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ABSTRACT

The resolution of semi-structured spatial problems often requires consensus 
building and compromise among stakeholders as they attempt to optimize their 
own set of criteria. The union of these sets form a criteria space that constrains 
the set of viable solutions that may be adopted by decision-makers. Knowledge 
about the criteria space, the solution space, and the relation between the two is 
normally incomplete and this lack of understanding places real limits on the 
ability of decision-makers to solve complex spatial problems. This research 
explores new approaches that are designed to establish a link between criteria 
space and solution space and to provide a mechanism that competing 
stakeholders can use to identify areas of conflict and compromise.

1.0 INTRODUCTION

Spatial problem solving often requires collaboration among multiple 
decision-makers because the effects of spatial decisions often cut across 
traditional bounds of discipline, jurisdiction, and ownership. Because different 
decision-makers will have different views of a problem, the evaluation of 
alternative solutions to it is complicated since: 1) a collection of spatial models 
and analytical tools is needed to evaluate how well each alternative meets stated 
criteria; 2) multicriteria evaluation tools are needed to integrate the results of 
these models and tools; 3) the set of all possible solutions (the solution space) is 
often intractable (theoretically infinite for field-based problems); and 4) not all 
criteria are well articulated or even known at the beginning of an analysis (i.e., 
spatial problems are often semi-structured). Furthermore, the resolution of 
semi-structured spatial problems often requires consensus building and 
compromise among decision-makers because as individuals attempt to optimize 
their own set of criteria they will often come into conflict with others. The
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union of these criteria sets forms a criteria space that constrains the set of viable 
solutions that may be adopted by decision-makers. Understanding the relation 
between criteria space and solution space is a key element in the successful 
resolution of spatial problems.

The integration of spatial decision making, spatial models and geographic 
information systems (GIS) has been an active area of research and advances 
have been made in loosely coupled systems (He et al., 1995), tightly coupled 
systems (Bian et al., 1996), and fully integrated systems (Bennett, in press; 
Wesseling et al., 1996). At the same time researchers have been investigating 
techniques designed to integrate multicriteria analysis into GIS (Carver, 1991; 
Jankowski, 1995). What has not yet been investigated are tools to explore, 
analyze, and visualize the solution space of a problem with respect to multiple 
models and criteria. Providing such tools has several benefits: 1) new and 
unique solutions can be identified; 2) unarticulated criteria can be identified and 
incorporated into an analysis; 3) the spatial implications of specific criteria can 
be visualized; and 4) areas of agreement and conflict can be identified and 
discussed. As suggested above, the set of all possible solutions can be very 
large. The time required to create, model, and evaluate such large sets of 
possible solutions is prohibitive and heuristic tools are needed to guide and 
expedite this effort.

In this paper a two-dimensional genetic algorithm (Bennett et al., 1996) is 
used to evolve landscapes that meet stated criteria based on a set of spatial 
models. An initial population of random landscapes is created. Each landscape 
is represented as a raster file in which cells are assigned a particular land cover. 
The fitness of a landscape is evaluated by intelligent agents that act as surrogates 
for decision-makers that represent competing stakeholders. Agents implement a 
multicriteria evaluation scheme that models the success of each landscape in 
meeting the stakeholders' stated criteria. Agents rank the competing landscapes 
and a mediating agent uses these rankings to calculate an overall fitness value 
for each landscape. Those landscapes deemed most "fit" by this process are 
used to propagate new landscapes. Thus, the solution space is heuristically 
expanded and explored. Delta maps derived from those landscapes that were 
ranked high (e.g., the top three alternatives) by individual agents illustrate areas 
of consensus, conflict, and potential compromise. When highly ranked 
alternatives fail to meet the expectations of a stakeholder then the criteria space 
should be reevaluated.

2.0 GENETIC ALGORITHMS

Genetic algorithms are modeled after those processes that drive biological 
evolution and the evaluation of fitness values provides an effective heuristic for 
the exploration of problems that may otherwise be intractable. Alternatives in 
the solution space of such problems represent individuals in an evolving 
population. Characteristics that can be used to evaluate the relative success of 
individual solutions are stored in classifiers which are often implemented as bit- 
strings that document when a specific solution possesses a given characteristic
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(Booker et a/., 1989; Armstrong and Bennett, 1990). Fitness in this context is 
proportional to how well a particular solution meets stated criteria. Three 
genetic operators are used to evolve a large number of new alternatives from 
existing alternatives: cross-over, mutation, and inversion. Mutation is a unary 
operator that makes random changes in a linear sequence of characteristics. 
Inversion, also a unary operator, flips values in a linear sequence of 
characteristics. Cross-over, the most powerful of these operators (De long, 
1990), is a binary operator that generates two new offspring by duplicating two 
individuals (parents) and swapping "genetic code" beyond some randomly 
selected cross-over point. New and innovative solutions are created through 
random cross-overs, mutations, and inversions.

A more formal description of the genetic algorithm is as follows (after De 
long, 1990; Koza, 1994):

1. Generate an initial population, PQ, of potential solutions. These 
individual solutions are often created as random combinations of 
identified characteristics.

2. For each individual, Im, in the current population, PI, calculate a fitness, 
fl!ni)- Select n individuals from PI that will be used to generate n new 
solutions for Pi+2 via cross-over. The probability, p, that individual lm 
will be used to create new alternatives for population, PI+I, is a 
function of its fitness, j(lm)'-

rxi m)= -5 —— (i) 2 f(i k)
k=l 

where:
f[Im) = fitness of individual m
p(Im) = probability of individual m producing offspring in the next 

generation

3. Remove x individuals from Pi+2 (based on user defined criteria).
4. Add n new individuals to P/+7 by applying cross-over, mutation, and 

inversion operators.
5. If an acceptable solution exists then stop; else advance to generation i+1 

and return to step 2.

Although geographical applications of this approach are rare, Dibble and 
Densham (1993) illustrate the utility of genetic algorithms in the solution of 
location-allocation problems. Zhou and Civco (1996) use neural networks that 
employ genetic algorithms as a learning mechanism to conduct land use 
suitability analyses. These projects do not, however, apply genetic algorithms to 
two dimensional landscapes.
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3.0 AGENT-DIRECTED GENETIC ALGORITHMS FOR 
ENVIRONMENTAL PROBLEM SOLVING

In order to manage environmental resources in privately owned landscapes 
it is necessary to understand how individual decisions effect environmental 
processes across space and through time. The tools used by resource managers 
to promote environmental objectives in a privately owned landscape depend 
largely on education, incentive-based policy initiatives (e.g., conservation 
reserve program) and quasi-regulatory compliance programs (e.g., commodity 
programs). Furthermore, private and public concern about the environmental 
ramification of land management decisions is only one of many competing 
issues that must be addressed by land managers. To develop feasible and 
politically acceptable solutions to environmental problems generated by the 
cumulative impact of multiple decision-makers it is often necessary to foster 
compromise and consensus among a diverse set of special interest groups who 
possess overlapping objectives; some quantifiable, and some not. Thus, 
environmental management, like many spatial problems, is often a semi- 
structured problem that requires a collaborative effort among multiple 
stakeholders.

3.1 Genetic Algorithms for Two Dimensional Space
Traditional genetic algorithms operate on a finite set of well-defined 

characteristics that are easily mapped to a linear data structure. When this 
approach is adapted to the generation of alternative landscapes it is necessary to 
extend the notion of a linear sequence of genetic code to a two dimensional 
representation. The linearization of space is a well-studied problem. Mark and 
Lauzon (1984) illustrate how to accomplish this task using a two dimensional 
run-length encoding (2DRE) scheme based on a Morton index of a raster-based 
geographical data set. Using 2DRE and two randomly selected cross-over 
points, two new landscapes that possess characteristics of two parent landscapes 
can be created (Figure 1).

3.2 Multicriteria Decision Space
The set of relevant criteria and the relative importance of specific criteria 

vary with the goals and objectives of the stakeholder. To integrate the concerns 
and objectives of multiple competing stakeholders we recast the genetic 
algorithm fitness function into a modified multicriteria evaluation function. To 
construct a composite fitness value for a given alternative and set of criteria, 
criterion-specific fitness values must be standardized since each analyses will 
not use the same units or, perhaps, even the same scale of measurement (e.g., 
nominal, ordinal, interval, ratio). Furthermore, decision-makers must provide a 
subjective weighting scheme that documents the relative importance of each 
criterion. Several compositing schemes exist (for a review of MCE techniques 
in GIS see Carver 1991 and Jankowski 1995). For most of these schemes the 
final fitness score is a linear function that takes as input the standardized score 
and associated weight of each criterion.
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Figure 1. The results of a two dimensional cross-over.

As suggested by Breeden (1995) and determined empirically in the context 
of this work, the linear combination of fitness scores can be problematic in the 
context of genetic algorithms. If the distribution of the standardized scores for a 
particular criterion is positively skewed then landscapes that perform well for 
that criterion will be unduly favored as the next generation of solutions is 
created. Furthermore, outliers in the distribution of the standardized scores 
restrict the variance of more "typical" scores and, thus, mask potentially 
significant differences among alternative solutions. As a result, the probability 
that an individual landscape will be propagated into the next generation will be 
approximately equal for many individuals in the population. One way to 
overcome the impact of outliers and skewed distributions is to construct a 
composite fitness value based on ranked order. The fitness value for a particular 
landscape is then calculated as (Breeden, 1995):

wjdrkjd (2)

where:
= rank score of alternative k given criterion j and decision maker d.
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= weighted value of criterion j given decision maker d. 
= fitness value for alternative A; given decision maker d.

Criteria weights reflect a qualitative assessment of a single decision-maker, 
a class of decision-makers or, perhaps, a set of decision-makers who have 
reached a consensus. If a consensus has been reached then, in many situations, 
compromise among competing decision-makers has been reached in criteria 
space. This may or may not be possible. An alternative approach is to allow 
individual decision-makers, or sets of decision-makers that represent specific 
classes of stakeholders, to define criteria independently and attempt to construct 
a compromise in the solution space. To accomplish this using a genetic 
algorithm a global fitness value for each landscape must be calculated to 
represent all decision-makers. Here this global fitness value is calculated as the 
mean of the independent fitness values:

l/dkd)
F(I k)= ^i—— (3)

where:
F(Ik) = Global fitness value for individual k.
j{Ikd)= Fitness value for individual k given decision-maker d.
n = Total number of decision-makers.

3.3 Intelligent Agents
As geoprocessing software becomes more sophisticated it is able to support 

the analysis of an increasingly rich set of problems. This richness, however, has 
a downside: software has become increasingly complex and, thus, more difficult 
to use. Furthermore, decision-makers often represent several interests and bring 
to the negotiation table different types of training, levels of education, 
experience with computing technologies, and familiarity with the problem that is 
being addressed. Though such differences can prove valuable since distributed 
expertise may allow for decision making procedures that are less prone to errors 
attributable to a lack of domain specific knowledge, this differential in 
knowledge can also have interaction effects that complicate the decision making 
process. Because of the number of analytical tools available and the disparate 
backgrounds of individual decision-makers, users may not always understand 
the implications of particular analytical methods. In many cases, additional 
knowledge may be required to support informed use.

One way to provide a more common level of support to decision-makers is 
to create intelligent software agents equipped with knowledge about how and 
when to implement specific analytical tools. At this point, two classes of 
intelligent agents have been implemented, mediating agents and user agents (see 
Shoham, 1993 for a discussion on intelligent agents). User agents acting on 
behalf of specific decision-makers, calculate//&,) (equation 1) for each 
individual landscape k using applicable analytical tools and user supplied
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criteria weights, and returns these fitness values to the mediating agent. Using 
this information the mediating agent calculates F(Ifc) (equation 2), selects 
individuals for propagation and builds consensus among competing interests.

4.0 A CASE STUDY

A multidisciplinary research team from Southern Illinois University at 
Carbondale is investigating the impact of alternative resource policy and 
management scenarios on the economy, hydrology, and ecology of the Cache 
River (IL) watershed. The goal of this research effort is to develop a land use 
management plan that is generally acceptable to all stakeholders. A small 
study site within this watershed was selected to test the utility of two- 
dimensional genetic algorithms in the resolution of semi-structured spatial 
problems. The study site is approximately 3.69km 2 captured as a grid with a 
30m cell resolution (64 rows and 64 columns). This site was selected because it 
possesses considerable spatial variability within a manageable area. Alternative 
landscapes are comprised of corn, soybean, double crop (winter wheat then 
soybean), wheat, grassland, and forest.

Stakeholders within the region were generalized into three classes:

1. Farmers who want to maximize farm revenue.
2. Conservationists interested in reducing soil loss and non-point pollution 

and agricultural productivity.
3. Wildlife enthusiasts, local entrepreneurs, and recreational hunters 

interested in the maintenance and enhancement of wildlife populations.

To assess how well alternative landscapes meet the concerns of these 
stakeholders models were developed that evaluate agricultural income, soil 
erosion, and the interspersion and juxtaposition of land cover types. To support 
these models spatial databases were developed that capture the topographic and 
edaphic characteristics of the study area.

Agricultural income is generated from corn, soybean, wheat, and hay 
(grasslands). No income is attributed to forest land. For each alternative 
landscape net agricultural return is calculated for each 30x30m cell by 
considering land cover, the expected productivity of that cover type given the 
associated soil, the market value of that crop, and the expected costs of 
producing that crop. Market prices and production costs for agricultural produce 
are based on ten year averages for the state of Illinois. Soil productivity values 
are derived from the Union County, IL soil survey (USDA, 1979). An estimate 
of the rate of erosion that is associated with each cell is calculated using the 
universal soil loss equation. The estimated value for soil credibility (K) was 
derived from the Union County soil survey. The cropping factor (C) is an 
estimate based on cover type. A 7.5 minute DEM was used to estimate the slope 
of each cell. This information was, in turn, used to estimate the LS factor of the 
universal soil loss equation. Land management practices (P) were assumed to
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be the same on all cells. Interspersion is an index of the "intermixing of units of 
different habitat types" (Giles 1978:156). It is assumed that interspersion is 
desirable for wildlife but can lead to inefficiencies in agricultural production. 
Juxtaposition, as used here, is a measure of adjacency among cover types. The 
value of an edge between land cover types depends on the objectives of the land 
manager and the cover types involved.

A user agent was created to represent each stakeholder class. Each agent 
maintains a weight and a ranked list of alternatives for each criteria/model. 
Criteria weights used by each agent are listed hi Table 1. An attempt is made to 
maximize all criteria except soil loss which is minimized. Note that these values 
were used only for "proof-of-concept" and, thus, are not intended to be 
representative of the groups identified.

Farmer
Conservationist
Wildlife Enthus.

Ag. 
Production

1
0.5

0.25

Soil Loss

0
0.5
0

Interspersion

0
0

0.5

Juxtaposition

0
0

0.25
Table 1. Agent Weights

Figure 2 illustrates the two most influential landscape characteristics, soil 
credibility and soil productivity. The dominant landscape feature within the 
study area is a floodplain that runs from the northeast to the southwest. A 
somewhat smaller tributary enters the study area in the northeast corner and 
continues south until it meets the larger floodplain. As can be seen in Figure 
2A, the side slopes of these valleys are highly credible and the uplands are 
moderately credible. Most of the highly productive soils are located within the 
floodplain of the two streams (Figure 2B). However, in the southwest the 
floodplain is too wet to provide a reliable crop. An initial set of random 
landscapes were created and this "population" was allowed to evolve for more 
than 200 generations. The results of this experiment are presented in Figure 3. 
The spatial patterns that evolved through this process are logical given the 
character of landscape and represent reasonable compromise solutions given the 
objectives of the stakeholders (highly credible and low producing soils in forest, 
moderately erodible soils with reasonable productivity in wheat, slightly 
credible productive soils in soybeans).

5.0 CONCLUSION

To support effective resource management practices new tools are needed 
that allow decision-makers to build consensus among multiple stakeholders and 
to investigate the cumulative impact of individual actions. This research 
investigates two technologies that offer promise for such collaborative spatial 
decision making processes, agent-oriented programming and genetic algorithms. 
Genetic algorithms are used here to evolve landscapes that meet predetermined 
criteria. Intelligent agents provide a means of evaluating the fitness of these 
landscapes based on weighted criteria. Through this interaction between
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intelligent agents and genetic algorithms management strategies can evolve in 
ways that begin to meet the goals of multiple stakeholders.

BH1

dl High Erodibility 
^H Low Erodibility

' ' High Productivity 
•• Low Productivity

Figure 2. Soil credibility and agricultural productivity maps for the study site.

Figure 3. Most "fit" landscape after 200 generations. 
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