor to complete its task. If all processors 
complete at the same time, then execution time is optimized and perfect balance is achieved.

2.5 Performance
The most basic measure of system performance is execution time. A common strategy in 
benchmarking programs is to query the system clock both immediately before and immediately 
after a block of code. The difference between these two times is one measure of execution 
time (Wagner, 1991). In parallel processing, comparisons between execution time for parallel 
programs running on a single processor (or sequential programs) and parallel multi-processor 
programs can be made. Speed-up (S) is the ratio between the time to execute on one 
processor (T,~) and the time to execute on P processors (TP)\

S = T,/TP (1) 

and under ideal conditions:

TP = T, / P (2a) 
S = P (2b)

Efficiency is the ratio of speed-up to number of processors:

E = S / P (3)

and under ideal conditions:
(4)

3. Parallel Processing of Spatial Algorithms
Parallel processing of spatial algorithms has been considered by a number of researchers. A 
variety of spatial operators have been the focus of parallel processing. These include line 
intersection detection (Franklin et al, 1989; Hopkins and Healey, 1990), polygon overlay 
(Hopkins and Waugh 1991), spatial statistics (Griffith, 1990; Rokos and Armstrong, 1993; 
Armstrong et al, 1994), location models (Armstrong and Densham, 1992); intervisibility and 
viewsheds (Sandhu and Marble, 1988; Mills et al, 1992), grid interpolation (Armstrong and 
Marciano, 1993), name placement (Mower, 1993a; 1993b), line simplification and point-in- 
polygon (Li, 1993), shortest paths (Sandhu and Marble, 1988; Ding and Densham 1992), and 
hill shading and drainage basin delineation (Mower 1993a).

Almost exclusively a data-parallel or domain decomposition approach has been taken to 
parallelization of spatial algorithms (Franklin et al, 1989; Hopkins and Healey, 1990; Hopkins 
and Waugh, 1991; Armstrong and Densham, 1992; Mills et al, 1992; Ding and Densham, 
1992; Armstrong and Marciano, 1993; Mower, 1993a; Li, 1993; and Armstrong et al, 1994). 
Much less common are examples of a control-parallel or control decomposition approach to 
parallelization of spatial algorithms. Examples include: Mower (1993a) and Rokos and 
Armstrong (1993) who adopt a master-worker approach.
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Parallelization has been undertaken on machines ranging from two (vector) processors (Sandhu 
and Marble, 1988) to massively parallel processors such as Connection Machines (Mills et al, 
1992). Generally, however, the number of processors available has been small.

A number of insights have been noted by many sources: in general it can be observed that 
most spatial problems, and especially large ones, will benefit from parallelization, but that a 
variety of strategies, considerations, and liabilities exist. Of particular concern are 
communication bottlenecks (Mills et al, 1992), and the interdependencies of the particular 
problem (Rokos and Armstrong, 1993).

In addition to considering the approaches which have been undertaken, it is worthwhile to note 
that comparisons between control and domain decomposition have not been attempted for the 
same algorithm or on the same machine. In addition, hybrid decomposition has not been 
attempted for spatial algorithms. All of the reviewed applications have been restricted to 2-D 
(plane) or 2.5-D (surface) cases. Finally, while shortest paths have been considered by Sandhu 
and Marble (1988) and Ding and Densham (1993) only network (vector) paths have been 
considered, and best paths have not been considered at all. In this research we address all of 
these points through an attempt to examine and compare different strategies for parallelizing 
the same spatial algorithm. It is hoped that by comparing parallelization strategies, insights 
can be gained which can be extended to the parallel decomposition of other spatial algorithms.

4. Best Paths in 3-Dimensional Raster Space
Best path problems represent a generalization of the shortest path problem. In shortest path 
problems the path which minimizes distance between 2 points is determined. Best paths differ 
in that the minimization function is based not solely on distance but other criteria (e.g. time) 
as well. The effects of the other criteria are included in the form of impedances or frictions 
associated with movements in directions or over spaces. Best paths in 2-D raster space have 
been examined by a number of authors (Goodchild, 1977; van Oosterom, 1993; Wagner et al, 
1993) however, extensions of the problem to 3-dimensions is relatively new (Scott, 1994a). 
Unlike shortest and best paths in network space which can take any direction, paths in raster 
space, may take only a fixed number of directions.

In this paper, we consider a 3-dimensional 26-direction raster cost volume operator which 
makes use of a 3-dimensional pushbroom. The algorithm was developed initially on a 
sequential processor (Scott, 1994a; 1994b) and resulted as a direct extension from an improved 
2-D best path algorithm (Wagner et al, 1993). Pushbroom algorithms require multiple sweeps 
through the dataset (Eastman, 1989; Scott, 1994a) - one for each broom - and are thus 
computationally intensive.

The majority of the computation time in such best path algorithms is involved in the 
generation of the cost surface or volume which is subsequently used to generate the best path. 
If absolute barriers are allowed, a large number of sweeps may be required. In the 2-D case, 
four sweeps - one originating at each corner of the rectangular study area - are required 
(barrier free case), while in the 3-D case, eight sweeps are required - one from each of the 
eight corners of the rectangular prismoidal study volume (again, barrier free case). In both 
cases, each broom sweeps from a vertex to its diametrically opposed vertex. In the 3-D 
algorithm examined here, only 26 directions are utilized. In the 26-direction case, only the 
immediate neighborhood of a focus cell is considered. Such neighbors share a face, edge or 
vertex. Each of the eight brooms must consider 7 directions (Figure 1), thus some redundancy 
is unavoidable in the (sequential) algorithm. As example output, the x=25, y=10 planes of a 
50x50x50 3-D cost volume (origin in center) are shown in Figure 2.
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Figure 1. Seven directions considered by one broom.

Figure 2. 503 Cost Volume, origin in center; planes: x = 10, y = 25

5. Experimental Design
5.1 Introduction
Tests were run on The University of South Carolina's Intel Paragon XP/S4 supercomputer. 
The Paragon has a distributed memory MIMD architecture using Intel 50 Mhz i860XP 
processors. The machine used in this research has 64 nodes arranged in a 2-D mesh, 1 
gigabyte of distributed RAM, and a 12 gigabyte RAID. The nodes are divided between 
service and compute partitions. The service partition consists of 8 nodes each with 32 
Megabytes RAM and handles logins, editing, compiling, utilities, and launching parallel 
programs. The compute partition contains the remaining 56 nodes, any number of which 
(including all) may be owned by a particular application. Each compute node has 16 
megabytes of RAM and two 1860XP processors, one for computing and the other for 
communication. Thus, 56 nodes represents the physical limit for this research. The i860XP 
processor is rated (peak) at 75 double precision megaflops computation and 200 MB/s 
communication. USC's Paragon has a peak performance of 4.2 gigaflops. All programming 
was done using C with parallel extensions.
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The primary objective of this research is to examine and compare strategies for decomposition 
of spatial algorithms for parallel processing. We begin with the sequential algorithm, and then 
decompose this algorithm based on both control and domain. For each decomposition we 
examine the effect of scalability. Finally we examine a hybrid decomposition strategy which 
has elements of both control and domain decomposition.

Tests were performed on various sized synthetic datasets. The use of synthetic data allows 
for the total control needed to systematically examine the performance space of the system 
(Wagner, 1992). Results are reported in terms of execution time, efficiency, and speed-up.

5.2 Sequential Algorithm
The sequential algorithm can be conceptualized as a quintupley nested loop: For each of the 
eight brooms, and for each cell, the cost of moving from that cell to the neighboring cells is 
calculated and compared to the current cumulative cost for that neighboring cell and the 
minimum of the two is assigned. In pseudo-code, the algorithm may be envisioned as follows:

Broom 
Row 
Column 
Level 
Neighbor 
cmltv cost(Neighbor)=
MIN~fcmltv_cst(Neighbor),cmltv_cst(Cell)+offset(Neighbor)}

5.3 Parallel Algorithms
Our control decomposition is effected by parallelizing the outermost loop. That is the brooms 
sweep on several processors in parallel rather than each broom sweeping sequentially. In 
order to avoid the communications bottleneck only the calculation of cumulative cost is done 
within the loops and comparison and selection of minimum cumulative costs is delayed until 
a broom has completed its sweep. These values are then passed to a collector processor which 
determines the minimum value from the eight candidates assigned by the processors. 
Obviously in this approach anything beyond eight processors (or nine if the collector function 
is assigned to a separate processor) will not produce any performance improvements. For 
choices of 2, 4, and 8 processors, theoretically perfect parallelism can be achieved.

Control decomposition based on Neighbors rather than brooms is possible. Decomposition 
based on neighbors would involve assigning different directions to individual processors. All 
directions could be processed simultaneously (this would involve combining the outermost and 
innermost loops) using 26 processors. Collection would be required as above. This method 
of control decomposition is not implemented in this study.

Domain decomposition requires division of the study volume into sub-volumes. A major 
consideration for push-broom algorithms is that the broom must be able to sweep from corner 
to corner. In essence, the global effect must be preserved, so that a phenomenon can 
propagate throughout the entire study volume. For the cost volume algorithm, preserving the 
global effect requires multiple passes to allow effects to propagate across the sub-domain 
boundaries.

Sub-volumes are assigned to individual processors and the (sequential) algorithm applied. In 
order to allow propagation across sub-domain boundaries with a minimum of communication, 
the concept of 'ghost' cells (Intel 1994) is adopted. Rather than making the domain 
decomposition a mutually exclusive and collectively exhaustive one, the sub-volumes are
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designed to overlap. For pushbroom algorithms, the required depth of overlap is one cell. 
These overlapping cells are termed ghost cells. The ghost cells facilitate communication 
between passes and reduce the communication bottleneck.

Theoretically, perfect parallelism can be achieved if the sub-volumes are all the same size and 
shape. Perfect balance is achieved when the decomposition is uniform in all three directions. 
Balance is a function of the number of passes which must be performed to preserve the global 
effect. The number of passes required is equal to the maximum number of subdivisions of 
the problem volume along any axis. That is if the problem volume is bisected along an axis 
2 passes are required; if the problem volume is trisected along an axis, 3 passes are required, 
etc. In effect, perfect balance is obtained when each spatial dimension is decomposed by the 
same integer (the cube root of the number of sub-volumes). Thus perfect balance and perfect 
parallelism can be achieved for 8, 27, 64, ... sub-volumes.

Hybrid decomposition, in which both control and domain decomposition are combined, is 
possible. Such a scenario might involve decomposing the study volume into eight sub- 
volumes and decomposing the sequential algorithm as described above. In this way better 
scalability should be achievable. That is, larger numbers of processors can be incorporated 
effectively. Hybrid decomposition is not attempted in this study.

6. Results
Control decomposition utilizing a collector and between 1 and 8 broom processors (2-9 
processors) was performed using cubic study volumes ranging from 10x10x10 to 100x100x100 
cells. Domain decomposition utilizing 1, 2, 8, and 27 sub-domains was performed on cubic 
study volumes ranging in size from 10x10x10 to 100x100x100. Results of individual tests 
were performed several times and averaged in order to lessen residual background effects. 
The results from the tests are presented in Tables 1-3.

Scott (1994a) developed the original 3-dimensional 26-direction raster cost volume operator 
in Turbo Pascal on a (sequential) PC-based environment. He reports that using a 33 Mhz 
486DX processor with 16 megabytes of RAM of which 8 megabytes were configured as a 
RAM disk, approximately 1069 seconds were required to generate a 40x40x40 cost volume, 
and 79,000 seconds were required to generate a 100x100x100 cost volume. He also notes that 
the performance of his algorithm is very much disk constrained. Our first step in this research 
was to port Scott's sequential algorithm to C and a RISC/UNIX environment. On a SPARC 
IPX, the algorithm required 21 seconds to generate the 40x40x40 cost volume and 1200 
seconds to generate the 100x100x100 cost volume. Next, the sequential algorithm was run 
on the Paragon (Table 1). Following this we undertook control and domain decomposition 
of the algorithm. Tables 2-3 present the results of these experiments.

Table 1. Sequential Program: Execution time in seconds.

Number 
of 
Nodes

1

Problem Size

103

0.10

203

0.98

303

3.49

403

8.50

503

16.9

603

29.4

703

47.0

803

70.6

903

102.

1003

139.

The sequential tests show almost constant linearity between test size and execution time. The 
performance of the Paragon in sequential mode appears an order of magnitude better than the 
IPX for the 1003 case, and two orders of magnitude better than the PC. Tables 2-3 illustrate
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that the sequential times are slightly faster than the parallel times using one node. This is due 
to the overhead associated with the parallel processing. This disadvantage vanishes as 
multiple-nodes are used, as expected. In the 1003 tests, the sequential processor again 
demonstrates the best performance due to overhead associated with problem size in parallel 
mode.

Table 2. Control Decomposition: Execution time in seconds.

Number 
of 
Nodes

1

2

3

4

5

6

7

8

Problem Size

103

0.12

0.06

0.11

0.08

0.23

0.32

0.33

0.39

203

1.02

0.57

0.47

0.37

0.53

0.56

0.58

0.54

3D3

3.57

1.97

1.59

1.25

1.37

1.37

1.30

1.30

403

8.69

4.76

3.77

2.95

3.11

2.94

2.83

2.73

503

17.2

9.48

7.44

5.81

6.06

5.56

5.45

5.14

603

30.0

16.5

13.0

10.1

10.4

9.62

9.61

8.74

703

47.9

26.4

20.7

16.1

16.3

15.0

15.2

13.8

803

71.9

39.6

30.7

23.5

24.7

22.7

23.0

20.5

903

118.

66.2

45.0

35.1

35.9

33.0

31.9

29.2

1003

225.

193.

238.

258.

315.

341.

401.

457.

Table 3. Domain Decomposition: Execution time in seconds.

Number 
of 
Nodes

1

2

8

27

Problem Size

103

0.24

0.16

0.42

0.86

203

2.01

1.15

0.92

2.39

303

7.08

3.93

2.41

6.43

40 3

17.2

9.42

5.16

14.1

503

34.1

18.6

9.74

26.5

603

59.4

32.3

16.8

45.0

703

94.9

51.4

26.1

70.7

803

142.

77.0

39.2

105.

903

215.

223.

57.7

157.

1003

374.

429.

455.

1268

6. Discussion
The observed execution times illustrate that the 3-D 26-direction raster cost volume generation 
algorithm does benefit from parallelization. However, the observations also suggest that the 
algorithm does not scale evenly and that data volume can have a significant impact on speed 
up and efficiency. In general the observations for the smallest problems (10x10x10) are least 
interesting. This is because the execution times are so small as to be completely confounded 
by the background processing overhead.

The control decomposition strategy works consistently better than the domain decomposition 
strategy on this algorithm. Closer examination of the parallel algorithms suggests that this is 
due largely to the communication required in the domain decomposition. In control 
decomposition, communication is necessary only at the beginning and ending of the 
processing. At the beginning, the origin(s) and friction values must be passed to each
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processor. Upon completion of the sweep the cumulative cost values must be passed to the 
collector processor where the minimum value is selected. Thus, little communication is 
needed, and what communication there is does not interfere with the individual broom 
processing.

In comparison, the domain decomposition strategy involves much more communication and 
further, this communication occurs during the sub-domain processing. While attempts have 
been made to minimize communication through the use of ghost cells, communication between 
all sub-domains must occur between each pass, and presents a significant bottleneck. The 
execution times for domain decomposition are on average nearly twice as long when compared 
to control decomposition.

Another observation centers on performance versus problem size. In both the control and 
domain tests anomalies in the pattern of performance can be observed as the problem size 
grows large. Visual inspection of the processor status has shown that these performance drop- 
offs occur when the workload becomes disk intensive. Problems up to some threshold size 
can be handled entirely in RAM, but beyond this threshold, disk storage must be utilized. 
Once this threshold is passed, all processors spend a majority of their time waiting for the 
RAID to service their requests for data. In addition, performance degradation occurs in the 
preprocessing stage when large numbers of processors or large amounts of array space (i.e. 
large data sets) are utilized. Again, visual observation of processor status has shown that 
while processors and/or memory is being allocated, other processors generally sit idle.

In addition to raw measure of execution time, speed-up and efficiency should be considered. 
Tables 4-7 present the speed-up and efficiency measures for both experiments. In general, 
speed-ups increase moderately as processors are added. However, this rate is clearly not 
proportional to the change in number of processors. Thus, while the greatest speed-ups are 
gained using the most processors, the greatest efficiencies are gained using the smallest 
number of processors. In addition, as execution times increase, speed-up and efficiency both 
drop-off with very large problems or large numbers of nodes.

A final topic for discussion is balance. Near perfect balance is possible in both the control 
and domain strategies outlined here. In fact, in certain instances the control decomposition 
for the cost volume algorithm represents the ideal case. While the processor workloads can 
be equally well balanced in the domain strategy, it is the communication between processors 
which offsets this advantage.

Imperfect balance occurs in the domain decomposition strategy if the sub-domains are not all 
the same size and shape. That is balance will be upset if some processors must operate on 
larger sub-domains. Imperfect balance occurs in the control decomposition case when the 
number of broom processors is not a factor of eight. Thus, examination of Table 2 shows that 
there is little difference in performance times for 4, 5, 6, and 7 processors. In effect, with 
more than three but less than eight processors, two passes are still required to process all eight 
brooms. Thus, some of the additional processors sit idle while others are busy on the second 
pass. In other words, such numbers of processors throw the parallelization greatly out of 
balance.
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Table 4. Speed-Up from Control Decomposition.

Number 
of 
Nodes

2

3

4

8

Problem Size

103

2.00

1.09

1.50

0.31

203

1.79

2.17

2.76

1.89

303

1.81

2.25

2.86

2.75

403

1.83

2.31

2.95

3.18

503

1.81

2.31

2.96

3.35

603

1.82

2.31

2.97

3.43

703

1.81

2.31

2.98

3.47

803

1.82

2.34

3.06

3.51

903

1.78

2.62

3.36

4.04

1003

1.16

0.95

0.87

0.49

Table 5. Efficiency from Control Decomposition.

Number 
of 
Nodes

2

3

4

8

Problem Size

103

1.0

0.4

0.4

0.0

203

0.9

0.7

0.7

0.2

303

0.9

0.8

0.7

0.3

403

0.9

0.8

0.7

0.4

503

0.9

0.8

0.7

0.4

603

0.9

0.8

0.7

0.4

703

0.9

0.8

0.7

0.4

803

0.9

0.8

0.8

0.4

903

0.9

0.9

0.8

0.5

1003

0.6

0.3

0.2

0.1

Table 6. Speed-up from Domain Decomposition.

Number 
of 
Nodes

2

8

27

Problem Size

103

1.50

0.57

0.28

203

1.75

2.18

0.84

303

1.80

2.94

1.10

403

1.83

3.33

1.22

503

1.83

3.50

1.29

603

1.84

3.54

1.32

703

1.85

3.64

1.34

803

1.84

3.62

1.35

903

0.96

3.73

1.37

1003

0.87

0.82

0.29

Table 7. Efficiency from Domain Decomposition.

Number 
of 
Nodes

2

8

27

Problem Size

103

0.8

0.1

0.0

203

0.9

0.3

0.0

303

0.9

0.4

0.0

403

0.9

0.4

0.0

503

0.9

0.4

0.0

603

0.9

0.4

0.0

703

0.9

0.5

0.0

803

0.9

0.5

0.1

903

0.5

0.5

0.0

1003

0.4

0.1

0.0
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7. Conclusions
We have examined two distinct strategies for parallelization of 3-D raster cost surface 
generation. In this test, control decomposition appears to hold significant advantages over 
domain decomposition. While domain decomposition offers better scaling and can be spread 
over a broader range and greater number of processors, the increased communication 
necessary for this approach ultimately lessens its performance.

While we are confident our control decomposition is optimal, we are aware of a number of 
potential strategies for improving our domain decomposition. This research has shown that 
control decomposition can be superior to domain decomposition for spatial problems. 
However, additional research is necessary before generalizations can be drawn. As in many 
other studies, we conclude that the most successful strategy is the one making use of both the 
greatest number of balanced processors and the least amount of communication. In the 
example of 3-D raster cost volumes, near perfect balance and near perfect parallelism can be 
exploited in the control decomposition. While (near) perfect balance can be easily achieved 
in our domain decomposition, the degree of communication necessary to preserve the global 
effect and allow values to propagate across sub-domains insures that near perfect parallelism 
(i.e. little communication) is not possible.

Additional strategies for decomposing this algorithm are also worthy of investigation: these 
include control based on the 26-directions and hybrid decomposition strategies. In light of the 
communications bottleneck associated with domain decomposition, hybrid strategies should 
prove a viable alternative to facilitate increasing the number of processors utilized while 
maintaining satisfactory perforce. In order to achieve this, the maximum number of brooms 
should be included since this 'control' component of the hybrid decomposition is not so 
communication bound.

In addition to examining alternate strategies, it is necessary to investigate the effect of 
architecture on the success of the decomposition strategies. Finally, it is necessary to more 
rigorously examine the performance space to better determine the existence and extent of 
efficiency thresholds or discontinuities in the performance space.
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