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ABSTRACT

This paper revisits a more than twenty-five-year old idea of G. F. Jenks and 
W. R. Tobler about the relationship between accuracy, information and map 
complexity of choropleth maps. The problem of regionalization (sensu aggregation) 
is treated within a spatial statistical context. For a map with N regions to be 
aggregated into G groups, nonspatial hierarchical classification schemes disregard 
spatial pattern and are prone to lead to non-contiguous classes (i.e., each group may 
consist of a large number of patches). Restricting merges during clustering according 
to neighborhood-topological relationships rewards contiguous patches of classes, but 
may impose too strict, potentially misleading, constraints. To obtain more efficient, 
less complex aggregate representations (e.g., maps) we propose to evaluate efficiency 
by a modified version of Akaike's information criterion: AIC = (-2 x loglikelihood + 
2 x number of patches). It follows from the general principle of model selection, by 
minimizing the sum of fitting error and some measure of model complexity, Socio- 
economic, environmental and simulated data are used to highlight the characteristics 
of this approach, which appears particularly useful when no additional information is 
available to select the number of groups.

INTRODUCTION

The art and science of creating beautiful and meaningful maps based on some 
two-dimensional distributions has attracted people for several hundred years. In 
particular, major efforts have been focused on creating "the" spatial/cartographic 
analogy of classification; i.e., to put the N elements (data representation units, 
DRUs) of a two-dimensional lattice into G«N "spatial groups". Such tasks often 
emerge in studies of socio-economic variables (e.g., defining wealthy/poor 
neighborhoods), in environmental studies (e.g., finding locations of suitable habitats) 
and in many other geographically-oriented fields.

Considering the frequent occurrence and diversity of applications of such tasks, 
it is not surprising that several detailed studies and overviews have focused on the 
series of "map-making" decisions and their optimization. Classical cartographic 
treatises, typically under the "error and classification of choropleth maps" keywords, 
can be found in Jenks and Caspall (1971), Monmonier (1973), Stegena and Csillag
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(1986) and, in textbook format, in Robinson et al. (1995, p.517 ). More analytical 
approaches to similar problems are dealt with in spatial statistics (with widespread 
applications in econometrics, epidemiology, soil science) generally under the 
"aggregation and the modifiable areal unit problem" headings, for example, in Unwin 
(1981), Haining (1990) and Cressie (1993). A somewhat closely related array of 
techniques have emerged in image processing usually referred to as "image 
segmentation" (see, e.g., Schowengerdt, 1983, Kertesz et al., 1996). Several reports 
recognized the relationships, and interactions, among these procedures and some 
attempted to define a more general framework for "spatial data representation" (e.g., 
Maguire et al., 1991). Within the context of geographical information systems 
(GIS), often linked with statistical software packages, "spatial grouping" is also a 
frequently occurring common task, even if it is performed with diverse goals ranging 
from illustration, detection and verification of spatial patterns, optimization of visual 
and/or functional representation.

The real impetus for this paper, however, is an intriguing idea illustrated on 
the last, an apparently neglected, figure (see Figure 1) from the seminal paper of 
Jenks and Caspall (1971).

ccuracy

information

INCREASING 
MAP COMPLEXITY

FIGURE 1.
Relationship between accuracy 
and information flow on maps; 
redrawn from to Jenks and Caspall 
(1971). The accuracy vs. 
complexity relationship was 
supported by empirical data; the 
information vs. complexity 
relationship was based on Waldo 
Tobler's personal communication. 
Interestingly, the choice of an 
"optimal map" does not 
correspond to either maximum 
information flow, or to maximum 
accuracy.

This figure seems to suggest more challenges than conclusions:
• How does one measure information flow as a function of map complexity?
• What evidence supports the shape of the "information vs. complexity" curve? What 

determines its position along the complexity axis?
• What evidence supports the existence of a unique intersection of the "information 

vs. complexity" and the "accuracy vs. complexity" curves? What does its position 
depend on?

• What algorithm is suitable for finding the optimal map?
• Assuming there is a unique intersection, what justifies the selection of the marked 

"optimal map" instead of maximum information (or maximum accuracy)?
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(RE)DEFINING THE PROBLEM: MEASURING INFORMATION LOSS

Let us define the problem as follows. The object set (T) consists of N units 
(e.g., polygons in a coverage, pixels in an image). The data set (Y) is a 
K-dimensional variable observed at each element of T. P(0) , a partition of T, consists 
of G collectively exhaustive disjoint classes. Each class covers a region that may 
consist of one or more patches. The special regionalization where all classes are 
spatially contiguous (i.e., the number of classes (G) equals the number of patches 
(R)) is called segmentation. Note that the finest partition, the only N-partition is 
P(N) , and the coarsest partition, the only 1-partition is P(1) , and the definition of 
fine/coarse (and finer/coarser) is the usual. Let D(P) denote the discrepancy between a 
selected regionalization and the observed phenomenon. In light of general statistical 
model selection (Linhart and Zucchini, 1986), our model of choice should be 
parsimonious, i.e., it should not have more parameters than the ones which can be 
reliably estimated, for example, to avoid "overfitting". Thus, discrepancy consists of 
two parts: one due to approximation, and another due to estimation. The first 
component, DA(P), practically measures model complexity, and is often completely 
neglected. The second component, DE(P), measures the goodness of fit between the 
sample and the chosen (approximating) model. In the above outlined classification 
example it is the "loss of information due to grouping", and it is most commonly 
measured by the expectation of the negative loglikelihood. This leads us to Akaike's 
information criterion as a measure of discrepancy (Akaike, 1973):

AIC = (2 x number of parameters -2 x loglikelihood).

Our task is to minimize the discrepancy over the set of all possible partitions P*. 
Note that P* consists of potentially very large number of elements (2N), thus there is 
no real chance to find the exact solution. Clustering procedures, therefore, are 
typically confined to some subset of P* while minimizing D(P). An acceptable way 
to avoid the problem of comparing, and thus choosing from, models of different 
complexity by computing D(P)=DA(P)+DE(P), is to set G, i.e., to reduce the problem 
to finding P(G) , the G-class map, with the smallest DE(P). Cromley (1996) provides 
an extensive recent review of comparing different "estimation discrepancies" with 
given number of classes.

In this paper we will consider the problem when the number of classes (G) 
is not known. Hierarchical clustering algorithms, for example, are suitable to scan a 
subset of P*, the monotone aggregating (coarsening) sequence of P(N) , P(I|M\ ..., P(1) , 
i.e., they start from the finest partition (all elements form a separate class) and the 
number of classes decreases by one in each step (by merging two classes) until the 
coarsest partition, P(1) , is reached. The algorithms differ from each other in the way 
they decide which two classes to merge. The most common choice for DE(P) is the 
ratio of within-groups variance/total variance. The value of DE(P) can be regarded as a 
measure of separation of partition P. The Ward-method of clustering (Ward, 1963) in 
each step selects the pair of clusters to merge by minimizing the increase in the
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above defined "estimation discrepancy" leading to the monotone increasing sequence 
of DE(P)(N) , ..., DE(P) (I) . Note that there is no guarantee that any member of this 
sequence is close to the minimum of DE(P*).The likelihood in the case of a simple 
product MVN(|i,a) is:

4&MJ.Y) = const x exp{-(l/2) x (I/a2) x In [yn-|in] 2]}

for which the (-2 x loglikelihood) reduces to the within-groups sum-of-squares if 
G2=l. As Jenks and Caspall (1971) also note, accounting for DE(P) only during 
aggregation, one would always choose the map with each DRU being a separate 
class, because DE(P(N)) provides the "best" separation by value. Following from AIC, 
the discrepancy due to approximation, DA(P), should equal the number of classes (G).

In geographical applications, when judging whether a partition is "good" or 
not, one is frequently concerned with pattern, the separation by location as well. 
Assuming that we are looking at "dirty pictures", i.e., realizations, where some 
"crisp" regions are blurred by noise, it is essential to use methods which are robust in 
"finding" the regions, thus accounting for DA(P) as well. One approach in this 
direction is the restriction of the subset from which a clustering algorithm chooses 
classes to merge according to neighborhood-topological information. Such "patch"- 
versions can be implemented for any hierarchical clustering, similarly to several 
region-growing algorithms developed in image analysis (Landgrebe, 1980). If we 
restrict merges to neighbors, the number of classes (G) equals the number of patches 
(R) in each step.

AN EXAMPLE

Let us illustrate how these measures of discrepancy work with a simple 
example. Figure 2a. shows a simple map of 64 DRUs with three classes (0, 8 and 9 
represent values), which form three "crisp" regions, or patches. Figure 2b. and 2c. are 
"standard" cartographic representations with three equal-count and three equal -interval 
choropleth maps, respectively. Aggregating this map with Ward-clustering and its 
"patch"-version, we can plot the within-group sum-of-squares (SSQw), the number of 
classes and the number of patches for each iteration (Figure 3.).

To generate a measure of information (see Figure 1.), both clustering 
procedures can be characterized by AIC (in this case SSQw+2 x number-of-classes); 
cAIC denotes the case of Ward clustering and pAIC denotes the case of Ward_patch 
clustering (Figure 4.). Note that cAIC practically serves as a stopping rule, but it 
"stops" a little bit "early". Therefore, we propose to investigate a modified version, 
cAIC= SSQw+2 x number-of-patches for the Ward-clustering, because it retains 
essential information about the pattern, while it is not prone to the restrictions of 
Ward_patch. The minimum of the AlC-plots corresponds to the "minimum 
information loss" due to the model, and such measures are particularly useful in 
comparing the nested series of models generated by hierarchical clustering.
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FIGURE 2.

Sample map (a) with three classes forming three "crisp" regions (0, 8 and 9 are values). 
Its three-class equal-count (b) choropleth map represents seven patches and its three- 

class equal-step (c) choropleth map represents three patches.
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FIGURE 3.
SSQw (left) and the number-of-classes/patches (right) for the last 16 iterations of Ward and

Ward_patch clustering of Figure 2a. SSQw is the discrepancy due to estimation, and the
number-of-classes or the number-of-patches is the discrepancy due to approximation.
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FIGURE 4. 
Plot of measures of 
"information loss" for the 
last 16 iterations of Ward 
(cAIC, cAIC) and Ward_patch 
(pAIC). The minimum of 
these functions corresponds 
to minimum discrepancy 
between the model and the 
observation.

Both cAIC and pAIC have minima at 3-classes/9-patches (i.e., each value in 
Figure 2a. forms a separate class), while the minimum of cAIC coincides with 2- 
classes/3-patches. In other words, both cAIC and pAIC seem "to overfit" resulting in 
a tendency to reduce SSQw at a cost of greater number of patches. One can apply
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cAIC as an alternative stopping rule for agglomerative hierarchical clustering of 
geographical phenomena.

A SIMULATION EXPERIMENT

To investigate the behavior of these measures of discrepancy we have 
conducted a simulation experiment. Because we are interested in deriving some 
information about spatial pattern (c.f. regionalization), noise with various levels of 
spatial autocorrelation was added to Figure 2a, and these realizations were aggregated 
using both clustering algorithms (Ward and Ward_patch). The spatial structure of 
noise was controlled by the conditional autoregressive (CAR) parameter p (Cressie, 
1993):

Y « MVNfu.c^CI-pW)- 1 ]

where wy=l for neighbors (0 otherwise), and we set |iy=0 and O2=l. Fifty realizations 
were analyzed for p set to 0.0, 0.1, 0.2, and 0.245, respectively. Table 1. summarizes 
the results for the two extreme values of p, and Figure 5. shows example outputs.

TABLE 1.
Summary of fifty simulations for extreme values of spatial autocorrelation. Rows contain 
mean values and standard deviations for various measures of aggregation quality. Columns 
refer to different merging and stopping rules for Ward clustering.

p=0
minimum
class
patch
iteration
SSQw

cAIC

21.37
7.57
35.14
56.43
6.22

1.58
0.79
5.05
0.79
1.82

pAIC

48.45
14.43
47.86
49.43
19.31

5.45
3.87
6.52
3.69
4.73

CAIC 1

54.09
5.00
15.29
59.00
23.52

6.87
1.53
6.50
1.53
7.90

p=0.245
minimum
class
patch
iteration
SSQw

cAIC

22.90
8.14
33.29
55.86
7.72

2.03
1.35
5.47
1.35
3.20

pAICp

46.26
15.14
46.86
48.86
18.64

4.79
3.44
5.90
3.44
8.47

CAIC 1

55.04
5.00
16.29
59.00
26.21

4.92
1.29
3.35
1.29
3.80

One would expect that as the spatial autocorrelation of noise increases the 
higher the chance to mislead the clustering algorihtm by forming "artificial" patches.

101



100 i

100

c d
FIGURE 5. 

Sample outputs from the simulation-aggregation study. Values of SSQw and AIC for a
"typical" run for the sum of Figure 2a. and spatially not correlated noise (a) and

spatially highly correlated noise (b). The corresponding 5-class maps corresponding to
the minimum of cAIC are shown on (c) and (d), respectively.

Clearly, the cAIC stopping rule is the most resistant to the increasing p; its average 
choice for the number of classes remains the same (5.0), while both other measures 
tend to choose more classes and even more patches (DA(P)), at each p. Of course, it 
comes at a cost of greater DE(P); the values of SSQw are significantly higher than for 
the other two measures. It is important to note that in real applications, typically, 
there is no information about the relationship between the amount of noise and the 
nature of boundaries, therefore, there is always a chance to overfit to "islands" (when 
using cAIC), or to "awkward patches" (when using pAIC).

TOWARD APPLICATIONS

The implementation of using any of the above described measures in 
geographical analysis is relatively simple in commercially available GIS software.
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Below, two very different mapping problems are used to illustrate the applicability of 
the findings where regionalization is the task. We have intentionally selected 
examples, where no a priori information can be easily used.

Case-1: Regions of high acid deposition in the northeast US are intensively 
studied to understand and predict its impact on the soil-water-plant systems. Since 
long-term acid deposition measurements are only sporadically available, elevation has 
been used as a surrogate for the amount of wet acid input into lake ecosystems (for 
example, for defining sampling strata).

200

H <
100

50^

170 180 190

D 182
HO 317
• 445 .
M 558 D
fl 725
• 896
• 1129
D 174-413
D 413-456
• 456-498
• 498 - 527
• 527-550
• 550-594

_______ • 594 -1129
FIGURE 6.

An east-west cross section of the Adirondack Mountains, NY, with the Voronoi-
polygons for 200 lakes from the Adirondack Lake Survey. A relatively smooth
variable, elevation (m) is recorded as a surrogate for acid deposition to delineate

variously impacted areas. Discrepancy values (last 30 iterations shown, (a)) for the
different clustering procedures coincide at 7 classes (b). The 7-class equal-count

choropleth map (c) gives a vastly exaggerated impression.

A subset of 200 lakes from the Adirondack Lake survey along the major elevation 
gradient is used in this test. Figure 6. summarizes the results, which indicate that
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even in case of relatively smooth variation, traditional choropleth mapping (simple 
histogram-partitioning) can lead to quite misleading results.

Case-2: In urban socio-economic research, the delineating regions (e.g., for 
market, services, voting behavior) often aims to identify "areas of action" or "areas of 
influence". Below, we show an example using percentage of unemployment based on 
121 enumeration areas in the Greater Toronto Area. The three clustering procedures 
result in significantly different regionalizations (Figure 7.). Because of the small, 
intensively segmented southwestern section, according to pAIC, cAIC and cAIC one 
would select 13 classes (77 patches), 8 classes (72 patches) and 3 classes (19 
patches), respectively. The "closest" equal-step choropleth map is shown for 
comparison.
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FIGURE 7. 
Regionalization of 
%unemployment for 121 
enumeration areas. The plot of 
AIC (left) for the clustering 
indicates vastly different 
patterns. The map 
corresponding to cAIC and 
the "closest" equal-count 
choropleth map (below).
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CONCLUDING REMARKS

There are many conceptual models of geographical regions. When landscapes 
are represented by some variables attached to some data representation units, spatial 
statistical tools can be applied to "finding" homogeneous regions, especially when no 
other ancillary information (constraint, requirement) is available. Within this context 
we revisited the proposition of optimizing "information flow" (Jenks and Caspall, 
1971) and compared three different measures of it using hierarchical (Ward) clustering.
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In a simulation study, accounting for the spatial autocorrelation of noise, we found 
the modified, topologically sensitive Akaike information criterion a robust measure 
to avoid "overfitting" and moderately "reward" contiguous patches. The immediate 
next step should be to implement the CAR-based likelihood in AIC. The proposed 
type os measure is relatively simple to implement in commercially available 
software, at least to be used as guidelines in creating choropleth maps. It is also an 
advantage, that the computation is straightforward to extend to the multivariate case 
(i.e., regionalization based on more than one variable).
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