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The, current generation of spatial SQL languages has still severe problems 
in specifying queries which contain complex operations. One of these 
complex operations is map-overlay with topological structured layers. In 
this paper an attempt is made to model the map-overlay operation into 
an object-relational query language. This query language ?s the formal 
part of a geographic interaction language. An example application of the 
concepts of this language is given which shows that map-overlay can be 
specified with relative ease. This paper also deals with the creation of 
topological structured layers.

1 Introduction

Previous research, by various authors [2, 6, 7], proved that the original relational 
model is not very suitable for a Geographic Information System (GIS). One of the 
main problems with the relational data model is that it lacks the geometric data 
types. A very similar problem occurs in the relational query language SQL. The 
extended relational data model solves the problem quite well, the extended SQL still 
has a number of remaining problems. The extended SQL approach has difficulties 
when dealing with more complex objects and operations, for example operations that 
apply to topological structured input sets. Examples of this type of operations are: 
shortest path in road network, network analyses, map-overlay, visibility analyses in 3D 
terrain, and computations of corridors. Since map-overlay is generally regarded as one 
of the crucial operations in a GIS, our attention is focused on modelling this operation
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Fig. 1: Structure of the Interaction Language

in the formal part of the interaction language. We propose an object-relational formal 
syntax for this map-overlay operation.

Our final goal is to develop a general geographic interaction language. This interaction 
language is not meant to be yet another extended SQL. It consists of two layers. 
The first layer is formed by the object-relational model. The extended relational 
algebra, which contains all required spatial types and operations, describes the formal 
side of this geographic interaction language. On top of this formal language a more 
graphic, user-oriented language will be defined. This graphic interaction language 
performs two major tasks. First of all, it takes care of easy definition of queries and 
operations. The second task of this graphic interaction language is the definition of 
the presentation of query results [7]. Issues which are involved in the presentation 
are: shape, size, color, shading, projection, transformation, etc. All these factors can 
be defined interactively with the presentation language in a graphic way. Figure 1 
visualizes the structure of the interaction language. More information about our 
interaction language can be found in [13].

2 Map Layers

An important principle in GIS is the layer concept. In this concept the geographic 
data is stored into layers. Each layer describes a certain aspect of the modeled real 
world [4]. Using map layers is a natural technique to organize the data from possibly 
different sources.

Two distinctive types of layer organizations can be identified: thematic and structured 
layers. The most common type is the thematic layer [4]. For each theme on a map, 
a separate layer is specified without a topological structure. In order to solve user 
queries containing features of more than one layer, a spatial join operation has to be 
performed. Elements of both layers are individually combined. The output of such 
combination is usually a set of object pairs. Each pair consists of an object of both
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Fig. 2: Map-overlay computation and label propagation

layers.

Multiple thematic layers can be stored into one structured layer. These kind of layers 
are organized with a topological structure. The use of a topological structure removes 
a large amount of redundant information. Each edge is only stored once and contains 
references to the polygons on each side of the line. Each polygon only stores a reference 
to its defining edges. Although this topological structure stores map information more 
efficient, solving queries which contain features of more than one structured layer 
becomes more awkward. The combination of two of these layers is not performed 
separately on each element of the layers but on the layer as a whole. The result of 
this combination is a new structured layer.

This paper concentrates on the latter type of layers: the topological structured layer. 
It may be clear that the combination of two ore more of these structured layers is far 
more complex compared to the spatial join of two relatively simple thematic layers. 
We focus on the specification of the map-overlay process in a formal query language.

3 Map Overlay

The input of a map-overlay operation consists of two or more topological structured 
layers of edges only, in case of a linear network, or edges and faces, in case of a 
polygonal map. The output of the process is a new topological structured layer in 
which the attribute values of the new edges and faces are based on the attribute 
values of the elements of the input layers. Figure 2 shows the map-overlay process.

Note that the spatial domains of the different input layers do not have to match 
exactly. The map-overlay is usually computed in three logical phases [8]. The first 
step is performed at the metric level and computes all intersections between the 
edges (line segments) from the different layers. Followed by a reconstruction of the 
topology and assignment of labels or attribute values in the next two steps [18]. Several 
algorithms have been developed for computing the map-overlay:

• brute force method;

• plane-sweep method [1] (including several variants);
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• uniform grid method [9];

• z-order-based method [11];

• R-tree-based method [15].

A problem related to map-overlay is the introduction of sliver polygons. Solutions 
for this have been presented in [3, 19]. Certain parameters have to be specified (e.g. 
minimum face area) in the map-overlay process.

When inserting a new line into a topological layer, several situations can occur: touch, 
cross, overlap, or disjoint from the lines already present in the structure. Geometric 
computations are used to determine the actual situation. Because computers have 
only finite precision floating-point arithmetic [10, 12], epsz/on-distance computations 
have to be used. The actual epsilon value has to be given (by default) for every 
topological layer.

4 Extended Relational Approach

This section describes an attempt to model the map-overlay process directly into a 
relational query language. Since we use the extensible relational database manage 
ment system (eDBMS) Postgres [14] in our GIS research, we used its query language 
Postquel as a framework. It is clear that the modeling can be done in other eDBMS's 
in a very similar way.

First, at least two layers have to be created. This can be done by creating a relation 
for each layer. The code fragment below shows the statements. The first line creates 
a parcel layer with owner and value information. The other layer contains soil infor 
mation. Note that the layers contain explicit polygons and there is no topological 
structure.

Code Fragment 1
create layerl (name=text, shape=POLYGON2, owner=text, value=int4) 

create Iayer2 (id=int4, soil=text, location=POLYGON2)

With this layer definition, it is possible to specify the map-overlay operation as is 
shown in the next code fragment. The shape of the objects of the new layer are defined 
as the intersection between an object from layerl and an object from Iayer2. The 
attribute value newval is calculated from attribute value soil of Iayer2, value of 
layerl, and the area of the new polygon. Note that some functions are used in the 
calculation of the value of newval.

Code Fragment 2
retrieve into layers (oldname=layerl.name,

newshape=Intersect(layerl.shape, Iayer2.location), 
newval=SoilRef(Iayer2.soil)*layer1.value*AreaPgn2(newshape))

We now have specified map-overlay in relational terms. The number of input layers 
does not have to be limited to two, but can be increased to any number. However, for 
each number of layers to be combined an Intersect function with the appropriate 
number of parameters has to be defined. Other attributes can be specified at will.
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Fig. 3: Intersection of two polygons

They can be copies of old attributes or functions applied to attributes of any layer. 
This is a very flexible and elegant way to specify the propagated attribute values in 
the map-overlay operation.

Although the relational approach is simple and straight forward, this 'solution' has 
several severe drawbacks:

a. It is based on explicit polygons, not on a topological data model. As is stated 
before, there are clear advantages in topologically structuring the layers. It 
is possible to create topological structured layers in a relational model, but 
specifying the map-overlay process becomes impossible. Since one does not 
longer have explicit polygons, it is necessary to execute a query for each polygon 
to get its defining edges. This construction does not fit in the relational algebra.

b. It assumes that each pair of intersection polygons result in at most one polygon, 
in general this is not the case. Any number of polygons can be returned as 
result of the intersection; see righthand side of figure 3. Therefore, a new type 
of polygon with disconnected parts must be defined. It is clear that this is not 
desirable.

c. This method does not work for the map-overlay of two linear network layers. 
Intersections of lines return in general points and not lines. One could define 
the intersection function in such way that it returns the resulting line parts, but 
then again a new polyline type with separated parts must be denned.

d. It is not possible to use an efficient plane-sweep algorithm, because the 
intersection function operates on pairs of individual polygons. This is not effi 
cient.

The common cause behind these problems is that map-overlay should be applied to 
complete layers and not to the individual polygon instances making up the whole 
layer structure. In order to be able to do this, the concept of complex objects is 
needed. The topological structured layer is considered to be a complex object with 
its own intersection operation. So there seems to be a need to move away from the 
pure relational model and adopt some object-oriented concepts. The next section 
describes what is needed to specify the map-overlay operation in an object-relational 
model.
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5 Object Relational Approach

This section described our new approach to model the map-overlay process in a more 
object oriented approach. The next subsection describes the way to define a topolog- 
ical layer structure. Section 5.2 describes the actual creation of the topological layer, 
while section 5.3 deals with the final map-overlay operation specification.

5.1 Topological Layer Definition

To solve the problems associated with the extended relational approach, we need to 
create a complex object layers. A fully topological structured layer contains nodes, 
edges, and faces. To make the model simple, we assume in our examples that the 
nodes are stored in the edges, and that only faces have labels (attributes). Before the 
topological structure of a layer can be created, we need to define some prototypes. 
This is done in the first two lines of the next code fragment. These prototypes are 
essentially the same as ordinary relations, but they can not contain any data. They 
form the framework links between faces and edges.

Code Fragment 3
define prototype faces (id=oid, boundary=edges.id[])

define prototype edges (id=oid, line=POLYLINE2, left=faces.id, 
right=faces.id)

create layers (layer_id=unique text, boundaries=prototype edges, 
areas=prototype faces)

define topology _layers_topol on layers using polygonal (boundaries, 
areas)

define index _layers_bdy on layers.boundaries using 
rtree (line polyline_ops)

The prototypes faces and edges define the basic attributes of a face and an edge 
respectively. Both have an attribute id of type oid1 , which contains a unique identifier 
for each edge and face. The faces prototype has an attribute boundary which is a 
variable length array (indicated by the square brackets) of id values of the prototype 
edges. This concept of references forms the actual link between the two prototypes. 
Note that the faces prototype has a forward reference to the edges prototype. This 
forward referencing is only allowed in the definition of the prototypes. These have to 
be defined before the actual layers relation can be created.

The creation of the layers relation is quite straight forward. The layer has a unique 
identifying name and references to the edges and the faces member relations. These 
two relations are not directly visible for the user. The only way a user can retrieve 
individual edges or faces is through the layers relation similar to the object-oriented 
concept of class and member class. The edges and faces can therefore be in one layer 
only.

stands for object identification
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The next line in code fragment 3 registers the topological structure in the DBMS. 
This line will enhance the append, replace, and delete statements whenever these 
statements deal with a topological structured layer. This enhancement of these state 
ments is similar to the enhancement of the same statements when defining an index 
on a relation attribute. The syntax is also similar to the index definition syntax in 
Postgres as can be seen in the last line of this code fragment. The two parameters 
between the parenthesis relate to the attributes of the layer which contain the edges 
and the faces. A optional third parameter could be the epsilon value; see section 3 
The keyword polygonal denotes that the topological structure contains edges and 
faces. The possible topological structures are:

t f ull_polyhedral: A three dimensional topological structure with nodes, edges, 
faces, solids;

• polyhedral: A three dimensional topological structure with edges, faces, solids;

• full_polygonal: A two dimensional topological structure with nodes, edges, 
and faces;

• polygonal: A two dimensional topological structure with edges, and faces;

• network: A two dimensional topological structure with nodes and edges.

5.2 Topological Layer Creation

The definition of the framework structure of the layer is now complete. It is good 
to realize that the topological structured layers itself have still to be created. The 
following code fragment shows how this could be specified in the formal database 
language.

Code Fragment 4
define prototype faces2 (name=text, owner=text, value=int4) 

inherit faces

append layers (layer_id="parcels", areas=prototype faces2, 
boundaries=prototype edges)

append 11.boundaries (polyline="(....)"::POLYLINE2) 
from 11 in layers where 11.layer_id="parcels"

replace 11.areas (name="....", value="....", owner="....") 
from 11 in layers
where PointlnPolygon ("(x,y)"::POINT2, current)) 

and 11.layer_id="parcels"

The first line of code fragment 4 defines the additional attributes of the areas in this 
layer. The inherit keyword allows faces2 to be used wherever faces can be used. 
In this way the generic topological structured layer can be extended to have arbitrary 
number of attributes.

The next line creates the new empty layer. Only the layer-id attribute value has to 
be provided. The append statement checks the type of faces 2 against the original def 
inition of faces. Note that the original definition of edges is used as the boundaries
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attribute. If one would need to have boundaries with additional attributes, a new 
prototype has to be defined in a similar way as is done for f aces2.

Now the layer is denned and ready to receive its denning edges. The third line in code 
fragment 4 is executed for every edge in the layer. It is an append into the member 
relation of the layer where the edges are stored. The location of this relation is stored 
in the edges attribute of the layer. This append has some extra functionality due 
to the definition of the topology structure. Whenever an edge El intersects an edge 
E2 already in the layer, both edges are split by the append operation. Edge E2 is 
removed from the layer, the resulting parts of the splitted edge are appended to the 
layer one by one. Note that in case of edges with additional attributes, both parts of 
the splitted edge get the original attribute values. While appending edges, faces are 
being formed. Those faces are stored in the faces relation of the layer in a similar way. 
After all the edges are added to the layer we have a layer with all edges and faces, but 
the faces have no labels yet; the additional attributes have to be given values. This 
is done in the last line of code fragment 4. Each area is checked whether it contains 
the location. The keyword current refers to the area which is checked at that time.

Note that the described process above creates a topological layer from scratch. When 
one has a data set which contains topological references as is for example the case in 
DIGEST data [5], this process can be simplified by defining the topology after the 
areas and lines are inserted in layer. When inserting the edges and faces in this case, 
no extra functionality is needed in the append. When the topology is defined at the 
end, it provides the additional append functionality at that time. The definition of 
the topology triggers also a topology check process on the already inserted data. This 
to ensure that the topology structure of the data is valid. When new edges are added 
to the layer, the append statement will take care of the topology maintenance. It 
also contains an object id manager. This manager will keep object id's unique and 
insures referential integrity of the topological structured layer.

5.3 Map Overlay

Once the layers have been created, they can be manipulated as layer objects; that is 
as complex objects. Since complex objects can be handled in the same way as ordinary 
objects, one can write an intersection function which is executed on the layer as a 
single object. The intersection of two layers is exactly what map-overlay is. The next 
code fragment shows how this can be specified in the query language. We assume 
that the map-overlay function is registered in the database.

Code Fragment 5
append layers (layer_id="combined layer")

retrieve (count=overlay(11,12,new_layer,"FaceAttrSpecStr", 
epsilon, sliver)) 
from 11, 12, new_layer in layers
where 11.layer_id="parcels" and 12.1ayer_id="soil" and 

new_layer.layer_id="combined layer"

Before the map-overlay can be executed, we need to provide a structured layer in 
which the map-overlay result can be stored. This is done in the first line of code
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fragment 5. Note that we do not need to initialize the areas and boundaries sets. 
This initialization is done in the overlay function. Now we are ready to compute 
the resulting layer. The map-overlay is now nothing more than a retrieve using a 
user-defined function. Since a function cannot be called without having a variable to 
receive its result, some extra information can be returned from the overlay function. 
In this case the number of areas in the new layer is returned. The FaceAttrSpecStr 
contains for each attribute of the areas in the new layer a specification string. Each 
part of the specification string contains the name of the attribute and the expression 
which specifies the value of the attribute. Each expression is similar to the expression 
in code fragment 2. This total string is parsed by the overlay function.

The result of the map-overlay operation is stored in a new layer. The coordinates of 
all the edges in the new layer are redundantly stored. However, since some layers may 
be regarded as temporary layers, a user has two option to remove the redundancy. 
The user can either remove the new layer after studying the result, or one or more of 
the original layers is no longer useful and can therefore be removed.

6 Conclusion & Further Research

We have presented a way to model the important map-overlay concept into a for 
mal query language. The following components are added to the Postquel language: 
prototype, define topology, and special append, replace, and delete statements. 
Besides these modifications in the DBMS (backend), also modifications to the geo 
graphic user interface (frontend) have to be made in order to visualize the topologi- 
cally structured data [17].

An implementation of the suggested extensions in Postgres will be non-trivial, but 
partly comparable to adding a new a.ccess method [16]. An alternative is to use a 
true OODBMS as platform on which this spatial eRDBMS will implemented.

In this paper, we focussed on one specific type of topology, but as indicated, other 
types of topology structures can be supported as well. This will make the spatial 
eRDBMS a good generic basis for GIS-application, and also for other spatial appli 
cations; e.g. CAD systems.
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