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ABSTRACT

Transforming raw observations into globally regular sampling grids or 
surface tessellations is a fundamental data processing and storage problem 
underlying much of our global data analysis. The basic geometry of 
traditionally employed quadrilateral-based point or area grids, while well 
suited to array storage and matrix manipulation, may inherently hinder 
numerical and geostatistical modeling efforts. Several scientists have 
noted the superior performance of triangular point grids and associated 
hexagonal surface tessellations, although no thorough evaluation of global 
data model alternatives has been conducted. In this paper we present 
results from a global grid comparison study that focused on recursive 
tiling of polyhedral faces projected onto the globe. A set of evaluation 
criteria for global gridding methods were developed. Of these, metrics for 
spheroidal surface area, compactness, and centerpoint spacing were found 
to be of particular importance. We present examples of these metrics 
applied to compare different recursive map projection-based and 
quadrilateral spherical subdivision tilings. One map projection approach, 
the Icosahedral Snyder Equal Area (ISEA) recursive tiling, shows 
particular promise due to its production of equal area hexagonal tiles on 
the spheroid at all levels of recursive partitioning.

INTRODUCTION

A new era of high spatial and temporal resolution environmental data 
covering the entire globe is about to begin, ushered in by NASA's Earth 
Observation System (EOS) and other global data collection efforts such as 
the 1km AVHRR, land cover, and DEM data sets being compiled as part 
of the International Geosphere - Biosphere Program's Data and 
Information System (Eidenshink and Faundeen 1994, Hastings 1996). We 
should expect that earth scientists will accelerate their use of geographic 
information systems (GIS), numerical modeling approaches, and 
geostatistical methods, singly or in concert, to study global scale 
phenomena such as climate change and biodiversity loss. Such analyses 
will require both spatial and temporal integration of currently 
disparate data sets from a wide variety of data producers.
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Transforming raw observations into global data models comprised of 
geometrically regular sampling grids or surface tessellations is a 
fundamental data processing and storage problem underlying global data 
analysis. One fundamental problem is that "regular" sampling grids or 
surface tessellations devised for the earth's surface, such as the ETOPO5 5 
minute DEM or the NASA Earth Radiation Budget Experiment (ERBE) 
2.5° global modeling grid, cannot be extended to the entire earth without 
losing regularity in both surface area and shape. Alternative approaches 
beg investigation.

An ancient realization is that subdividing a sphere with total regularity of 
surface area and polygonal shape within the tiles formed by the 
subdivision can be achieved only by projecting the faces of one of the five 
Platonic polyhedra (tetrahedron, hexahedron, octahedron, dodecahedron, 
icosahedron) onto the sphere. Further partitioning of any face will 
produce unavoidable variations in surface area, shape, or both.

Equally important is the realization that the basic geometry of commonly 
employed quadrilateral point grids or surface tessellations, while well 
suited to array storage and matrix manipulation, may inherently hinder 
numerical and geostatistical modeling efforts. Scientists have noted the 
superior performance of triangular point grids and associated hexagonal 
surface tessellations for numerical analyses central to studies of fluid 
dynamics, percolation theory, and self-avoiding walks. Additionally, 
hexagonal tessellations are favored by influential statisticians involved 
with developing survey sample designs and geostatistical methods such as 
Kriging.

It is clear that a thorough evaluation of alternative global data models is 
needed. We take a first step in this direction by presenting examples of 
results from a global grid comparison study funded by the U.S. 
Environmental Protection Agency (White et al. 1992). Comparisons are 
predicated on evaluation criteria, such as those presented below.

GLOBAL DATA MODEL COMPARISON CRITERIA

We believe that an ideal general purpose global data model would consist 
of n points and n area! cells on the globe and have the following 
properties:

1. Areal cells constitute a complete tiling of the globe, exhaustively covering 
the globe without overlapping.

2. Areal cells have equal areas.
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3. Areal cells have the same topology.
4. Areal cells are the same shape.
5. Areal cells are compact.
6. Edges of cells are straight in some projection.
7. The edge between any two adjacent cells is a perpendicular bisector of the 

great circle arc connecting the centers of those two cells.
8. The points and area! cells of the various resolution grids which constitute 

the grid system form a hierarchy which displays a high degree of 
regularity.

9. A single area! cell contains only one point, i.e., each point lies in a 
different area! cell.

10. Points are maximally central within area! cells.
11. Points are equidistant from their neighbors,
12. Grid points and areal cells display regularities and other properties which 

allow them to addressed in an efficient manner.
13. The grid system has a simple relationship to the traditional latitude- 

longitude graticule.
14. The grid system contains grids of arbitrary resolution.

An early version of these criteria was formulated by Michael Goodchild, 
and we refer to this list as the "Goodchild Criteria". We have already 
noted that it is mathematically impossible for any discrete global point 
grid or surface tessellation to completely fulfill all of these criteria, since 
several are mutually exclusive. A good general purpose grid or 
tessellation might be expected to strike a balance among all criteria, 
whereas those tuned for specific applications or numerical methods might 
value certain of these criteria more highly. For example, geostatistical 
methods favor equal area tessellations that completely cover the globe and 
are compact.

Recursive Partitioning

Cells that can be partitioned recursively may form a tessellation system 
that is hierarchical and contains component sub-cells that may or may not 
exhibit a high degree of regularity. The terminology of recursive 
partitioning can best be understood from an illustration such as Figure 1. 
Two types of partitioning, sometimes called 4-fold and 9-fold, are shown 
in the top and bottom equilateral triangular cells. Each full triangle is at 
recursion level 0, and the initial partitioning into either 4 or 9 triangular 
sub-cells is termed recursion level 1. This 4-fold or 9-fold increase in the 
density of triangular sub-cells continues at recursion levels 2 and higher. 
Sets of six triangular sub-cells can be assembled into hexagons at each 
level of recursion, as shown in the right hand half of Figure 1. Notice that
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the hexagons as assembled are symmetrical about the three triangle 
vertices only with 9-fold partitioning, and such symmetry is a further 
advantage when assembling uniform global data models. This leads us to 
use 9-fold partitioning in our analyses. A similar illustration could be 
created for recursive partitioning of spherically rectangular quadrilaterals, 
with the desirable symmetry present for any n-fold partitioning.

Naturally, an infinite number of triangular, hexagonal, or quadrilateral 
recursion levels are possible, as recursive partitioning can continue 
indefinitely. However, we find 9-fold partitioning to recursion levels less 
than ten to be suitable for comparison purposes, since surface area, 
compactness, centerpoint spacing, and other metrics are still computable at 
the rapidly increasing cell densities. However, the computation effort 
quickly becomes immense at higher levels of recursion and the results may 
not add significantly to our understanding of the surface tesselation or 
point grid geometry.

Evaluation Criteria Metrics

Global data model evaluation criteria are of limited practical value until 
metrics are developed for each. Examining the criteria presented above, 
we see that both topological and geometrical metrics must be devised. We 
have focused on geometrical measures of surface area, compactness and 
centerpoint spacing for both triangular and hexagonal cells on a spheroid 
such as the GRS80 or WGS84, although we only present results for 
hexagonal sub-cells in this paper. All of these measures involve 
determination of geodesic distances using standard ellipsoidal distance 
equations. Spheroidal surface area for quadrilateral cells can be computed 
using standard equations found in Maling (1992) and other references. 
Computing the spheroidal surface area of more geometrically complex 
cells such as spheroidal hexagons requires the oriented triangle summation 
approach developed by Kimerling (1984).

Measurement of spheroidal compactness proved the greatest challenge. 
Many two-dimensional compactness measures are based on an area to 
perimeter ratio normalized to 1.0 for a circle. We have extended this idea 
to the spheroid by determining the spheroidal area to parallel of latitude 
perimeter ratio, normalized to a spheroidal cap of the same surface area as 
the cell.
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Recursion i

9-Fold Partitioning

Recursion 2 
Recursion 3

Recursion 1

Triangular Hexagon Assemblage

Figure 1. 4- and 9-fold triangular and hexagonal partitioning of an 
icosahedron face at the first three levels of recursion.

Our numerical analysis of sub-cell surface area, compactness and 
centerpoint distance focused on obtaining the average, range, and standard 
deviation for the population of sub-cells at each level of recursion. Range 
and standard deviation values were normalized as proportions of the 
average to allow direct comparison of values at different levels of 
recursion.

GLOBAL DATA MODEL COMPARISON EXAMPLES

Many spherical and fewer spheroidal point grids and surface tessellations 
have been devised as global scale data models, and in this paper we only 
compare a few commonly employed and/or potentially attractive 
tessellations. Our examples include two major classes of surface 
tessellations, namely quadrilateral approaches and polyhedral approaches 
based on map projection surfaces.

Equal Angle Quadrilateral Tessellations

Tessellations of the globe into quadrilateral cells of equal latitudinal and 
longitudinal extent are termed equal angle. Examples abound, including 
the 5' x 5' ETOPO5 global DEM, and the ERBE 2.5° x 2.5°, 5° x 5° and
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10 °x 10 ° quadrilateral grids (Brooks 1981). Our example will be an 
initial partitioning of the globe into thirty-two 45° x 45° cells at recursion 
level 0, and subsequent 9-fold partitioning to recursion level 5. Hence, 
recursion level 2 corresponds to the 5° x 5° ERBE grid.

"Constant Area" Quadrilateral Tessellations

Constant area tessellations begin with an arbitrary sized quadrilateral cell 
at the equator, and then define the parallel and meridian cell boundaries 
across the globe so as to achieve approximately equal area cells. This is 
done either by keeping the latitude increment constant and adjusting the 
longitude increment as the pole is approached, or vice versa (Brooks, 
1981). Our example is the Nimbus Earth Radiation Budget (ERB) 
Experiment grid, with initial 4.5° x 4.5° quadrilateral cells at the equator. 
The longitudinal increment increases in twelve discrete steps to 120° near 
each pole. Recursive subdivision into "constant area'* sub-cells is more 
problematic, since 4-fold equal angle partitioning is commonly employed 
for simplicity. Breaking from tradition, we employ 9-fold equal angle 
partitioning to maintain consistency in our comparisons while using the 
same basic partitioning method. The initial 4.5° x 4.5° cells correspond 
approximately to recursion level 2 in the previous equal angle tessellation, 
and we carry the partitioning to recursion level 5.

Polyhedral Map Projection Surface Tessellations

The faces of a Platonic polyhedron are a natural starting point for a global 
data model, since each face is identical in surface area and is a regular 
spherical polygon when projected to the globe. Attention has been given 
to the octahedron (Dutton 1988, White et al. 1996) and the icosahedron 
(Baumgardner and Frederickson 1985), and we examine the latter in this 
paper. A convenient partitioning method for polyhedral faces is to create 
a map projection of each face that is of the same geometric form as the 
face, e.g., an equilateral triangle for each face of the icosahedron. We 
then partition the map projection surface recursively, producing 9 identical 
equilateral sub-triangles with 9-fold partitioning of the face. Sets of six 
sub-triangles can then be combined into hexagonal cells that are finally 
projected back onto the globe. Several map projections can be used, but 
we will examine two: the Snyder and Fuller-Gray.

The Snyder Polyhedral Equal Area projection (Snyder 1992) transforms 
each icosahedron face on the globe into an equilateral planar triangle 
while maintaining area equivalence throughout. The projection is made 
equal area by adjusting the scale outward from the center of each edge.
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This results in increased shape distortion as each of three lines from the 
triangle center to comer vertices is approached.

The Fuller-Gray projection is based on the geometrical idea behind R. 
Buckminster Fuller's icosahedral world map projection. Fuller imagined 
the three edges of each icosahedron face as flexible bands curved to lie on 
the spherical surface. Each edge would be subdivided and holes drilled at 
n equally spaced increments, and flexible bands would be strung between 
corresponding holes on adjacent edges. This would create a triangular 
network of lines on the sphere, which could be flattened to create a regular 
grid of equilateral sub-triangles. Fuller imagined the vertices of each sub- 
triangle being the projection of the corresponding line intersection point 
on the sphere. These intersection points were later found physically 
impossible to achieve, since nearly all triplets of intersecting lines on the 
globe form small triangles in the plane, whose centerpoints are the best 
approximation of Fuller's idea. Gray (1994) has developed exact 
transformation equations for this approximation, producing a compromise 
projection having both small area and shape distortion. As with the 
Snyder projection, sub-triangles can be assembled into a hexagonal 
tesselation on the projection surface and globe.

GLOBAL DATA MODEL COMPARISON RESULTS

Variation in cell surface area is a major concern to geostatisticians and 
others. In Figure 2 we show area variation for the hexagonal and 
quadrilateral sub-cells produced by the four data models examined, using 
logarithmic scales of normalized cell areas at increasing levels of 
recursion with corresponding decreases in average cell area. Recognizing 
that the triangular partitioning of the icosahedron face performed here 
always creates 12 pentagons on the globe, we see that the surface area 
standard deviation for the Snyder projection model is always slightly 
greater than zero, even though there is no area variation among the 
hexagons forming the partition and all twelve pentagons are exactly 5/6* 
the area of each hexagon. However, at higher levels of recursion the 12 
pentagons occupy progressively less of the total surface area and the 
standard deviation for the entire globe rapidly approaches zero. Hence , 
Figure 2 shows the Snyder model to be clearly superior for sub-cells less 
than 100,000 sq. km.

The variation among sub-cell centerpoint distances for the four models, 
seen in Figure 3, shows similar perfoimance except for the poorly 
performing Equal Angle Quadrilateral model. The Fuller and Constant 
Area Quadrilateral models converge at higher recursion levels to 
essentially identical low variation, closely followed by the Snyder model.
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Figure 2. Normalized sub-cell area standard deviation vs. average cell 
area for four data models.
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Figure 5. Normalized sub-cell compactness standard deviation vs. average 
sub-cell area for four data models.

Average sub-cell compactness values for the four data models (Figure 4) 
shows the superior performance of icosahedral models over quadrilateral, 
which is to be expected since hexagonal shapes are inherently more 
compact than rectangular. At all levels of recursion the Fuller data model 
produces hexagons slightly more compact than Snyder model hexagons, 
both being far more compact than the Constant Area and Equal Angle 
model quadrilaterals.

Variation in sub-cell compactness (Figure 5) shows the slightly better 
performance of the Fuller model over the Snyder at higher levels of 
recursion. The Constant Area Quadrilateral model produces the lowest 
variation at its initial tesselation, but compactness variation increases 
rapidly as the initial cells are partitioned in the equal angle manner.

CONCLUSION

Our global data model evaluation criteria and associated metrics have 
allowed us to compare data models varying widely in cell geometry and 
topology. Many more models than the four presented here as examples 
have been analyzed, and we have concluded that the Icosahedral Snyder 
Equal Area (ISEA) model recursive partitioning shows particular promise. 
This is due to its equal area hexagonal tiles on the spheroid, and to its high 
average cell compactness and low compactness variation relative to 
traditional quadrilateral tilings, especially at higher levels of recursion.
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We are now working to develop an efficient ISEA tile addressing scheme 
and to demonstrate the advantages of this global data model when it is 
populated by data transformed from existing global data sets such as the 
ETOPO5 digital elevation model.
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