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ABSTRACT

This study is concerned with the data quality implications of raster 
generalization. The study focuses specifically on the effects of neighborhood- 
based generalization (categorical filtering) on thematic accuracy. These effects 
are examined empirically using raster land cover maps. Accuracy is defined in 
terms of changes in class membership between original and generalized maps. 
Results indicate that changes are concentrated in those portions of the map and 
for those classes that exhibit high levels of spatial variability.

INTRODUCTION

Generalization in a raster environment is fundamentally different from 
generalization in a vector environment. In a vector environment the spatial and 
thematic components can be generalized independently, while in a raster 
environment generalization is almost always accomplished by manipulating the 
thematic component alone. Raster generalization changes the thematic content 
of maps and thus has implications for thematic accuracy and data quality in 
general. This study examines the effects of raster generalization on thematic 
accuracy for categorical data.

Raster Generalization

Several authors have developed frameworks for classifying raster 
generalization operators. According to the framework developed by McMaster 
and Monmonier (1989) the four fundamental operators are structural 
generalization, numerical generalization, numerical categorization and 
categorical generalization. Schylberg (1993) adds a set of area-feature operators 
which perform generalization on raster objects defined as clumps of contiguous 
cells with the same class.
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Three classes of operators apply to categorical data. Local operators work 
directly on attribute values and ignore neighborhood effects. Neighborhood 
operators are based on class frequencies within a neighborhood or kernel. 
Object-based operators are applied to raster objects.

This study focuses specifically on a neighborhood operator known as modal 
filtering. Filtering reduces high-frequency variation in order to enhance the 
clarity of presentation. In "simple" modal filtering, a kernel is centered on a cell 
and the modal class within the kernel is determined. This modal value replaces 
the class of the cell at the center of the kernel. The process is repeated for every 
cell in the map, except those along the edges (Fig. 1). Kernel size can vary, with 
larger kernels producing higher levels of generalization.

'A' is modal class in kernel. 
Replace central 'B 1 with 'A1 . ~"~"^\

^V
V

A
A
C
C

A
C
C
C

A
C
C
C

A
A
A
A

Figure 1. Simple Modal Filtering.

In this example, all classes have equal priority weights. However, unequal 
weighting is usually required because it is often the case that more than one 
class has the same frequency in the kernel. When unequal weights are employed, 
the modal class is defined as the class with the highest weighted frequency. 
There are several ways to calculate weights. They can be computed based on the 
area of each class over the entire map. This gives precedence to classes that 
cover a larger area. Alternatively, weights can be provided by the user. This is 
useful because it allows for selective enhancement or suppression of certain 
classes. Finally, weights can be computed by determining class frequencies 
within a neighborhood outside the kernel. This neighborhood is called a "halo" 
and its size can vary. A halo "bias factor" can also be defined to give the 
precedence of frequencies within the halo relative to frequencies within the 
kernel (Monmonier, 1983).

Whatever the specific method employed, filtering changes the thematic 
content of the original map by modifying the class memberships of certain cells. 
These modifications represent a form of thematic error that can be quantified 
using standard thematic accuracy assessment techniques.

268



Thematic Accuracy Assessment

Methods of thematic accuracy "assessment depend on the measurement scale 
of the attribute under consideration. For categorical data such as land cover, the 
most common method is based on the confusion matrix. The matrix, denoted as 
C, has dimensions kxk, where k is*the number of classes. Element cy in the 
matrix represents the number of cells encoded as class i that actually belong to 
class j. Correct classifications are those for which i=j. This occurs along the 
principal diagonal of the matrix. Misclassifications are those for which i^j. (For 
a summary of the confusion matrix as applied to classification accuracy 
assessment in remote sensing see Congalton, 1991).

In the case of modal filtering, an error is defined as a cell with a different 
class on the original and filtered maps. The confusion matrix tabulates these 
differences. Element cy in the matrix represents the number of cells with a class 
of i on the filtered map and a class of j on the original map.

The information contained in the confusion matrix is typically summarized 
using indices of thematic accuracy. One such index is PCC, or the proportion of 
cells that are correctly classified. The maximum value of PCC is 1, which occurs 
when there is perfect agreement. For modal filtering PCC is defined as the level 
of agreement between the original and filtered maps. A value close to 1 indicates 
that the original and filtered maps are nearly identical.

It is usual to distinguish between omission and commission errors in the 
classification error matrix. An omission error occurs when a cell is omitted from 
its actual class, i.e., a cell that actually belongs to class j is assigned instead to 
class i. In the classification error matrix, the off-diagonal elements that occur in 
a given column j are omission errors in that they represent cells that have been 
erroneously omitted from class j. Commission error refers to the insertion of a 
cell into an incorrect class, i.e., a cell is assigned to class i but actually belongs 
to class j. In the classification error matrix, the off-diagonal elements that occur 
in a given row i are commission errors in that they represent cases that have 
been erroneously included in class i.

Any error of omission is simultaneously an error of commission and vice 
versa. In modal filtering, an error is defined as a cell with a different class on the 
original and filtered maps. This is an omission error since the cell has been 
omitted from the class assigned on the original map, and a commission error 
since the cell has been assigned to a different class than that on the original map.

METHODS 

Hypotheses

The effects of filtering on thematic accuracy are hypothesized to be non- 
uniform spatially and thematically. Filtering reduces high-frequency variation,
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such that its effects on accuracy will be most significant in those portions of the 
map and for those classes that exhibit high-frequency spatial variation.

High-frequency variation is characteristic of classes that are fragmented into 
small, isolated patches or long, narrow ribbons. These classes tend to lack 
dominance at the neighborhood level and thus tend not to form the modal class 
within kernels. These classes will therefore tend to be suppressed by filtering, 
inducing errors of omission in the filtered map. These effects are reversed for 
classes that exhibit low-frequency spatial variation, such as those that occur as 
large, homogeneous clumps. These classes tend to be dominant at the 
neighborhood level and thus frequently form the modal class within kernels. 
These classes will therefore tend to be enhanced, resulting in errors of 
commission in the filtered map.

It is probable that these effects will be non-uniform spatially, since spatial 
variability is itself variable over space. Changes in class membership will tend 
to occur in those portions of the map in which variability is highest. These 
effects will also be affected by kernel size, since the degree of spatial variability 
is dependent on spatial scale.

Data

Data for this study were derived from aerial video imagery of the Mud Run 
urban watershed in Akron, Ohio. Imagery was acquired in December, 1994, 
using a color video camera and was post-processed to extract three spectral 
bands. Post-processing also included resampling to a 1-meter cell size. 
Supervised classification was performed using a minimum distance to means 
classifier (Veregin et al, 1996). The original classified map is shown in Figure 2.

Asphalt
Concrete
Commercial roofs
Shingle roofs
Grass
Bare soil
Shadow

Fig. 2. Original Map.

The area contains a mixture of residential and commercial buildings 
interspersed with transportation features, grass and bare soil. Areas of deep
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shadow are common due to the low sun angle at the time of data collection. 
(These areas were classified as shadow rather than as their true class due to the 
limited amount of spectral information that could be extracted from shadow 
areas.) Different classes exhibit different degrees of spatial variability. For 
example, grass tends to occur in large homogeneous clumps, while 
transportation classes (especially concrete) are more linear. Other classes such as 
roofs and shadows occur as smalj, isolated clusters.

Methods

The effects of filtering were assessed by comparing the original and filtered 
maps. To facilitate hypothesis testing, various statistics were computed.

• Confusion Matrix. Element qj of this matrix represents the number of cells 
with a class of i on the filtered map and a class of j on the original map.

• Agreement. An overall index of agreement was computed as sum of the 
diagonal elements of the confusion matrix divided by the number of cells. 
This is analogous to the PCC index discussed above.

• Omission. An index of omission error was computed for each class j by 
dividing the diagonal element in column j of the confusion matrix by the 
column total for j. A higher value for the index indicates less omission 
error. A value approaching 0 means that almost every cell with that class on 
the original map has been omitted from this class on the filtered map.

• Commission. An index of commission error was computed for each class i 
by dividing the diagonal element in row i of the confusion matrix by the 
row total for i. A higher value for the index indicates less commission error. 
A value approaching 1 for a given class indicates that almost every cell 
labeled as that class on the filtered map is that same class on the original 
map. A value close to 0 indicates that almost every cell labeled as that class 
on the filtered map is in fact some other class on the original map.

• Change in Area. A simple area change index was computed for each class 
as the row total divided by the respective column total. A value greater than 
1 indicates that the class has more cells on the filtered map than on the 
original. A value less than 1 indicates the opposite.

• Dissimilarity. A dissimilarity index was computed for each class. This 
index is a measure of local variability or "texture" for categorical data. 
Texture can be computed for numerical data as the variance of the cell 
values in the kernel (Haralick et al, 1973). For categorical data, dissimilarity 
is defined as the proportion of cells in the kernel that have a class that is 
different from the class of the cell at the center of the kernel. A higher 
dissimilarity value means that more variability is present. To maintain 
consistency in spatial scale, dissimilarity was computed using a kernel of
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the same size as that used for generalization. For analysis purposes, mean 
dissimilarity was computed for each class.

RESULTS

Simple Modal Filtering

The first set of results apply to simple modal filtering using a 3x3 kernel 
(Fig. 3). Overall agreement between the original and filtered maps is 0.87. As 
hypothesized, differences between the original and filtered maps are associated 
with cells having high dissimilarity. Mean dissimilarity is 0.68 for cells that 
change class and only 0.22 for cells that do not change. Thus, those parts of the 
map that exhibit thematic error tend to be areas with high spatial variability. 
This effect is clearly evident in Figures 4 and 5, which show the spatial pattern 
of dissimilarity and the spatial pattern of error, respectively.

Asphalt
Concrete
Commercial roofs
Shingle roofs
Grass
Bare soil
Shadow

Fig. 3. Filtered Map.

Thematic accuracy statistics for each class are graphed in Figure 6 as a 
function of mean class dissimilarity. As this figure shows, classes exhibit 
different levels of dissimilarity. Classes that tend to occur in large, 
homogeneous clumps (such as grass) have the lowest mean dissimilarity. 
Classes that tend to occur as isolated patches (such as shingle roofs and 
commercial roofs) or in long, narrow ribbons (such as concrete) tend to have 
higher mean dissimilarity values.

As hypothesized, there is a thematic component associated with the effects 
of generalization. As shown in Figure 6, high dissimilarity is associated with a 
tendency for classes to be suppressed (area change < 1). Only two classes, grass 
and asphalt, exhibit growth (area change > 1), and both of these classes have low 
dissimilarity values. Bare soil and shadow appear to be anomalies, as they have 
low dissimilarities but tend to be suppressed by the generalization operator.
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Fig. 4. Spatial Pattern of Dissimilarity Index.

Fig. 5. Spatial Pattern of Thematic Error (Gray areas are cells 
with different classes on original and filtered maps).

Omission error varies across classes. Classes with high dissimilarity tend to 
have high levels of omission error (low omission error index). This observation 
reflects the fact that classes with high dissimilarity tend to be suppressed by 
classes with low dissimilarity, which are dominant enough to be able to form 
modal classes. As in the case of area change, bare soil and shadow appear to be 
anomalies. Figure 6 also shows that omission error and commission error are 
inversely related. However, there is not a clear relationship between commission 
error and dissimilarity.

These results support the hypothesis that filtering has the greatest impact on 
those portions of the map and on those classes that exhibit high-frequency 
spatial variation. However, mean dissimilarity seems to be an imperfect 
predictor of this effect. There are several reasons for this.

A high dissimilarity value for a cell means that, within the kernel centered 
on that cell, a large proportion of the cells are of a different class than the
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center cell. However, this does not imply that these neighboring cells are all 
of the same class, a prerequisite for forming the modal class in the 
neighborhood. Thus high dissimilarity is not always correlated with a 
change in class membership.

Dissimilarity may exhibit significant spatial variations that are masked by 
the use of mean class values. Dissimilarity for a particular class may depend 
on proximity to other classes. For example, bare soil might have a high 
level of dissimilarity when interspersed with grass, but a lower level of 
dissimilarity when adjacent to transportation features.

Dissimilarity has no direct implications for commission error. High mean 
dissimilarity for a class indicates that the class tends to occur in proximity 
to other classes. This suggests a tendency for classes with high dissimilarity 
to be suppressed when filtering is performed. However, dissimilarity cannot 
be used to predict which classes will replace the suppressed classes, since it 
does not take into account the classes that tend to dominate in the proximity 
of classes with high dissimilarity values.

Commission 

Area change

Omission
025// 03 //

Mean Dissimilarity 
Sh As Bs Sr Cr

035

Co

Fig. 6. Statistics for Original and Filtered Maps.

Prediction of commission error requires a measure of the tendency for 
different classes to exist in the vicinity of each other. One such measure is co 
occurrence, which refers to the frequency with which different classes 
combinations occur. Co-occurrence is computed by counting the number of cells 
of each class within each kernel location. This yields a co-occurrence matrix, O, 
in which element ojj is the number of cells with a class of i that occur within all 
kernels centered on cells with a class of j.

274



In this study, data from the co-occurrence matrix for the original map (Fig. 
2) was used to predict the off-diagonal elements in the confusion matrix. The 
derived regression equation is as follows:

cij = -26.5 + 0.059 (oij x dj / di) r2 = 0.96

In this equation, cjj the element in row i and column j of the confusion matrix, 
ojj is the element in row i and column j of the co-occurrence matrix, and dj and 
dj are the mean dissimilarities for classes j and i, respectively. A large ratio of 
the two dissimilarity values implies that class j is more dissimilar than class i, 
which means that class i will tend to dominate. This implies that as the ratio 
increases in value, there is a greater tendency for cells of class j to be assigned a
class of i on the generalized map. The high r^ value for the regression equation 
indicates that class dissimilarities coupled with co-occurrence data permit 
reliable prediction of the off-diagonal elements of the confusion matrix.

Other Effects

Results indicate that class suppression and enhancement effects are 
magnified as kernel size increases. Those classes with the highest dissimilarity 
are all but eliminated on filtered maps when a large kernel size is used. The 
effects of filtering are also impacted by the selection of class weights based on 
the frequencies of class occurrence in a halo surrounding the kernel. Class 
membership is tabulated in the kernel and separately in the halo. Each of these 
two vectors of frequencies is then weighted by a bias factor. In this study, it was 
observed that the use of such weights has essentially the same effect as using a 
larger kernel. This is simply because the classes that tend to dominate in the halo 
are the same as those that dominate in large kernels.

Weights can also be defined by the user to selectively enhance or suppress 
certain classes. Use of these weights has a mitigating effect on the relationships 
between dissimilarity and thematic accuracy. In general, it is not possible to 
predict the effects of filtering using dissimilarity if arbitrary weights are 
employed. However, dissimilarity can be used to select appropriate values for 
these weights. High mean dissimilarity for a class implies a greater tendency for 
the class to be suppressed. Hence class weights that are proportional to mean 
class dissimilarities should ensure that classes are suppressed more evenly.

CONCLUSIONS

The results of this analysis support the hypothesis that modal filtering has 
the greatest impact on those classes and those parts of the original map where 
spatial variability is greatest. Thus thematic error introduced by filtering varies 
over space and theme. To our knowledge this is the first attempt to quantify the 
effects of raster generalization operators on thematic accuracy. Future work 
needs to consider the limitations of mean dissimilarity as an index of variability 
in an effort to enhance understanding of generalization effects and better predict
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the degree of thematic error that is introduced. This would facilitate the creation 
of filtered maps containing low levels of thematic error and minimal omission 
and commission error for all classes. Future work must also consider local and 
object-based operators, and should focus attention on issues of visualization of 
generalization effects. A longer-term goal is to define rules to ascertain the types 
of generalization that are appropriate in different contexts in order to assure that 
a minimum threshold of accuracy is maintained.
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