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ABSTRACT

In choropleth mapping, most classification schemes that have been proposed 
are based on the properties of the data's statistical distribution without regard for 
the data's spatial distribution. However, one of the more important tasks 
associated with choropleth map reading is the task of regionalization and 
identifying spatial patterns. For this reason some authors have proposed class 
interval selection procedures that also consider spatial contiguity. This paper 
evaluates different classification schemes based on a data set's statistical as well 
as its spatial distribution. A comparison of the Jenks' optimal classification that 
minimizes within group variation and a contiguity based method that minimizes 
boundary error show that the latter method was not as strongly influenced by 
changes in the statistical distribution and produced a more complex map as 
measured by the number of external class boundaries present in the map display. 
(Keywords: data classification, choropleth mapping, spatial autocorrelation)

INTRODUCTION

Numerous classification methods for choropleth mapping have been 
proposed and evaluated (see Jenks and Coulson, 1963; Evans, 1977; Cromley, 
1996). In general, most traditional and even optimal classification schemes such 
as the Jenks1 optimal classification (Jenks, 1977) that minimizes total within 
group variation are based on the properties of the data's statistical distribution 
without regard for the data's spatial distribution. However, the task of 
regionalization is one of the more important tasks associated with choropleth 
map reading. Several authors (Monmonier, 1972; Cromley, 1996) have 
proposed class interval selection procedures that also consider spatial contiguity. 
The purpose of this paper is to evaluate classification schemes based on a data 
set's statistical distribution versus its spatial distribution. For this evaluation, the 
Jenks' optimal classification was chosen to represent schemes based on
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statistical properties and Cromley's boundary error method (Cromley, 1996) was 
chosen to represent schemes that incorporate the spatial contiguity of the data 
values.

BACKGROUND

It has long been recognized that classification schemes have a major impact 
on the visualization of choropleth maps. Because the classification process 
transforms interval or ratio data into ordinal classes, information is lost 
converting individual algebraic numbers into ordinal classes. Secondly, 
grouping N unique data values into p different classes (N>p) implies that there 
are (N-l)!/(N-p)!(p-l)! different classification groupings. Monmonier (1991) 
has demonstrated how easy it is to distort the visual pattern of the data by 
manipulating the class interval breaks. The ambiguity caused by classification 
prompted Tobler (1973) to propose classless maps as an alternative to the 
classed choropleth map in which algebraic numbers are directly converted into 
graphic values. An areal table map (see Jenks, 1976) reduces this ambiguity 
even more by displaying the algebraic numbers directly within the outline of 
each area but visually recognizing patterns of spatial autocorrelation in 
geographic data sets would be more difficult.

To ensure that classification schemes try to represent the data distributions, 
different schemes have been evaluated within respect to how much error is 
associated with the classification (Jenks and Caspall, 1971) and the impact of 
class interval systems also have been analyzed with respect to the evaluation of 
pattern relationships (Monmonier, 1972; Olson, 1975; Dykes, 1994; Cromley 
and Cromley, 1996). While there are problems associated with any 
classification, well constructed classifications can aid the reader in most 
mapping tasks. Mak and Coulson (1991) found in perception tests that classed 
choropleth maps using the Jenks' optimal classification system (Jenks, 1977) 
were significantly better than classless maps for the task of value estimation 
although there was no significant difference in regionalization tasks.

The problem addressed here is to examine visually and quantitatively how 
well different classification schemes preserve the underlying spatial structure of 
the data. Cromley and Cromley (1996) found that quantile schemes frequently 
used in map atlases represented spatial patterns worse than classification based 
on minimizing the error associated with class boundaries. However, quantile 
classifications also generally produce worse representations than other 
classifications with respect to most statistical properties. The comparison here 
will be made between the Jenks' optimal classification and the boundary error 
method formulated by Cromley (1996).

Both of these methods are "optimal" in the sense that each minimizes or 
maximizes some performance measure. Both classification schemes are derived
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from the same basic model. Based on Monmonier's work (1973) applying 
location-allocation models to the classification problem, Cromley (1996) has 
shown that optimal classification can be solved as a shortest path problem over 
an acyclic network. Using the number line associated with the sorted data 
values as an acyclic network, each arc connecting two nodes in the network 
represents a class interval containing data values. Given n points in the original 
data set, there would be n+1 nodes and n(n+l)/2 arcs in the acyclic network. 
For classifying data values in choropleth mapping, the cost value associated 
with each arc corresponds to an objective performance measure. By varying the 
definition of this performance measure, alternative optimal classifications can 
be constructed (Cromley, 1996).

Within the framework of this generic optimal classification model, the Jenks1 
optimal classification scheme defines the cost value for each class as the within 
class variation. By minimizing this value over all groups, the classification 
minimizes the total within group variation so that as much of the overall 
variation is "explained" by the classification as much as possible. The Jenks' 
optimal classification is also referred to as the VGROUP classification for the 
remainder of this paper.

Boundary error occurs whenever the boundaries between the classed areas on 
a map, referred to as external class boundaries, do not align with the major 
breaks in a three dimensional representation of the statistical surface (Jenks and 
Caspall, 1971). Classification should result in the boundaries lying within a 
group of contiguous area units, referred to as internal class boundaries, 
corresponding to minor breaks in the surface while the boundaries separating a 
grouping correspond to the major breaks in the surface. Within the generic 
model, the cost value for each class is now defined as the variation between the 
right- and left-hand area units associated with each internal class boundary. 
Only the deviations associated with boundaries separating area units within a 
class are counted while the deviations associated with boundaries separating 
area units belonging to different classes are not counted. By minimizing this 
cost value over all classes, the internal class boundaries should correspond to 
minor breaks in the surface and any regionalization should be fairly 
homogeneous. Because this classification (referred to as BGROUP) utilizes 
information regarding the relative location of data values, its implementation 
requires a topological data structure for the base map as well as the data values 
themselves.

DATA

For evaluating these different approaches to classification, a cancer mortality 
data set was selected from West Germany originally published and mapped in 
Atlas of Cancer Mortality in the Federal Republic of Germany (Becker et al., 
1984). The data in this atlas were collected at the level of the kreise
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administrative unit for which mortality rates were estimated by the authors. 
Overall, there were 328 observations for each cancer; the kreise of West Berlin 
was removed from the original data because it was a detached unit and did not 
share common boundary with any other unit. Female stomach cancer, which 
was highly positively autocorrelated in West Germany, and ovarian cancer, 
which was randomly distributed over space, were chosen to test the effect of 
spatial arrangement on each classification. No negatively autocorrelated 
patterns were used because these patterns rarely occur in most geographic 
processes. Each of these cancer data sets also were slightly positively skewed in 
their respective statistical distributions.

In addition to mapping each cancer by both the Jenks' optimal classification 
scheme, VGROUP, and the spatial structure method, BGROUP (see Figures 1 
and 2), three artificial data distributions were classified mapped for each cancer. 
These artificial data distributions are created to add differing levels of skewness 
in the statistical distribution for the same basic spatial arrangement of data 
values. A linear, arithmetic, and geometric progression (see Jenks and Coulson, 
1963) of data values were generated and then assigned to kreise such that the 
ordinal position of each kreise was the same for each progression as for female 
stomach cancer and then the ordinal position of each kreise was the same for 
each progression as for ovarian cancer. Thus, each progression has the same 
statistical distribution for each cancer but a different spatial arrangement. 
Finally, to keep the number of maps to a manageable number, only a five class 
map was produced for each original cancer and every progression/spatial 
arrangement combination.

RESULTS

The Jenks' optimal classification of original female stomach cancer data was 
somewhat different than that for ovarian cancers as these two data sets had 
different statistical distributions although both were positively skewed (see 
Table 1). However, because the Jenk's optimal classification is based solely on 
the statistical distribution, the class intervals for the three progressions were the 
exactly the same for each progression regardless of how the values were 
spatially arranged. Secondly, the linear progression resulted in the same number 
of observations in each class. In this one case, optimal classification generates 
the same result as traditional quantile or equal interval schemes. Thirdly, as 
each artificial distribution became more positively skewed, more observations 
were grouped into the lower classes because the Jenks' classification is 
influenced by extreme values.
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FEMALE STOMACH CANCERS

n 5.79 - IP.W
HJ W 66 - 12.95
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• 15.7fi - 18.51
• 1136 - 23.88

FEMALE STOMACH CANCERS

6.79 - 9,96
m 9.96 - 11 ia

11.19 - 1J.11 
13.U - 1M7 
18.55 - 2J.W

(a) VGROUP (b) BGROUP 
Figure 1: Classified Female Stomach Cancers.

OVARIAN CANCERS OVARIAN CANCERS

D <.M - «.«
E3 6.51 - 7 S9
• 7,71 - fl.60
• a.n - 10.35
• 10.37 - 15.0&

(a) VGROUP 
Figure 2: Classified Ovarian Cancers.

(b) BGROUP
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The BGROUP classification method, in contrast, always produced a different 
set of class intervals for each statistical distribution/spatial arrangement 
combination (see Table 1). The number of observations for the linear 
progression that was positively autocorrelated (matched with the female 
stomach cancer arrangement) had fewer observations in the extreme classes than 
for the linear progression that was randomly arranged. As each progression 
became more positively skewed, more observations were grouped into the 
lowest data class although at a much lower rate than in the Jenks' optimal 
method.

TABLE 1 
Number of Observations in each Class

Original Class 
Data*

#1
#2
#3
#4
#5

Linear Class #1 
Progression #2

#3
#4
#5

Arithmetic Class #1 
Progression #2

#3
#4
#5

Geometric Class #1 
Progression #2

#3
#4
#5

Positively 
Autocorrelated 

VGROUP BGROUP 
84 49 

132 72 
56 98 
36 63 
19 45

Random
VGROUP BGROUP

33 44
104 96
120 84
54 71
16 32

66
65
65
65
66

119
67
53
46
42

211
50
29
21
16

49
72
84
76
46

103
59
57
63
45

138
81
63
30
15

66
65
65
65
66

119
67
53
46
42

211
50
29
21
16

82
70
62
49
64

84
71
66
63
43

145
69
49
36
28

*The original data for the positively autocorrelated distribution were Female 
Cancers and the original data for the random distribution were Ovarian Cancers.
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The overall result was that the spatial structure classification retained a 
higher level of visual complexity as the data distributions became more 
positively skewed especially for the data that was more positively autocorrelated 
(see Figures 3 and 4). In general, the visual complexity of a map increases as 
the spatial autocorrelation moves from high positive autocorrelation to random 
to high negative autocorrelation (Olson, 1975). The VGROUP classification of 
the geometric progression displayed a much larger homogeneous region of low 
values for the positively correlated distribution than for the spatially random 
distribution (see Figures 3a and 4a). Because the number of observations in 
each class was more balanced for the BGROUP classification than the 
VGROUP classification, higher level of visual complexity was retained for data 
set. For example, the large white area associated with the lowest class of Figure 
3a is broken up into other classes in Figure 3b especially in the northern tier of 
kreise.

Quantitatively, this is measured first by the number of external and internal 
class boundaries generated by each classification. Because the boundaries 
between classes dominate the visual representation (Jenks and Caspall, 1971), 
the more external boundaries, the more visually complex the representation. In 
Table 2, the number of external and internal boundaries are matched against the 
Moran I coefficient for each data set. Regardless of the level of autocorrelation, 
the BGROUP classification always retained more external class boundaries than 
the VGROUP classification. Secondly, the BGROUP classification retained a 
similar number of external boundaries over the different data progressions.

Another measure of spatial autocorrelation and map complexity that has been 
used for map classifications is Kendall's tau (Monmonier, 1974; Olson, 1975). 
Similar to Moran's I index for metric^data, Kendall's tau ranges from +1.0 to -1.0 
for ordinal data with +1.0 associated with perfectly positive autocorrelation. 
With respect to Kendall's tau, the results were more mixed; for the positively 
autocorrelated distributions, the Kendall's tau value associated with BGROUP 
classification was higher for the stomach cancers data and the geometric 
progression and lower for the linear and arithmetic progressions. For the 
spatially random distributions, the Kendall's tau value was lower for the three 
progression and slightly higher for the ovarian cancers data. In general, the tau 
values were about the same for both classification with the exception of the 
positively autocorrelated geometric progression. Kendall's tau is influenced by 
an uneven number of observations in each grouping; the more uneven, the lower 
the value will be. Because the increasing skewness in the data resulted in the 
VGROUP's highly uneven number of observations in each class, the tau value is 
decreased.

82



POSITIVELY AUTOCORRELATED 
GEOMETRIC PROGRESSION
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POSITIVELY AUTOCORRELATED 
GEOMETRIC PROGRESSION
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(a) VGROUP (b) BGROUP 
Figure 3. Classified Positively Autocorrelated Geometric Progression.

SPATIALLY RANDOM 
GEOMETRIC PROGRESSION
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.1 - mm

(a) VGROUP (b) BGROUP 
Figure 4. Classified Spatially Random Geometric Progression.



# External
Boundaries

Kendall's Tau

VGROUP
BGROUP
VGROUP
BGROUP

466
548
0.461
0.482

515
547
0.485
0.477

483
530
0.493
0.472

# External
Boundaries

Kendall's Tau

VGROUP
BGROUP
VGROUP
BGROUP

-600
666
0.036
0.039

664
681
0.036
0.022

599
679
0.050
0.020

TABLE 2
A Comparison of the Level of Spatial Autocorrelation 

By Different Measures of Complexity

Original Linear Arithmetic Geometric
Positively Data* Progression Progression Progression 
Autocorrelated 
MoranI 0.759 0.636 0.723 0.807

322 
467 
0.381 
0.458

Random
MoranI 0.080 0.053 0.069 0.095

426
599
0.036
0.025

*The original data for the positively autocorrelated distribution were Female 
Cancers and the original data for the random distribution were Ovarian Cancers.

CONCLUSIONS

As expected, the Jenks' optimal classification was more strongly influenced 
by changes in the statistical properties of a data distribution than the 
classification that minimized boundary error. In all cases, the BGROUP 
classification resulted in a map display that had more external class boundaries 
than the Jenks' optimal classification. However, Kendall's tau measure for 
computing spatial autocorrelation for grouped ordinal data did not detect much 
difference between the two classifications except for the positively 
autocorrelated geometric progression. The overall result is that the BGROUP 
classification scheme probably retains more visual complexity and more 
homogeneous regions than the Jenks1 optimal classification scheme.
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