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ABSTRACT

Spherekit is a spatial interpolation toolkit developed and distributed over 
the internet by the National Center for Geographic Information and Analysis 
(NCGIA). A unique feature of the software is its ability to work directly with 
the spherical geometry of the earth. Thus, distances, areas, and directions are 
spherically based, and interpolation can be carried out over large distances 
without distortions induced by the use of planar projections. The user can 
select from several interpolation methods that have been adapted to the sphere. 
The package also features "smart interpolation" capabilities to incorporate 
knowledge of the underlying physical processes that produced some of the 
spatial variability. Error analysis using cross-validation is built-in to compare 
the relative performance of interpolation algorithms or parameter settings. 
The cross-validation errors can themselves be interpolated to a uniform grid to 
reduce spatial bias. The capabilities of Spherekit are demonstrated using three 
examples.

OVERVIEW

Spherekit is a spatial interpolation software toolkit developed at NCGIA as 
part of Initiative 15 (Multiple Roles of GIS in Global Change Research). The 
source code is available over the internet without charge to the user. The 
package features several unique capabilities.

Spherekit permits interpolation over continental or global scales because 
its computations are based upon spherical distances and orientations (Raskin, 
1994). Conventional interpolations (Watson, 1992) are based upon planar 
projections of the earth that produce distortions of some kind over large 
distances. In Spherekit, projections are applied only for display purposes after
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the interpolation has been carried out in spherical geometry. The user can 
select from several interpolation algorithms that have been adapted to the 
sphere: inverse distance weighting, thin plate splines, multiquadrics, 
triangulation, and kriging.

Spherekit permits the user to incorporate knowledge or information about 
the processes that produced the underlying spatial variations. A built-in 
equation editor and a collection of nonlinear transforms allows the user to 
create and experiment with new, physically meaningful variables from the 
independent and dependent variables available. This "smart" interpolation 
capability allows Spherekit to intelligently interpolate using auxiliary 
information. A digital elevation model (DEM) is included with the package. 
One use of the smart interpolation feature is to incorporate elevation 
information when interpolating variables that are correlated with height.

Error analysis is an integrated component of Spherekit. This makes the 
package particularly useful for comparing interpolation methods and 
parameters. The performance of a method is measured using cross-validation. 
The cross-validation error is defined at each observation point as the difference 
between its actual value and its estimated interpolated value using the 
remaining n-1 points. The resulting error field can be displayed either at the 
data points or interpolated to a regular grid to reduce spatial biases. Error 
difference fields, comparing a pair of methods and/or parameter settings, can 
be easily created and displayed.

Spherekit helps the user manage the various files that have been read in or 
created. The file management window for a sample session is shown in Figure 
1. The example shows file listings for observation data, grids, networks, 
interpolation methods, interpolation results, error fields, and derived variables. 
Clicking on any field name displays all known metadata for that field. This 
window also serves as the Spherekit main menu; six main menu options appear 
along the top of the window.

INTERPOLATION METHODS

Spherekit was designed to be usable by researchers analyzing global scale 
datasets. Several standard interpolation methods have been modified for use 
on the sphere by utilizing spherical distance in place of Euclidean distance. 
Additional modifications for sphericity are used where possible. Most of the 
interpolation methods can be implemented as either global or local methods. 
For local methods, a neighborhood size is specified either as a radius, the 
number of included points, or an average number of points. Overrides are 
available to bound these values, if desired. Five interpolation methods are 
available:
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Figure 1 Example of the file management window

* Inverse distance weighting
* Multiquadric
* Thin plate spline
* Kriging
* Triangulation

For the inverse distance weighting method, the user can choose from three 
weighting functions: inverse power, Shepard (1968), and a smoothing function. 
The user also can select levels of anisotropy and gradient correction (Shepard, 
1968). The bias correction deweights clustered points to reduce spatial bias. 
The gradient correction permits extremum values to occur at locations other 
than the observation points.

The multiquadric and spline methods involve inversion of an nxn matrix 
for n data points. For n larger than several hundred, the user should specify a 
neighborhood for carrying out local fits. This will invert smaller matrices for 
each interpolation point rather than performing a single large matrix inversion 
over the entire domain. The user is warned to use a local fit if the storage 
requirements for carrying out the nxn inversion exceed the space available.
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The generalization of multiquadric method to the sphere has been formulated 
by Pottmann and Eck (1990). The thin plate spline implementation is a 
spherical extension of the methods described in Franke (1982).

The kriging implementation is that of kriging with a trend (universal 
kriging). Semivariograms are computed using the GSLIB library software 
package (Deutsch and Journel, 1992). Exponential, Gaussian, spherical, and 
linear models are supported, all using spherical distance. A summation of two 
of these models is permitted. The semivariogram results also can be used for 
exploratory analysis purposes; an example is provided in the next section.

The triangulation method uses the Delaunay triangulation to identify the 
nearby observation points to be used in the interpolation. Renka's spherical 
algorithm (Renka, 1984) is used to carry out the interpolation. The user can 
choose either a linear interpolation of the values at the triangle vertices or a 
polynomial fit, obtained by performing an initial cubic spline fit along the 
edges.

APPLICATIONS

Smart interpolation

"Smart" interpolation improves the performance of traditional 
interpolations by using knowledge of the processes that produced the spatial 
variations (Willmott and Matsuura, 1995). In this example, we use the physical 
law that temperature falls off with altitude, roughly at the environmental lapse 
rate. Standard and topologically aided interpolations are compared using a 
sparse network of 160 weather stations in China. The data set is deficient in 
that high altitude locations in the Himalayan mountains are underrepresented. 
Figure 2 shows the interpolated temperature field (in °C) using the 
multiquadric method. The fit based on the sparse dataset fails to take into 
account the large variations in topography that produce very low temperatures 
at high altitudes.

Figure 3 shows the corresponding "smart" interpolation based on an 
interpolation of the derived variable "sea level temperature." In this example, 
the first-order effect of the temperature- elevation relation has been 
incorporated into the interpolation. That is, the "smart" interpolation captures 
the climatological influences of topography. The low temperatures associated 
with the mountains of western China are now visible, despite the lack of high 
altitude temperature stations.
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Figure 2 Conventional interpolation (°C)
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The interpolation was performed using the following steps:

1. Reduce temperatures to sea level using the environmental lapse rate 
(SeaLevTemp= Temp + EnvLapseRate * Elevation)

2. Interpolate the "sea level" temperatures to a one-degree grid using the 
multiquadric method

3. Reintroduce elevation effect on the interpolated field 
(Temp= SeaLevelTemp - EnvLapseRate * Elevation)

This final step (the inversion of the operations inherent in Step 1) is carried out 
automatically by Spherekit. The user does not have to explicitly return the 
sea-level temperatures to actual temperatures.
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Figure 3 Smart interpolation (°C)
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Error analysis

This example demonstrates the cross-validation analysis capabilities of 
Spherekit. In cross-validation, a data point is removed and its value is 
interpolated using the remaining n-1 points. The difference (actual - predicted) 
is the interpolation error at that point. Spherekit provides the option of 
interpolating the errors to a regular grid to reduce the spatial bias. Figure 4 
shows the cross-validation error of a temperature dataset for Australia. Thin- 
plate splines were used as the interpolation method; the gridded plot reveals 
the one-degree granularity of the interpolation. Errors are reported in terms of 
three measures: mean average, mean bias, and root mean square.
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Figure 4 Thin-plate spline cross-validation errors (°C)

Spatial variability

A final example demonstrates the exploratory analysis capabilities of the 
package. A global temperature dataset is used to demonstrate long-distance 
correlations present in climate data. As Spherekit computes distances using
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great circle distances, distances at continental and global scales are computed 
correctly.

Figure 5 shows an isotropic semivariogram of the dataset. There is a 
plateau in the semivariogram in the 2000-4000 km range and a sharp rise 
thereafter. This calculation is repeated using anisotropic semivariograms in the 
east-west and north-south directions. Figure 6 (the east-west semivariogram) 
displays the plateau more prominently. This characteristic corresponds to the 
common notion that zonal variations are relatively small. The north-south 
variations in Figure 7 vary at shorter distances, as would be expected. 
Interestingly, the semivariogram falls after reaching a peak; presumably this is 
due to a return to the same latitude zone at these distances.

AVAILABILITY

Spherekit runs on most UNIX-based machines. The source code can be 
downloaded from the Spherekit home page at:

www.ncgia.ucsb.edu/pubs/spherekit/main.html

The code uses Tcl/Tk for its Graphical User Interface (GUI), Generic Mapping 
Tools (GMT) for display of output fields, and netCDF for storing the DEM 
data. All of these auxiliary packages are required and can be downloaded 
together with Spherekit.
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Figure 5 Isotropic semivariogram (°C )
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