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ABSTRACT

Large regional geographic databases are becoming crucially 
important in driving regional environmental models. When these 
databases contain information from various sources about different 
geographic phenomena, defining a common reference of "environmental 
units" may be difficult. A general framework is proposed to evaluate 
regular and irregular landscape partitioning strategies, as well as 
numerous spatial predictors to provide input data for complex models. 
The strategy is based on information available on spatial (and 
temporal) variability. It is concluded that it is advantageous to adjust 
the "effective scale" of representation to local variability.

INTRODUCTION

There is increasing demand to link environmental simulation 
models and geographic information systems (GIS) to predict the status 
of various environmental phenomena. Typically, these efforts extend a 
site-based (process) model over a region (Figure 1), which may be several 
orders of magnitude larger than "calibrated sites". Therefore, the 
extrapolation requires some spatial model, which accounts for the 
spatial variability of the landscape.

geographic location and 
time-series of input/output variables know

Figure 1. Linking "calibrated" site-based models with GIS for prediction
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Considerations must be given to the nature of spatial models, for 
example, when net primary productivity of forested ecosystems (Aber et 
al. 1993), acid neutralizing capacity of aquatic ecosystems (Driscoll and 
Van Dreason 1993), or grassland soil nutrient availability (Parton et al. 
1988) is to be predicted at regional scales.

This paper focuses on possible choices of the spatial model for 
regional application of environmental process models as a function of 
information available about the modeled landscape. A general 
framework is presented for partitioning the landscape into "soft objects" 
(mapping or environmental units), which can be derived within a GIS 
by analysis of local variability. These units facilitate both loose and 
close coupling of GIS and the model (across data structures), and serve 
as common ground for sensitivity analysis of the predictions.

LINKING SITE-LEVEL MODELS AND REGIONAL MODELS

Extending site-level models to large regions frequently relies on 
the assumption that the region is a collection of comparable sites; thus 
they imply some form of partitioning of the region. This regional 
partitioning may require different strategies depending on which 
landscape, or environmental characteristics are predicted. The 
geographic context, which is quite different for climate variables, lake 
chemistry, or vegetation composition, is usually described within a GIS, 
and it will constrain the interpolation within the partitions (Figure 2).
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Figure 2. Expansion of the spatial model
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Partitioning (which in itself may be scale-dependent) these data 
sets to units, that correspond to input and control requirements of the 
underlying processes and their models, is a function of spatial (and 
temporal) variability of the phenomena to be characterized, and the 
amount and nature of information available. In a general framework a 
variety of strategies can be identified to derive "mapping units" 
according to preference given to statistical, geometric and/or 
biophysical control over partitioning — such as in geostatistical 
(Webster and Oliver 1990), tessellation-based (Gold and Cormack 
1987), or watershed-oriented (Band et al. 1991) models, respectively.

These strategies can also be compared and classified from a data 
structure perspective; primarily considering whether they employ 
regular or irregular spatial units. For example, a grid of biomass (e.g., 
as derived from satellite images) does not use any "environmental" 
control in determining the spatial units (i.e., all sites/locations are 
"equal") and it is completely regular; as opposed to a biophysical and 
statistical knowledge-based watershed delineation (e.g., derived from a 
DEM) which is rather irregular; or a set of Voronoi-polygons 
constructed based on a set of observation sites (e.g., weather stations, 
or lakes) is irregular and based on geometric distribution.

Once spatial units are defined for the database, the next step is to 
supply data for the entire region of interest, which usually requires 
some form of interpolation. The more information is available about 
spatial structure of the phenomenon, the more reliable spatial 
prediction can be. The reliability of describing spatial structure, 
however, partly depends on the arrangement and size (distribution) of 
spatial units. Furthermore, efficiency and feasibility considerations 
may conflict with statistical optimality.

The combination of these functionality requirements for linking 
and interfacing GIS and environmental models results in a fairly 
complex system (Figure 3). There are two primary objectives for the 
system currently under development: (1) to keep the complete 
functionality of both GIS and environmental model, and (2) to provide 
guidelines for (or, potentially automate) the choice of the spatial model 
according to uncertainty analysis of the prediction.

DATABASE AND INTERFACE COMPONENTS

One of the key challenges facing the linkage between GIS and site- 
based models lies in considering the sensitivity of the model to errors in 
the parametrization derived from the geographic database. This problem 
is often avoided in site-based calibration, which is sometimes called 
"validation", because the uncertainty (e.g. variance) in input 
parameters is set to zero. In regional studies, however, the emphasis is 
on the "collection of sites", therefore, it is imperative to consider the 
relationship between the uncertainty of location and attributes (Csillag 
1991). For example, an effort to predict the acid/base chemistry in the 
lakes of the Adirondack Mountains, NY, requires, among others, input 
of precipitation, min/max temperature, slope and aspect (for solar 
radiation), vegetation cover and soil characteristics information to a 
biogeochemical model (PnET, Aber and Federer 1992). Whenever a set of 
input parameters is available, the model is "ready to run", and will
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result in a time-series of a variable (e.g., the amount of dissolved N in 
drainage water).

Whenever collections of sites are used as input to the model, it is 
worthwhile and necessary to assess the sensitivity of the model to the 
errors in the input parameters. Since most of the process models are 
non-linear, their sensitivity to variation in input values is generally 
assessed by Monte-Carlo simulation, and is reported as "confidence 
intervals" around calibrated values. In spatial context then, if we can 
determine, or even limit, the (residual) variance of our partitions, this 
information can be directly related to the sensitivity of the model 
output. For example, if we have two (or more sites) close to each other 
with similar characteristics, we may be better off aggregating them into 
one "soft unit"; it would result in significant (50% or more) savings in 
computing requirements while the uncertainty in prediction may be 
kept below a required threshold. Since the "calibrated sites" are usually 
very small compared to the regions in question (e.g., a 4 ha lake 
watershed compared to the 3.5 million ha Adirondack ecological zone), 
this strategy potentially offers major compensation of attribute versus 
spatial accuracy. Consequently, during partition and interpolation one 
should control the tradeoff between the level of spatial detail 
(resolution) and the accuracy of prediction.

TOWARD USING MULTI-PARTITIONS IN SPATIAL ESTIMATION

As outlined on Figure 3, there are many feasible approaches 
toward partitioning the geographic landscape and interpolating 
environmental state-variables across partitions. Depending on the 
nature of data (e.g., a DEM versus a collection of lakes), and the level 
of expertise (e.g., is a detailed DEM available, or not), the partitioning 
strategies are classified into four groups. Since data structures in GIS 
and environmentally meaningful "units" do not necessarily coincide, 
the strategies are also grouped from a data structure perspective. 
Regular partitions (Figure 4) include grids, which do not utilize any 
expertise, and quadtrees, which can be constructed by statistical 
constraints on within-leaf variance (Csillag et al. 1994). Irregular 
partitions include Voronoi-polygons, which rely on geometric expertise, 
and watersheds, which are based on terrain expertise.

Figure 4.
Original (100m) DEM (left), regular grid aggregation to 1460 units
(middle)and quadtree-tessellation with 1460 leaves (right) of the

Adirondack Mts. (Note: the total variance of aggregates is reduced by
using the quadtree instead of grid-based aggregation.)
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Once the GIS is capable of controlling the within-unit variance, it 
can provide guidance to the user, who sets the accuracy thresholds for 
the model prediction. At the same time, it is not required that all input 
variables be partitioned the same way; the "soft objects" can be carried 
over and can be further used in interpolation within the partitions.

The combination of interpolation with (optionally limited- 
variance) partitions facilitates further control of uncertainty (Dungan 
et al. 1994, Mason et al. 1994). Since interpolation is always carried 
out using as much information about spatial variability as possible, for 
each partition the partition-mean will be more robust, and the lack of 
information will not spread from one partition to another. 
Furthermore, during interpolation the uncertainty can also be 
determined for each partition. The combined uncertainty associated 
with partitioning and interpolation can be reassessed before running 
the model. This is particularly important when information on one 
variable (e.g. elevation) is used to (co-)estimate another (e.g. acid 
deposition). Without partitioning the predictor variable simple 
estimators (e.g., non-spatial regression) lead to enormous residual 
variance; however, partitions can dramatically reduce it (Figure 5).

Figure 5.
Original (100m) DEM grid of the Adirondack Park (left); Voronoi-

polygon mean elevations based on 1468 lakes (middle); kriged elevation
based on 1468 lakes (right).

Figure 6.
PnET prediction of the amount of dissolved N on a regular (1 km) grid.
(The gray-levels represent 0.4-1.4 mg/liter.) Arbutus Lake (one of the

calibration sites) is marked with watersheds derived with various limits
on internal heterogeneity.
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CONCLUSION AND WORK IN PROGRESS

One of the major challenges in linking environmental models and 
GIS is to control the uncertainty related to input derived from the 
geographic database to drive the environmental (process) model. A 
general framework is proposed to combine the analytical capabilities of 
GIS with sensitivity analysis of a biogeochemical model (PnET) to 
control uncertainty in a simulation study, aiming to predict 
acidification in the northeast US (Figure 6). Most of the elements for 
interfacing GIS and environmental models by "soft objects" have been 
implemented in grass (see Figure 3). Current efforts are focused on 
automating the use of the analytical components.
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