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Abstract

This contribution discusses the representation of continuous fields within 
Geographical Information Systems. The fields considered are fields of physical 
properties (observables) defined for every point of a spatio-temporal region. 
The two major problems discussed are the inherent uncertainty present in the 
samples of the field (field values are measurements) and implications of the 
discretization when continuous fields are sampled. Fields are usually measured 
at a finite set of points or regions in space and time. The subsequent use of such 
data sets, however, often requires field values at other, unsampled locations, 
or with different temporal and/or spatial aggregation and unit systems. We 
present the concept of Virtual Data Sets (YDS) which helps to overcome such 
incompatibility problems. A VDS incorporates the necessary semantics of the 
data thereby allowing such transformations (i.e., interpolations, aggregations, 
unit transformations) to be performed transparently and within the domain of 
the data set. This is achieved by defining a common interface layer which lets 
the user query a VDS within the GIS and other client applications in a more 
general way than current GIS allow.

1 Introduction
Due to their strength in analysis and visualization of spatial data Geographical In 
formation Systems (GIS) are frequently used for scientific information processing. 
Especially research in the broad field of the earth sciences (e.g., oceanography, at 
mospheric physics, geology, seismology) involves large spatial data sets and their 
integrated analysis. These data sets usually consist of a set of aggregated samplings 
(macro data) of natural phenomena (e.g., temperature), where every value is some 
how related to a region or subset of space and time, i.e. related to a spatio-temporal 
object which we call index for a particular value. Those objects may be points (i.e., 
samplings at a given point in space and time), squares of a regular partition of a 
subspace (i.e., pixels of a satellite image) or other objects with a (temporal and spa 
tial) geometry that is usually owing to the sampling and/or preprocessing stage. The 
samplings together with the related indices are an estimate of the corresponding field, 
i.e., an estimate of the physical property as a function of space and time.

There is a growing need to use and re-use such data sets for various applications, 
usually involving many different data sets for specific analyses, simulations and other 
scientific work. Previous work already dealt with issues of the representation of
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continuous fields and appropriate data models (Kemp, 1993), (Laurini & Pariente, 
1994).

As mentioned before, in most cases data sets entering such integrated analysis 
projects are already aggregated to some degree, i.e., they represent macro data as 
opposed to micro data ("raw" sampling values). The aggregation or postprocessing 
might be hidden within the sampling apparatus (e.g., temporal aggregation during 
the exposure time, and spatial aggregation over a pixel in a satellite sensor) or per 
formed explicitly by the data collection organization (e.g., temporal averages over a 
time period). The aggregation leads to non-point indices 1 one the one hand, since 
the aggregation is some integral over space and/or time. On the other hand, the 
aggregation helps the data collectors to assess some information about the quality of 
the data, e.g., magnitude of measurement errors.

Therefore, a typical data set consists of a set of measurements being expressed as 
a set of mean values and standard deviations, for example, and a corresponding set 
of indices. When such data sets are used as an estimate of the corresponding field 
there are usually two major problems:

• Field values are needed for indices that are not available in the given set of in 
dices. This means simply that one often needs values at "unsampled locations".

• It is non-trivial to include the usually2 available information about the measure 
ment errors and other sources of uncertainties when using the data for further 
computations and analyses. This is especially a problem when data are used 
in multi-disciplinary projects by scientists from domains other than the data 
collectors'.

Here, an approach is presented to enhance reliability and usability of computer 
based scientific work when using data that represent fields. The next section will 
introduce some notation and give definitions of some important terms. Section 3 then 
gives a short overview of the digital representation of uncertainties (e.g., non-exact 
values), which is one of the basic building-stones of the Virtual Data Sets presented 
in section 4. This is followed by a short outlook for our future work.

2 Notation
A field is a physical property or observable z(s) that is spatially and temporally 
indexed (index s). For the sake of simplicity we will just consider properties where 
the value domain B is real, i.e. z(s) € IR N . The field values might be scalars (N = 1, 
e.g., temperature) or vectors (N > 1, e.g., wind speed). We will restrict the following 
discussion to scalars (or 1-dimensional vectors), but the generalization to N > 1 
should not pose any difficulties. An ideal (undisturbed and deterministic) field is a

1 There are also cases where the indices can be approximated by points, e.g., measurements of 
stationary (in time) phenomena. The temporal dimension has not to be considered then. A digital 
terrain model (DTM) for example represents the (approximately stationary) terrain height field 
(THF) and its indices usually do not include temporal information.

2 One might argue, that the "quality information" is exactly the type of information usually 
missing. I think, that information of data quality in general and measurement errors in particular 
are available in most cases, but this information often gets lost on the way from the data collectors 
to the data users. This is partly due to missing capabilities of the infrastructure for data exchange 
and data processing (e.g., data exchange formats, features of the GIS systems used) and partly to 
some user's ignorance about the importance of error information.
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function z(-) which relates every value s of an index domain 0 C 1R M to a value z(s) 
from the value domain (B C IR:

s-^z(s), seDc(RM , z(s) e Be IR (1)
This model of a field has to be enhanced to allow for uncertainties owing to inher 

ent indeterminism of the physical property and measurement-induced uncertainties. 
Let Z(s) be such an enhanced description of a field. If the uncertainties can be mod 
eled using probabilistic concepts, then Z(s) is a random variable for every s. Z(s) is 
sometimes called a random function (Isaacs & Srivastava, 1993). Depending on the 
nature of the phenomenon under consideration Z(s) might also be an interval, fuzzy 
set, or some other means of modelling uncertainties. These objects usually can be 
described or approximated by a set of real numbers which are the (estimated) values 
of corresponding functional (mappings to R) </>(•). For random variables, typical 
functionals are the expectation value3 $E and the variance <j)y.

A data set describing such a field consists of metadata and a set of index-value 
tuples:

X> = {M,{st ;2,,i,...,2,,n }?}, st cO, zM eR (2)

For every index s% the values zti i, . . . , z^n describe the field at s% . A typical example 
might be that n = 2 and zt< i is a mean value and 2t]2 the standard deviation of the field 
over st . M is the metadata describing D and B, the corresponding unit systems (i.e., 
units and coordinate systems including appropriate metrics) and any other metadata 
necessary and available.

It is important to analyze and understand how the values z^ of a data set are 
related to the field Z(s). This relation - which mathematically is the relation between 
s% and ZM - consists of two parts:

• The relation between the index st and the field Z(s): Since sz is a non-point set 
in many cases (i.e., a spatio-temporal region) the values zti i, . .., zl>n in the data 
set corresponding to st are the result of some aggregation ASi of Z(s) over sl :

(s}} (3)

ASt might be an average over st , the value in the "center" of st etc.

• The relation between Z(sl ) and the data set value zt]J : This is basically the fore 
mentioned functional 0t yielding ZM = (f)} (Z(sj)J.

The sz 's are therefore related to the zltj through ASt o <$>3 \

sl Â zl. Zl.=^(A^(Z(s}}} (4)

In order to use a data set T> and to understand its values it is necessary to have 
an idea about the mappings <^ and As% . It would be optimal to know its inverse since 
this would allow determination of the field values from the samplings.

Mathematical system theory calls the process ASi o <^ which the behaviour of 
the system under consideration (Kalman, 1982). ASi o <p} depends on the whole 
measurement process and contains all the transformations involved when measuring 
a field Z(s) (e.g., measurement apparatus, preprocessing). For the analysis of field 
measurements, i.e., the reconstruction of the field, the inverse (ASi o i^)" 1 has to be 
approximated, i.e., modelled.

3 To be rigorous one would have to distinguish between those functionals and their estimates. 
The notation m the following will be a bit sloppy where the interpretation should be clear from the 
context.
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3 Digital Representation of Uncertainties
The previous section has shown that physical properties affected by some uncertainty 
are usually characterized with a small set of real numbers, e.g., a mean value and a 
standard deviation. The way to describe uncertain values depends strongly on the 
nature of the sampling process and the phenomenon investigated. It is, therefore, 
impossible to define one single way to describe uncertain values applicable to all 
cases. A digital representation of uncertain information should meet the following 
requirements:

• Digital encoding means mapping to real numbers4 . It is desirable that the 
representation uses a small set of numbers.

• Operators and operations for uncertain values should be defined. For instance, 
the arithmetic operators o G {+, —, x, -I-} should be availabe along with stan 
dard functions (e.g., trigonometric functions).

• It should be possible to convert one representation to another since different 
data sets and their values will often use different representations.

• A suitable set of functionals (mappings to K) should be available, e.g., inf(-) 
(lower bound), sup(-) (upper bound), at (-) (z-th moment), &(•) (i-th central 
moment).

• If the representation is based on probability theory it should support Monte 
Carlo simulations (Johnson, 1987). The representation of a random variable A 
should be able to generate pseudo-random realizations at . Actually, this is just 
another type of functional </>(•) which we call rnd(-). 5

One of the basic decisions when choosing a suitable model for an uncertain value 
is whether it can be modelled with probabilistic concepts. In most cases it will be 
the primary choice to use probability theory to describe uncertainty within scientific 
results. Since its formalization (Kolmogorov, 1933) probability theory is quite well 
understood and a lot of methodology has been developed. Especially mathematical 
statistics has benefited from this framework and has produced many useful techniques 
and methods for the description and analysis of data. The random-ness of a prop 
erty (random variable X) is defined within probability theory with a corresponding 
probability distribution p(x). Three variants were selected to describe a probability 
distribution p(x):

Empirical moments: o^ = (jxkp(x)dxj and (3^ = (f(x — ai) kp(x)dx\ usually «i 
(mean value) and (3% (standard deviation).

Empirical distribution function or histogram: The distribution p(x) is descri 
bed with a set of quantiles, i.e., (XJ,P,) with P(X < xt ) w p,.

4 In fact, digital encoding means mapping to integer numbers. There are, however, means to 
represent a finite, countable subset of the real numbers with integer numbers (i.e., floating point 
numbers).

5 The functional rnd(-) actually has another "hidden" parameter (sequence number) which iden 
tifies the realization requested. During a Monte Carlo simulation run, a specific realization might 
be requested several times so that it is necessary that the value is always the same during one 
simulation step. Consider for example an expression C = A + AB. The simulation would calculate 
a,. = rnd(yl) + rnd(^4)rnd(B). The second rnd(A) must have the same value as the first one
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Representation

Interval 
Fuzzy Set

Histogram (K classes) 
Uniform distribution 
Normal distribution 
Other distributions

para 

meters
2

n + m 
3K
2 
2
*

inf(-) 
sup(-)

o

*

a,(-) rnd(-)
&(•)

o o 
o o

* •

+, — , Standard - 
x , -T- functions

* *

0 0

+ , — ° 
* *

• = available, o = not available, * = variable. 

Table 1: Properties of different representation types for uncertain values

Parametric distributions: A distribution type may be determined when the mi 
cro data are aggregated, i.e., the empirical distribution is approximated with 
a standard distribution and its parameters. Typical parametric distributions 
are the normal distribution (parameters /u,a2 ), uniform distribution (a, b) or 
Weibull6 distribution (p, 7). Sometimes the parameters of a distribution corre 
spond to some moments, e.g., for the normal distribution p, = a\ and a2 = $2- 
It is, however, different to describe a distribution solely by moments than by 
distribution type and a set of parameters.

It is not always suitable to apply probability theory to describe uncertainty. There 
fore, two other non-probabilistic ways to describe uncertain values were included:

Intervals: Intervals define lower and upper bounds for a value and are very conve 
nient due to their simplicity. An important advantage are the simple rules for 
computations using interval values (e.g, (Moore, 1966), (Bauch et a/., 1987), 
(Mayer, 1989),(Moore, 1992), (Polyak et a/., 1992)).

Fuzzy sets: Fuzzy sets (Zadeh, 1965) may be seen as an extension to intervals. The 
basic idea is to define a "degree of membership" for a number in a (fuzzy) set. 
This is in contrast to intervals where a number is either within the interval or 
not.

While intervals are a simple yet powerful way to deal with uncertain real-valued 
data, fuzzy sets have not yet been used widely to describe scientific data7 , despite 
the attention it had in the last decades. The major criticism of fuzzy sets is the 
usually subjective assignment of membership degrees (definition of set membership 
functions) which often is not acceptable in scientific work where objectivity is an 
important issue.

Table 1 summarizes the properties of these representations.

6 Most often the special case with p — 1 (exponential distribution) is used. 
7 However, for some applications see (Bandemer & Nather, 1992)
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4 Virtual Data Set

4.1 Requirements
The previous section has introduced different methods to digitally represent uncertain 
values (i.e., physical properties from the real world). In this section an architecture 
is presented that is suitable for the representation of fields consisting of uncertain 
values.

Although the discussion here is rather theoretical, the final goal is to have an actual 
application. The properties of a representation, therefore, are strongly influenced (or 
even determined) by the user's requirements. The typical information the user wants 
from a data set T> = {M, {st ; zlt \, ..., ̂ .m}"} describing a field are

Query type A Retrieve the various components of the data set, e.g. the metadata 
(M), the set of indices {s% } and for every index s% the related set of parameters 
describing the field value zlt \, ..., z^m . This type of query is available in every 
system. It simply retrieves available data values.

Query type B Estimate 0(Z(s)), where <p is some functional (e.g., mean value) 
and s 6 0 is an "unsampled location", i.e. s $. {s,}. </> might be one of the 
functional 0i,..., <pm that define the set of parameters available for every s% 
(i.e., zti] = <j)J (Z(sl }}^ so that it is not necessary to transform the representation 
as shown in the last section. This type is probably one of the most important 
queries when working with fields.

Query type C An advanced information request is to query the field for the spatial 
references where the field value has a certain value, i.e., for a specific z0 and </>(•)> 
solve the equation <p(Z(s)) = ZQ for s. Consider a digital terrain model, where 
D C R , all Sj are points, every field value (height of terrain) is given by one 
parameter which is the mean value (i.e., m = 1 and z^\ is the mean height of 
the terrain at s,). Then, the solution would "compute the set of points s where 
the mean terrain height is ZQ" • This type of query is basically an inversion of 
the field function Z(s).

In the context of this paper we will not discuss information requests of type C 
(inversion of field function). Instead, we will focus on queries of type A and B. In 
principle, type A queries can be answered by most of the current GIS and related 
systems. 8

Type B queries typically need much more user interaction. The procedure to 
compute <p(Z(s)} at a location s is not trivial and involves sometimes very complicated 
computations. Even if </>(•) corresponds to one of the parameters available in T>, i.e. 
</>(•) = 0j(-)) the estimation of the field value parameter <pj(Z(s)) needs sophisticated 
inter- and extrapolation methods.

A common approach to handle type B queries is to transform them into type 
A queries. This means that a set of locations s( (and a set of functionals 4>'(-) at 
which the field might be queried is determined beforehand. The data set T> is then 
transformed to a new data set V = |M', {s{; z^i,... ,^,m'}i'} so that every query 
for (j)'(Z(s'l )) will be a type A query. There are, however, many situations where 
this approach fails due to the long life cycle of some data sets. The transformation

8 It is not always eays to obtain all of the metadata (M) or the set of indices ({s t }) directly, e.g., 
the coordinates of the pixel cells of a satellite image
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to a new data set £>' might not satisfy future queries, so that T> or £>' have to be 
transformed again into a new data set T>" that conforms to the new requirements. 
Sometimes the initial data set T> is not available anymore, so that T>" has to be 
computed from T>' . Every transformation T> — > T>' usually affects the quality of the 
data, the quality rarely ever increases.

Another problem that contributes to the loss of quality are the methods used to 
transform T> to T>' . Most often, these methods, i.e. the computation of <p(Z(s}} given 
{ST } and the related {zij}, are not trivial and need a lot of expert knowledge from 
the domain scientists and data collectors, respectively. When a field is sampled this 
expert knowledge is available in the data collecting organization. At a later stage, e.g., 
when transforming from Z>(tx ' — >• T>^x\ this expert knowledge often is not available 
anymore. It is therefore the user's own choice and responsibility how to transform

4.2 Concept
The concept of the Virtual Data Set (YDS) described in (Stephan et ai, 1993) and 
(Bucher et al., 1994) tries to minimize quality loss due to subsequent transformations, 
while maintaining usability of a data set at the same time. The main idea is to allow 
for queries of type B. A data set T> is therefore enhanced with information P needed 
to process queries of type B.

V = {P, 2>} = {P, M, {st ; *,!,... .z,,™}?} (5)

An approach would be to formalize the necessary information so that P includes 
standardized specifications for the answer of type B queries, e.g. interpolation method 
to use, parameters of the methods, uncertainty modelling methods used. For many 
data sets this approach would fail, for example because the interpolation method used 
has some very specific constraints which where not taken into consideration when P's 
content was formalized.

VDS uses another approach. P is procedural information in the sense that it 
defines the entire method to process and answer queries of type A, type B (and 
probably type C). In the terminology of object-oriented design (Booch, 1991) P is 
the behaviour of object V and T> its state. The term "virtual" emphasizes the VDS's 
capability to process queries of type B, i.e., queries that return values not stored on 
secondary storage.

This VDS-concept is similar to other approaches which try to enhance reuse- 
ability of expensive data sets using object-oriented concepts (e.g., the OGIS project 
(Buehler, 1994)). A computer industry term for P could be middle-ware, giving a 
client standardized access to the data (£>).

The next section outlines some implementation and design issues that have been 
considered as first experiments.

4.3 Implementation
The current design for the implementation of VDS uses a client-server architecture. 
Data requestors (e.g., a GIS application) are clients; a VDS V or its procedural 
part P, respectively, is a server. Communication between the clients and servers is 
based on messages which are queries of type A or B and their corresponding replies. 
Whenever a client needs data it sends a request to a VDS (server) , where the request is
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<s------- VDS registers itself with the broker by sending its metadata
*=- - -> Client requests metadata of availabe VDS from broker
•*——*• Queries (type A and B) from client to VDS and replies

(note that a VDS may be 
a client of another VDS)

Figure 1: Communication between virtual data sets, broker and clients

processed and the results are returned to the client. The processing on the server-side 
(the component P of V) might just read the data requested from secondary storage 
(i.e., type A query), or read data and apply some interpolation methods (i.e., type 
B query). In addition to clients and VDS-servers there is a specialized server we call 
VDS-broker. The broker is a metadata-base that holds the information of the VDS 
available9 . Figure 1 shows the different components involved and the communication 
between them.

As soon as a VDS becomes available (e.g., "runs" somewhere or is initialized) 
it sends its metadata M to the broker in a specified format, i.e., the VDS registers 
itself with the broker. Whenever a client needs some data it may look up if the 
requested VDS is available and how to access it (i.e., sending a corresponding request 
to the broker). Once the client knows the "address" of a VDS it sends future requests 
directly to the VDS. This structure allows the client and server parts to run on 
different computers, leading to a distributed computing environment. A message 
sent to a server might be a local function call or a "real" message sent over a network. 
Since the queries of type B might include a specific functional </>(•) a VDS needs 
to be able to handle different types for representing uncertainty. While the way a 
VDS handles the data T> internally is not relevant to a client, the results of queries 
processed by P are. Therefore, the creation of the P-part of a VDS is simplified by 
a common (class) library which covers the following functionality:

• low-level details for the communication to and from a client or server, respec 
tively

9 Its existence is technically motivated. It simplifies the communication from clients to servers 
because clients can easily look up exisiting servers through the broker.
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• construction of uncertain values and conversion between different representa 
tions, evaluation of arithmetic expressions and standard functions involving 
uncertain values

• a collection of general purpose interpolation methods and associated helper 
functions (e.g., spatial neighbour search, etc.).

5 Conclusion And Outlook
This contribution has presented an overview on the questions involved when dealing 
with data sets that represent continuous fields. The two major issues were:

• The data available is never accurate. It is inherently necessary to use techniques 
for modelling uncertainty and errors.

• The field values often are queried for other locations, unit systems, types of 
aggregation, etc., than available within the data set.

The concept of the Virtual Data Set tries to approach those problems just by the 
definition of a clear interface for data access. In fact, it does not solve the problems 
but defines where the problems should be solved. It is nonetheless a concept that 
can be translated into a real system as first prototyping approaches have shown. We 
believe that the more complex systems and applications get, the more important in 
teroperability questions become. The slowly emerging trend in recent years is towards 
systems built up from a custom set of cooperative modules or services. It has been 
shown that this is a way to reduce complexity and benefits both users and system 
providers. The former will have customized solutions instead of large and monolithic 
ones and the latter can increase the system quality delivered since they systems are 
more easily maintainable.

Our future work consists of more general prototype implementations and the se 
lection and adoption of suitable industry or scienctific standards for the implemen 
tation of distributed, modular systems (e.g., OMG CORBA (CORBA, 1992), OGIS 
(Buehler, 1994), COSIMA (De Lorenzi & Wolf, 1993)).
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