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Abstract

This paper focuses on spatial information derived from the composition of two pairs of 
cardinal directions (e.g., North and North-East) and approximate distances (e.g., near and 
far), i.e., given the approximate distances al (A, B) and a2 (B, C) and the cardinal 
directions cl (A, B) and c2 (B, C), what are a3 (A, C) and c3 (A, C)? Spatial reasoning 
about cardinal directions and approximate distances is challenging because distance and 
direction will affect the composition. This paper investigates the dependency between 
qualitative and quantitative inference methods for reasoning about cardinal directions and 
approximate distances. Cardinal directions are based on a 4-sector model (North, East, 
South, West), while approximate distance correspond to a set of ordered intervals that 
provide a complete partition (non-overlapping and mutually exclusive) such that the 
following interval is greater than or equal to the previous one (for example, "far" would 
extend over a distance that is at least as great as "medium.") We ran comprehensive 
simulations of quantitative reasoning, and compared the results with the ones obtained from 
quantitative reasoning. The results indicate that the composition is robust if the ratio 
between two consecutive intervals of quantitative distances is greater than 3.

Introduction

The domain of this paper is the intelligent inference of spatial information in Geographic 
Information Systems (GISs), which record a variety of geographic data to aid human 
decision making about the real world. Spatial reasoning denotes the inference of new
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spatial information that is otherwise not available. People do spatial reasoning using 
knowledge they acquire from environment and learning experiences, so that they can make 
decisions even if the available spatial information is incomplete, uncertain, or inconsistent 
(Collins et al. 1975). For example, after living in an area for a period of time, people can 
usually find a path from one place to another, or draw a sketch map about the whole area— 
even if they would not know the exact relationship between any two objects. People have 
the flexibility to adapt to the environment and the reasoning processes do not necessarily 
follow human-designed models like mathematics or logic. Unlike humans, information 
systems with spatial reasoning capabilities must rely on an appropriately designed spatial 
models and their formalizations. Of course the result of such a reasoning must make sense 
to humans (Kieras 1990). From the perspective of data management and query processing, 
the design of spatial reasoning mechanisms for GISs must consider at least two factors: (1) 
it must have unambiguous definitions of spatial relations and operations to process queries 
and (2) it must have the capability to search for appropriate combinations of relations and 
derive reasonable answers promptly.

The domain of this paper is reasoning about qualitative distances and directions (e.g., near 
and North), also known as approximate distances and cardinal directions (Frank 1992). 
Since people use spatial relations to make sense of observations, spatial relations become 
an essential part of GISs. Qualitative spatial relations—topological relations, cardinal 
directions, and approximate distances—are important, because they are closer to human 
cognition in everyday lives than their quantitative counterparts. Qualitative relations are 
based on a small set of symbols and a set of inference rules of how to manipulate symbols. 
Although qualitative relations are often vague in their geometric meaning and have less 
resolution than their quantitative counterpart, people have little difficulty in processing them 
and using them to communicate with others. Dutta (1989) and Freksa (1992) even argued 
that most human spatial reasoning is qualitative rather than quantitative. Currently, human 
spatial behaviors are yet incompletely understood and consequently the design of spatial 
theory and its formalization for GIS is difficult. Future GISs should not only be 
mechanisms for the storage and retrieval of geographic information as most current 
database systems do, but also be intelligent knowledge-based systems capable of 
incorporating human expertise to mimic human behaviors in decision making (Abler 1987). 
Since qualitative spatial relations stored in databases are often incomplete, the deduction of 
new relations has to rely on built-in inference mechanisms (Kidner and Jones 1994; 
Sharma et al. 1994); however, such processing of qualitative spatial relations in computers 
is currently impeded by the lack of a better understanding of human spatial knowledge.

Most commonly used reasoning mechanisms for qualitative spatial relations are purely 
quantitative. Examples are coordinate calculations, which derive from a number of 
quantitative spatial relations a new spatial relation, also in a quantitative format. These 
reasoning mechanisms, however, cannot be directly applied to qualitative spatial relations 
(Futch et al. 1992). Recent research focused on the individual types of qualitative spatial 
relations (Egenhofer and Franzosa 1991; Peuquet 1992; Cui et al. 1993), but only few 
researchers investigated spatial reasoning involving different types of spatial relations 
(Dutta 1991; Freksa and Zimmermann 1992; Hernandez 1993). This paper investigates 
reasoning about the spatial relations of distance and direction, called locational relation. By 
considering these two types of relations simultaneously, stronger constraints between two 
objects can be established. We suggest to build a reasoning model on the basis of 
composition operators, which describes the behavior of the combination of two locational 
relations. The goal of this model is to derive approximate, reasonable, and qualitative 
reasoning results with the defined composition operators.

Although this paper deals with only the reasoning about qualitative locational relations, it 
does not suggest that qualitative reasoning should replace the widely used quantitative 
reasoning. Qualitative and quantitative representation are complementary approaches for 
human abstractions of the spatial relations in the real world, and one or the other should be 
used whenever it best serves users' needs.

302



Background

When qualitative spatial relations are explicitly stored in a database, there are two scenarios 
when processing a query (Sharma et al. 1994):

• If the queried relation is already stored in the database, the system retrieves this 
information and delivers it to the user.

• If the queried relation is not directly available, a reasoning mechanism must be invoked to 
infer the queried relation from those relations that exist in the database.

The reasoning mechanism must have two basic functions: First, it must be able to analyze if 
the available information is sufficient to derive the queried relation. If so, the reasoning 
model takes selected relations to derive the queried relations. The reasoning result is 
preferred to be conclusive, i.e., the number of possible answers should be as small as 
possible. The core of this reasoning model is a set of composition that define the 
composition behavior for the particular types of relations. A composition operator ";" takes 
two known relations, rl (A, B) and r2 (B, C), to derive the relation r3 between A and C, 
i.e.,

rl (A, B); r2 (B, C) =» r3 (A, C) (1)
Vector addition is a good analogy to composition. The addition of vector (A, B) and vector 
(B, C) will yield vector (A, C). For locational relations, vector addition is actually what the 
quantitative-based reasoning approach is based on. Nevertheless, this concept is not 
directly applicable to the composition of qualitative locational relations.

Related Work

Most current spatial reasoning systems and GISs only store locational relations in a 
quantitative format and consequently only deal with spatial reasoning in a quantitative 
matter, e.g., through numerical calculations for distances and directions as in Kuipers' 
(1978) TOUR model. The last few years have seen a growing interest in qualitative 
inferences of spatial relations. The common part among different reasoning models 
suggested is that they start with the modeling of the spatial domain (geographic space or 
spatial relations) and then define their respective composition operators. Depending on the 
way the reasoning is conducted, we divide the different approaches into those that 
transform qualitative locational relations into a quantitative format and solve the reasoning 
problem quantitatively; and those that use operators to define the composition behavior of 
qualitative relations.

In the first class, the result can be either kept in a quantitative format or transformed back to 
a qualitative format. For example, the SPAM model (McDermott and Davis 1984) treats a 
qualitative locational relation as a fuzz box and calculates the possible range for the queried 
relation. On the other hand, Dutta (1989) used fuzzy set theory (Zadeh 1974) to model the 
approximate and uncertain nature of qualitative locational relations. Both models require a 
transformation between qualitative and quantitative representations to be established first. 
After such transformations, the newly inferred relations are calculated with a quantitative 
method.

Spatial reasoning models in the second class employ a purely qualitative reasoning process. 
For example, symbolic projections (Chang et al. 1987) were originally proposed to store 
the spatial knowledge in an image. This model records the relationships among objects in a 
symbolic image separately in horizontal or vertical directions. Several extensions have been 
suggested in the past years (Jungert 1988; Jungert 1992; Lee and Hsu 1992). Despite of 
these extensions, the symbolic projection model does not record distance information, that 
is, it cannot appropriately represent "how far" two separated objects are. Alien's (1983) 
temporal logic, originally proposed to solve the reasoning in one-dimensional domain, was 
expanded to reasoning in higher-dimensional spaces (Guesgen 1989). Papadias and Sellis 
(1992; 1993) suggest the use of symbolic arrays to store the spatial information
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hierarchically and take advantage of the array structure for reasoning. Freksa (1992) 
developed a reasoning model for qualitative directions based on an orientation grid and the 
conceptual neighbors of qualitative spatial relations. Zimmermann (1993) extended this 
model to include distance constraints, represented by comparing a distance value to a 
known distance (> di, = di, < di). Hemandez (1991) suggested a model that deals with the 
reasoning of both directions and topological relationships. He separated these two types of 
reasoning and solve the reasoning problem individually. No model mentioned above 
investigates the reasoning of qualitative distances (e.g., near). Frank (1992) developed an 
algebra for the reasoning of qualitative distances and directions. Like Hernandez's model, it 
also separates these two types of relations and solve the reasoning individually. This 
algebra can achieve satisfactory results under some restricted condition; for some cases, 
only approximate results can be derived, i.e., the queried relation is not conclusive.

A Model of Qualitative Distances and Directions
A locational relation includes a qualitative distance component and a qualitative direction 
component. To simplify the problem domain, only locational relations between point-like 
objects will be considered here. One property of qualitative distances and directions is their 
imprecise geometric meaning. Take distances for example, near is often interpreted as a 
range of quantitative distances rather than a specific value ("The church is about 50 meters 
away.") The same applies to qualitative directions. Although one may intuitively interpret 
East as a specific quantitative direction (i.e., azimuth of 90 degree), people often consider 
an object whose azimuth is 85 degrees to be East as well. Peuquet and Zhan (1987) 
adopted the cone-shaped concept to investigate the cardinal directions between two 
extended objects, which also treats a cardinal direction as a range of quantitative directions.

Qualitative relations will be represented by symbolic values (in comparison with numerical 
values for quantitative relations). We therefore have symbolic distance values and symbolic 
direction values; each one of them represents a specific locational constraint. The name of 
the symbolic values can be chosen arbitrarily as long as its semantic meaning is reasonable 
and will not cause confusion. For example, North and South are usually understood as two 
directions in the opposite direction and the name selection should not violate that. 
Theoretically the number of symbolic distance values is not limited, yet research in 
psychology and cognitive science has demonstrated that the number of categories humans 
can handle simultaneously has a limitation. In this paper, the number of symbolic distance 
values is chosen to be four. The proposed model can be expanded to include less or more 
symbolic distance values according to the application. The number of symbolic direction 
values depends on the applications. Two often used direction systems include either four or 
eight symbolic values. The following lists a model consisting of four symbolic distance 
values and eight symbolic direction values.

Distance: {very near, near, far, very far}
Direction: {North, Northeast, East, Southeast, South, Southwest, West, Northwest)

Certain order relationships exist among these symbolic values. The order among symbolic 
distance values describes distances from the nearest to the furthest. The order among 
symbolic direction values can be either clockwise or counter-clockwise. To simplify the 
model design, the following two criteria are introduced:

• complete coverage, i.e., the designed symbolic values describe any situation in its 
respected domain, and

• mutual exclusive, i.e., any situation in the domain can be described by one and only one 
symbolic value.
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Mapping Qualitative onto Quantitative Locational Relations

Qualitative and quantitative representations describe the same domain, only the symbols 
used are different (symbolic values vs. numerical values). Since a relation between two 
objects can be represented qualitatively or quantitatively, it should be possible to transform 
between these two representations. Also, the number of symbolic values is smaller than its 
quantitative counterpart, but it has to describe the same domain, so it is reasonable to 
assume that a symbolic value should correspond to a range of quantitative values (an 
interval on a one-dimensional scale). On the other hand, a quantitative value should 
correspond to only one symbolic value. Because of the property of mutual exclusiveness, 
no gap or overlap will be allowed between two neighboring intervals. Therefore, a number 
of symbolic values correspond to the same number of intervals of the quantitative values; 
that is, there is an interval-based transformation between the qualitative and quantitative 
representations.

This interval-based transformation is context dependent. For example, near can be 
interpreted as an interval from 0 to 500 meters for walking, while also as an interval from 5 
km to 10 km for driving. Such an interval-based transformation can be applied to both the 
domain of distances and directions. For distance systems, every symbolic value 
corresponds to an interval of quantitative distances. This divides a two-dimensional space 
into several tracks; each track represent a unique qualitative distance (Figure la). If the 
cone-shaped concept is chosen for direction systems, the direction domain is divided into a 
number of cones with the same resolution (Figure Ib). The basic property is that the 
geometric range of each cone increases with the increase of the distance (Peuquet and Zhan 
1987).

Target object

West ^^^ East 
Referen

Figure 1: (a) Qualitative distances and (b) qualitative directions.

By considering distances and directions together, the locational relation system becomes a 
sector-based model (Figure 2), where each sector corresponds to a specific pair of 
symbolic distance and direction values. Objects in the same sector share the same 
qualitative locational relationship with respect to the origin of the system.

Figure 2: Illustration of the space divided by the distance and direction systems.

With this model, the composition of two qualitative locational relations can be numerically 
simulated by the compositions of their corresponding quantitative locational relations.
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Assuming that every sector can determine N quantitative locational relations, the total 
number of possible composition between these two sectors is N2 . Every quantitative 
composition can be mapped onto a qualitative locational relation, which represents a 
possible answer for the particular composition. The set of possible answers can be used to 
define the composition operators for qualitative locational relations. Figure 3 illustrates this 
transformation. Given two qualitative locational relations QL\ and QL,2, determine the 
transformations f(QL{) and f~ l (QNfi, and map with/QL; onto a set of quantitative 
relations QNi and QL.2 to a set of QN2 , respectively. In the quantitative domain, apply 
quantitative reasoning methods to all the possible combinations between the sets pf QNi 
and QN2 to derive a set of results QNj, which is then mapped onto a set of Q£j using 
/'.This process is based on the interval-based numeric simulation and well-developed 
quantitative inference methods.

QN,\QN2

QL,;QL2
QL3

Figure 3: Framework of the reasoning model design.

Given any pair of locational relations and an interval-based transformation, their 
composition operator can thus be defined. For example,

(very near, North) ; (very near, North) =*• (very near, North) or (near, North) (2)

Theoretically there is an infinite number of interval-based transformation depending on the 
applications. To use composition operators as the basis for reasoning, it is important to 
investigate if the interval-based transformation will affect the definition of composition 
operators. If the composition operators are largely dependent on the interval-based 
transformation, it is not necessary to define composition operators, as the queried relation 
must be calculated anyway. If the interval-based transformation is insignificant to the 
definition of composition operators, i.e., composition operators are robust, then it is 
possible to build a qualitative reasoning mechanism on the basis of the composition 
operators, in which no calculation will be necessary for the inference.

The All-Answer Model

To ensure the correctness for the queried relation, most qualitative reasoning models define 
their composition operators in a way that all the possible answers will be found. This 
concept will be called the all-answer model. Since this model is based on numeric 
simulation, efficient sampling becomes very important. We find that it is only necessary to 
select samples on the boundary of the two sectors with which the two locational relations 
are corresponding to. This can largely reduce the number of samples, while still derive all 
the possible answers. Since the all-answer model only checks if a particular relation is a 
possible answer, every possible answer will be treated equally. That is, although some 
answers may turn out to be more probable, the all-answer model will not distinguish them. 
To simplify this answer selection process, Hong (1994) suggested two other models, the 
likely-answer model — eliminating compositions that have a low probability — and the 
single-answer model — selecting the composition with the highest probability.

The advantage of the all-answer model is that the actual answer is guaranteed to be one of 
the possible answers at the end of the reasoning process. However, the disadvantage is that 
sometimes the number of possible answers becomes too high and the reasoning process 
becomes very complicated. To solve this problem, more than one combination of locations
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must be found so that the queried relations can be better constrained. Furthermore, for 
better efficiency, the reasoning mechanism should have built-in intelligence to select 
appropriate combinations of relations with better locational constraints and discard those 
without.

Simulation of Test Data

The interval-based transformation is subjective to applications and individual experiences. 
To investigate the influence the interval-based transformation has on the definition of 
composition operators, thirteen interval sets were tested (Table 1). The interval sets are 
designed in a way that there is a constant ratio relationship between the lengths of two 
neighboring intervals. Of course these thirteen sets do not make a complete list for the 
intervals humans may use. The intention here is to observe the results of the defined 
composition operators to investigate their robustness and distribution. The finding is very 
important to the design and evaluation of qualitative reasoning mechanism.

Ratio
1
2
3
4
5
6
7
8
9
10
20
50
100

disto
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]
(0,1]

disti
(1,2]
(1,3]
(1,4]
(1,5]
(1,6]
d,7]
d,8]
(1,9]

(1, 10]
(1,11]
(1,21]
(1,51]
0,101]

dist2
(2,3]
(3,7]
(4, 13]
(5, 21]
(6, 31]
(7, 43]
(8, 57]
(9, 73]

(10, 91]
(11,111]
(21, 421]
(51,2551]

(101, 10101]

disti
(3,4]

(7, 15]
(13, 40]
(21, 85]

(31, 156]
(43, 259]
(57, 400]
(73, 585]
(91, 820]

(111, 1111]
(421,8421]

(2551, 127551]
(10101 , 1010101]

Table 1: Simulated intervals for four symbolic distance values.

Although tests on different numbers of symbolic distance and direction values were 
conducted, only the group of four symbolic distance values and eight symbolic direction 
values will be discussed here. Detailed discussions about other groups (e.g., three 
distances and eight directions) can be found in (Hong 1994).
Robustness

Given two locational relations, if their composition operator remains the same despite the 
changes of interval-based transformation, the composition operator is robust. If so, it is 
unnecessary to define composition operators for every interval-based transformation and a 
group of transformation can share the same set of composition operators.

To measure the robustness, a quantitative measure, called robustness measure (RM), is 
introduced. It is the ratio between the numbers of answers in the robust set (the intersection 
of the qualitative and quantitative sector), and the union set (the set union of the two 
sectors). The domain of RM is {0 < RM < 1}. Two compositions are compatible if RM is 
equal to 1. If there is no common answer between the two sets of answers, RM is equal to 
0. Two compositions are therefore incompatible if their robustness measure is less than 1. 
The advantage of this method is that if most of the selected answers between these two sets 
are similar, their robustness measure will be close to 1.

Table 2 gives the robustness measures based on the direction differences. The first variable 
shows the number of incompatible composition in a group and the second variable shows 
the robustness measure for the group. Between ratio 1 and ratio 2, thirteen compositions do 
not have the same set of selected answers. The average robustness measure of mis group is 
0.95, which indicates that the selected answers between ratio 1 and ratio 2 are either 
identical or very similar. All compositions are robust if the ratio is greater than 2.
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ratio (1,2) 
ratio (2, 3) 
ratio (2, 100)

Adir = 0
(2, 0.92) 

(0,1) 
(0,1)

Adir=l
(1, 0.98) 

(0,1) 
(0,1)

Adir = 2
(1, 0.99) 

(0,1) 
(0,1)

Adir = 3
(3, 0.94) 

(0,1) 
(0,1)

Adir = 4
(6, 0.92) 

(0,1) 
(0,1)

Total
(13, 0.95) 

(0,1) 
(0,1)

Table 2: Robustness measures.
ratio (a, b): a = number of incompatible compositions; b = RM for the group. 
Adir = direction difference.

The majority of the compositions for the thirteen groups are robust, with the first group 
(ratio = 1) as the only exception. When we specifically compare the two groups of 
compositions where ratio is 1 and 2, there are 13 cases (out of 74) between which the 
possible answers are different. This result indicates that even if the composition operators 
are not rigorously robust, most of them are robust. From a cognitive and linguistic point of 
view, such an interval set—ratio = 1, length (near) = length (far)—rarely exists. It is 
therefore possible to build a model on the basis of the composition operators, such that the 
context-dependent nature of qualitative distances will not affect the definition of 
composition operators except for some extreme cases (e.g., ratio = 1).

Distribution

Distribution is the analysis of the selected answers for a particular composition. To make 
the reasoning process easier, it is important to keep the number of selected answers as few 
as possible. The following lists some important finding regarding to the distribution of the 
selected answers using the all-answer model. Through such an analysis, we wish to 
identify some "preferred" compositions (i.e., fewer possible answers) that can provide 
better constraints on the queried relation. This can certainly be used as the basis for the 
design of an intelligent reasoning mechanism.

• The number of possible answers increases with the direction differences; therefore, the 
further apart the two directions are, the less-constrained their composition is.

• A composition usually extends over 2 or 3 distance values.
• The number of possible directions for each composition largely depends on the direction 

differences.
• Compositions of relations in the same direction provide the best constraint for both 

distances and directions.
• Compositions of two relations in opposite directions provide the least constraints, 

especially for directions.
• Compositions of relations with different distance values usually provide better constraints 

than compositions of relations with the same distance value.
• If the distance values of the two relations are different, the composition largely depend on 

the relation with the greater distance value.

Conclusions

This paper demonstrated the first results for investigations into reasoning about qualitative 
distances and directions. We proposed to build a qualitative reasoning model that takes two 
qualitative locational relations to derive a new locational relation also in a qualitative format. 
An important finding is that the composition operator of two qualitative locational relations 
are robust for the majority of the cases tested. Since the context-dependent nature of the 
qualitative distances does not seem to be a significant factor, we can build a reasoning 
mechanism on the basis of the composition operators.

From the above discussion, we can conclude that the distance constraint is usually poor, no 
matter what kind of combination is used, because it cannot be narrowed down to one single
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answer. In most situations, two relations with greater distance differences will provide 
better constraints. Compared with human reasoning, this finding is reasonable. For 
example, when asked about the relationship between San Francisco and Washington D.C., 
people are likely to select the relation San Francisco-Baltimore and Baltimore-Washington 
D.C. for reasoning rather than using the relation San Francisco-New Orleans and 
Washington D.C.-New Orleans. On the other hand, it is clear that the direction is much 
better constrained if the two locational relations are in the same direction. This is again not 
surprising when compared to human reasoning.

Although the all-answer model provides all the possible answers, the number of selected 
answers is often high and the reasoning process is expected to be tedious and inefficient. 
For the worst case, there is probably no conclusive result at the end of the reasoning. 
Further modification on the reasoning model that only track more likely answers is an 
alternative (Hong 1994).

To simplify the problem domain, we enforced some assumptions (e.g., mutual 
exclusiveness) on the transformation between qualitative and quantitative representations. It 
is not clear if humans do possess such a fine line to distinguish between two symbolic 
distance or direction values. It is therefore of interests to further investigate if the 
robustness still exists provided some parameters are changed (e.g., if one allows that two 
neighboring intervals overlap). Also, the discussion in this paper was restricted to point- 
like objects; to be used in GISs, this model must be further expanded to higher-dimensional 
domains, or integrated into a hierarchical spatial inference model.
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