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ABSTRACT
We present three variants of a polyline simplification algorithm. The basic 
algorithm uses a variable angle tolerance measure to find maximal subsequences 
of vertices of the polyline that may be replaced by a single segment in a 
simplified approximation. In our key theoretical development, we prove that an 
easily implemented angle-testing procedure is locally equivalent to e-buffering; 
then we demonstrate that we may iterate the angle-testing procedure to find a 
maximum sleeve (rectangular strip in 2-D) of width 2e that starts at any vertex PJ 
and contains successive vertices Pi+i,..., Pj-i, PJ. The sleeve is maximum in the 
sense that it is the rectangular strip of width 2e that covers the largest number (j- 
i+1) of consecutive vertices starting with PJ. We proceed to build the longest 
possible sleeve from po to some p;, then from PJ to some PJ, and so on, until we 
have covered the entire polyline with "long sleeves". The center-line (or a near- 
center-line) of each sleeve offers a one-segment approximation to the sub- 
polyline of the original polyline linking of all of the consecutive vertices inside 
the sleeve. The three variants of our basic algorithm are the result of using 
different criteria to "trim the sleeve".

BACKGROUND
Our approach to polyline simplification applies unconstrained local processes to 
the polyline to produce a simplified polyline that lies within a given prescribed 
distance £ of the original polyline. We process the vertices of the polyline in 
order; and at any stage in our processing, all vertices are partitioned into three 
subsequences: the first i+1 vertices {p0, Pi, ... , pi}, that have already been 
completely processed (i.e., each vertex has received its final classification of 
"in" or "not in" the simplified polyline), the next k vertices {pi+i, pi+2, • ••, Pi+k}> 
that belong to an active pool of vertices currently undergoing processing, and the 
final n-i-k vertices {pi+k+i* • •• » pn}, that have yet to be processed. Our selection 
algorithms are local because they only operate on the pool of vertices {pi+i, pi+2, 
...» Pi+k}> adding one candidate vertex Pi+k+i, at a time on the right and removing 
a variable number of vertices pi+i, Pi+2v» from the left hand side of the pool (as 
soon as they have been classified as "in" or "not in" the simplified line). 
Because the pool size k is not bounded, our local algorithm is called 
"unconstrained" (McMaster, 1992). Instead of using a distance tolerance 
directly as our nearness threshold, we convert each distance tolerance into a 
variable angle tolerance for testing the vertices of our polyline. Our sequential 
process places each successive polyline vertex into a pool of candidates for
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possible deletion or inclusion. As the pool of candidates grows, the angle 
tolerance (angle range) in which we search to find a candidate vertex that will 
allow us to delete the entire pool grows smaller. When the angle range becomes 
empty, then we must include in our simplified polyline at least one vertex from 
the candidate pool. Our methods behave like a local filter that throws away 
unnecessary vertices and retains necessary vertices for the simplified polyline.

In this paper, we first present a greedy algorithm that deletes polyline vertices as 
they are found to lie within locally computed angle.tolerances (and keeps them in 
the simplified polyline when they are not). The greedy-deletion algorithm is 
simple and fast (linear running time), but may fail to delete some clearly 
unnecessary vertices from the approximating polyline. To overcome this 
drawback, we designed a second algorithm that postpones decisions about 
certain ambiguously situated vertices in the candidate pool. The second 
algorithm removes more vertices than the first algorithm, but the polyline with 
fewer vertices still successfully approximates the original polyline. The second 
variant, however, requires more complex processing of the pool values; and the 
worst-case complexity of the second algorithm is no longer linear. We finally 
offer a third variant that allows vertices to be perturbed slightly to obtain even 
simpler polyline representations within a prespecified threshold. This relaxation 
of the constraint on location of vertices for the simplifying polyline not only 
further reduces the number of output vertices, but also actually recovers the 
linear time complexity of the first variant.

We analyzed our basic and modified algorithms mathematically and compared 
them to the Douglas-Peucker and other algorithms. We also tested our methods 
empirically on real cartographic data and on special short vector data produced 
by vectorizing raster images into Freeman-code vectors. We found our method 
especially suitable for large, dynamic data sets and real-time processing because 
we do not need to store all original data at one time; and we do not need to 
preprocess data before simplification. Our sequential local processes produce a 
satisfying overall appearance of the output. Downloadable C++ code, a more 
extensive write-up of empirical test results of our algorithms, and an interactive 
Java demonstration have been set up on a web page (Zhao, 1996b)

MATHEMATICAL PRELIMINARIES
Distances and angles are two related geometric measures for determining point 
selection or rejection in polyline simplification. We present a sector bound as 
another geometric measurement useful in polyline simplification. Geometrically, 
a sector bound is a swept angle emanating from a distinguished point. 
Mathematically, it may be used to constrain segments emanating from that 
distinguished point to pass within a threshold distance of all points in a set of 
points. A sector bound is represented by two angles. It is easily computed and 
updated by local processes. With sector bounds we build polyline simplification
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algorithms that process a polyline's vertices in order (locally) and yet produce a 
guaranteed satisfying overall approximation of the polyline.

Suppose that p and q are two points on the plane, which we write p, q e R2 . We 
will use the following notation:

L(p,q) denotes the directed line segment from point p to point q. (This means 
L(p,q) * L(q,p).)

a(p,q) signifies the angle measured counter-clockwise from the positive X-axis 
to the directed line corresponding to the line segment L(p,q).

d(p,q) will represent the distance from a point p to the point q.

We define d(pi,q,p2) to be the perpendicular distance from point q to the line 
passing through points pi and p2 (pi, pa e R2). Notice that we write the vertices 
in an unusual order. The reason for this unusual choice is that in our polyline 
vertex sequence, the vertices will actually appear in this order; and the 
intermediate vertex q will be tested for significant displacement from the 
approximating segment joining neighbor points pi and p2 . We also have the 
following definition: The Sector Bound (or swept ,- 
sector) A(p, a\ a2 ) of point p and angles (Xi and /' 
(Xi is a point set given by: /

{qe R2 ltti< a(p,q)<a2 } / ,,-
, The sector bound A(p, cii, a.2) of point p is / ^,^''"

described by the two angles: start angle cti and £*"**
finish angle 0.2 . Figure 1 shows a sector bound. P
We may always assume that oci is less than or equal Figure 1 . Sector bound
to a2, and the angle from oci to oc2 in the counter-clockwise direction is positive
and less than 360°. For example, if oci=350° and 0X2=15°, then we express a2 as
375° (=15°+360°) and (Xi as 350° to make the counter-clockwise difference
positive to correspond to the usual order of the real numbers.

Lemma 2.1. The intersection of two sector bounds A(p,(Xn,ai2) and 
A(p,(X2i ((X22) which have the same initial point p is again a sector bound with 
same initial point p. A(p, a' , a") = A(p, an, oti2) n A(p, a2i, 0(22), where a' = 
majc{an,a2i}, the larger of the start angles; and oc"= min {0.22,0*12}, the smaller 
of the finish angles.
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Figure 3. Epsilon sector

Proof: It is clear from the geometry in
Figure 2. The intersection is A(p, <x' t<x")
with a' = a2i and a" = ocn . • "22
If of > of' , then we have that the j_
intersection A(p,a' ja") is empty. -\-

Next we give the following definition: The 
Epsilon Sector Q(pi,q,e) of point q from 
point pi,with threshold e is a point set given 
by {p2 e R2I d(pi,q, p2) < e}. P

Figure 2. Intersection of sector bounds 
Notice that p2 does not need to be near to q. 
p2 only needs to determine a direction together with 
Pi that passes near to q. A line through point pi and 
a point p2 in Q(pi,q,e) has the perpendicular 
distance from q no larger than e. We can use the 
epsilon sector for polyline simplification. The 
segment from pi to p2 is the simplified line segment 
and q is an original point. The point q has 
perpendicular distance < £ to line (pi, p2), hence 
point q can be deleted if pi and p2 are selected. In 
our line simplification process, pi is both the end
point of the last accepted line segment in the sequential polyline building process 
and the starting point of the next simplified line segment that will be added to the 
already processed initial sequence of points. The three points are consecutive 
points of the original line. We can delete the point q if and only if the point p2 is 
in Q(pi,q,£). Next, we will examine the relationship between the epsilon sector 
and the sector bound.

Theorem 2.1: When d(p,q) > £, the Epsilon Sector Q(p,q,£) is equivalent to the 
sector bound A(p, oci ,cx2 ) with

(Xi = oc( p,q) - 8, cc2 = cc(p,q) + 8, where 8 = sin'^E/dCp.q)).

Proof: Suppose v e Q(p,q,£). Then according to the definition of epsilon 
sector, we have d(p,q,v) < £. Denote $ = II ot(p,q) - oc(p,v) II, since sin§ = 
d(p,q,v)/d(p,q), sinS = £/d(p,q), and <|>, 8 e [0°, 90°], we get <|> < 8. That is: 
ex(p,q) - 8 < cc( p,v) < oc( p,q) + 8. According to the definition of sector bound, v 
e A(p,oci,a2), where oti = a(p,q) - 8, oc2 = a( p,q) + 8, 8 = sin"1(e/d(p,q)).

Conversely, if v e A(p,ai ,a2) with cti = a( p,q) - 8, a2 = a(p,q) + 8, where 8 
= sin"1 (£/d(p,q)), then a(p,q) - 8 < cc( p,v) < a(p,q) + 8. Thus, we see that <|> = 
II a(p,q) - a(p,v) II < 8, since sin§ = d(p,q,v)/ d(p,q), sw8 = £/d(p,q), and (j), 8 
e [0°, 90°], we get d(p,q,v) < £. According to the definition of epsilon sector, 
we have v e Q(p,q,£). •
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p 
Figure 4. Sector bound and epsilon sector

This theorem tells us that an epsilon sector is geometrically equivalent to a sector 
bound. Since a sector bound is far easier to calculate and maintain, we will use 
the sector bound for polyline simplification to find new points of the simplified 
line segments. This means we may convert a global problem of epsilon sector 
determination into a local process of determining sector bounds. To determine if 
a point q is inside a given band of tolerance e of a line segment from point p to 
point v, we determine if a point v is inside the sector bound A(p,(Xi ,a2 ) which 
only necessitates calculation of the angle oc(p,v).

Let consider a polyline, a sequence of line segments. Here we will use the 
symbol "n" (intersection) to represent the intersection set of epsilon sectors.

Theorem 2.2: Suppose a polyline has vertices {pi I i=0,l> ... k}. Then there 
exists a point q such that all points p; (i=l, ... k) have perpendicular distance to 
line L(p0,q) within a given tolerance e if and only if 

r>Q(p0, PI, e) * 0.

Proof: If such a point q exists, then all points pi (i=l, ..., k) have perpendicular 
distance to line L(p0,q) less than the tolerance e, d(p0, pi, q)<E (i=l, ... k), that 
is q G Q(p0 , PI, e) (i=l,... k). So nQ(p0, p; , e) *0.

If nQ(p0 , Pi, e) * ([>, suppose q e nQ(p0, pi5 e) *§, then q eQ(p0 , PJ, £) (i=l,... 
k), that is d(p0, pi, q) ^ e (i=l, ... k), So all' points pi (i=l, ... k) have 
perpendicular distance to line L(po,q) within the given tolerance e. •

Corollary 2.1: Suppose a polyline has vertices {pi I i=0,l, ... k}. Then there 
exists a point q such that all points p; (i=l, ... k) have perpendicular distance to 
line L(po,q) within a given tolerance e if and only if

a' < a", where a' = max { an I i=l,...,k }, and oc"= min { oc^ I i=l,...,k }. 
Here ecu and 0.% are the two angles of sector bounds A(P,(XIJ ,0x21) equivalent to 
Q(po,pi,e)(i=l, ...k).

Proof: Combine Lemma 2.1 and Theorem 2.1 to get the conclusion. •
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This theorem obviously gives us a new opportunity for line simplification. For a 
polyline, the sector bound intersection is the only possible location for a 
subsequent point that can simplify the pending chain of points with a single 
segment. The second point of the simplified segment must lie inside this 
intersection. If this intersection is empty, there will exist no simplified segment 
that meets the distance tolerance condition. Figure 5 illustrates such a polyline.

Tolerance e

Po

Figure 5. Epsilon bounds intersection of a polyline

In Figure 5, we have a polyline of points {po, Pi, pi, PS}. The simplified segment 
will start from point p0 . For the given distance tolerance 8, the left-upper sector 
(shown as a triangle) is the epsilon bound Q(po,pi»£); the right-down sector (also 
shown as a triangle) is the epsilon bound Q(po,p2,£)- They have a intersection 
shown as a darker area. Since this intersection is not empty, we can delete points 
Pi and pa and use a point in the intersection to form a new line segment to 
approximate the original lines. We see point ps is in the intersection, so line po to 
Pa is the simplified line of the original polyline.

Theorem 2.1 tells us that the sector bound and the epsilon sector are 
geometrically equivalent. We will see, however, that it is much easier to work 
with sector bounds than with epsilon sectors.

We are now ready to describe and examine our three algorithm variants.

A GEOMETRIC DESCRIPTION OF OUR ALGORITHMS
Imagine trying to fit a sleeve of width 2e to the first k points in our polyline. If 
k=2, then this is easy. Suppose that the sleeve fits the first k points; and we want 
to adjust it (if necessary) to fit the (k+l)st point as well. It is clear that there will 
only be a limited amount of "play" in the sleeve to realign it. It is also clear that 
if we keep the first point p0 in the center of the sleeve that the "play" in the 
sleeve will correspond to a swept angle, our sector bound above. Our 
mathematical preliminaries have guaranteed that we can slide the sleeve forward 
as far as possible with a very fast and efficient sector bound update computation.
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The missing step in our polyline simplification routine handles

Figure 6. A sleeve moves along the polyline covering consecutive vertices.,

the case for which the next point Pk cannot be included in the sleeve. We must 
advance and reset the starting point for our sleeve algorithm and also decide 
what to do with the points that had been intermediate vertices inside the sleeve. 
All of the points inside the sleeve can certainly be approximated by the sleeve 
centerline to within e; and choosing the sleeve centerline as a segment in an 
approximating simplified polyline is one of the variants that performs well. If 
we choose the centerline, then we may throw away all of the intermediate points 
inside the sleeve. Choosing the centerline end points may force us to choose an 
approximating vertex that is not one of the original polyline vertices. 
Nonetheless the centerline end point will be within E of the final kth vertex pk.!.

Figure 7. When a vertex cannot fit in the sleeve, a new sleeve is begun

If we simply choose the last vertex pn as the approximating segment end point, 
then we will only guarantee that our approximating segment is within 2e of the 
original polyline. We may turn this logic around and use it to our advantage by 
building a sleeve of width e instead of 2e. In that case, we may simply accept 
the final vertex that fits in the sleeve as our current approximating segment's end 
point and our next approximating segment's starting point. If we employ the 
straightforward narrower £-sleeve strategy, however, we may wind up choosing 
many more vertices than necessary for our simplifying polyline.

A middle-of-the-road option that uses a 2e sleeve, but only subsamples vertices 
of the original polyline (i.e., does not create new approximating vertices), 
requires a special subroutine to handle vertices in the sleeve after the sleeve's 
vertex set has reached a limit. The special subroutine will advance the starting 
vertex and decide whether to keep intermediate vertices as vertices of the 
simplifying polyline. There are several options for this special subroutine; and
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no single option appears to guarantee the fewest number of vertices in the 
approximating polyline for all input polylines. If the sleeve contains vertices 
(Pi+i» Pi+2> ...» Pi+k}» where pi is the current starting vertex, then we choose the 
vertex PJ+J with the largest subindex in the sleeve such that L(pi,pj+j) 
approximates the subpolyline chain pi, pi+i, pj+2, ..., PJ+J to within e. Then we 
make pi+j the new starting vertex. There will always be such an approximating 
vertex, although in the worst case that vertex might be PJ+I. Even though the new 
sleeve from the new starting vertex pj+j will clearly contain the subsequent 
vertices pi+j+i, pj+j+2> • ••» Pi+k that had been in the old sleeve, we must, 
nevertheless, recompute all of the sector bounds since the starting vertex has 
changed, hence the swept angle is different in every case. This requirement to 
recompute the sector bounds can become expensive; and it may render our 
algorithm complexity quadratic instead of linear as it had been earlier.

GENERAL ALGORITHM DESCRIPTION AND PSEUDOCODE
We summarize the common components of our three algorithms below:

Initialization:

(1) Set starting vertex to p0 ;
(2) Set vertex set of simplifying line to {p0};
(3) Set sleeve set to 0;
(4) Set sector bound to full 360° range: ([0°,360°]).

Iterative introduction of vertices {pi, pi,..., pn} to processing:

(5) For i = 1 to n {
(6) While Pi is not in the current sector bound {
(7) Update the starting vertex to some p.* in the sleeve set;
(8) Update the sleeve set by removing all points through p.;
(9) Update the vertex set of simplifying line by adding p^ ;
(10) Recompute sector bound for new start vertex, sleeve set;
(11) }
(12) Add p1 to the sleeve set;
(13) Recompute the sector bound;
(14) } // End of For loop.
(15) Add pn* to the vertex set of the simplifying line.

The variants to the basic algorithm given above require further specification of 
the three update statements (7) through (9) and statements (10) and (15). Here 
are the details:

a) For the algorithm that uses the narrower sleeve (of width £), the value of p.j* 
in steps (7) and (9) is PM; and the value of p.j in step (8) is also pi_i. The 
sector bound for the empty sleeve set in (10).is once again always the full 
360° range. The value for pn* in step (15) is pn .

b) For the algorithm that uses the wider sleeve (of width 2e) and allows 
perturbation of vertices, the value of p.j* in steps (7) and (9) is the point on 
the sleeve centerline that is closest to p^; and the value of pd in step (8) is
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the original polyline's vertex p^. The sector bound for the empty sleeve set 
in (10) is once again always the full 360° range. The value for pn* in step 
(15) is the point on the sleeve centerline that is closest to pn . 

c) For our middle-of-the-road variant with a 2e width sleeve, the update 
procedures, including recomputing the sector bound in step (10), may 
require several steps. As we are adding vertices to the growing sleeve, we 
may easily keep track of those vertices that are capable of forming, along 
with the current starting point, a single line segment that adequately 
approximates all of the intermediate vertices between the currently added 
vertex and the current starting vertex. A vertex will provide the best kind of 
single segment approximator if and only if that vertex actually falls within 
the current sector bound. We will choose PJ* in steps (7) and (9) and p., in 
steps (8) to be the one such simplifying vertex PJ with the largest index j <

In both variants a) and b), we clearly have linear time performance because each 
sleeve is augmented one vertex at a time until it cannot be augmented further. At 
that point, the entire subsequence of vertices within the sleeve is "retired"; and a 
new sleeve is begun from where the last one ended. There is no backtracking; 
and each vertex of the original polyline appears once in exactly one sleeve 
building operation.

CONCLUSION
We showed how to use a sector bound calculation to assign maximum 
consecutive sequences of polyline vertices to buffer "sleeves". Because the 
sequences are as large as possible subject to constraints on approximation 
threshold settings, we produce a rather reduced number of segments in our 
simplifying polylines. We have conducted empirical tests to compare the 
performance of the three variants to each other and to the classic Douglas- 
Peucker algorithm for polyline simplification. The results of those tests were 
very favorable for our techniques, both in appearance and in quantitative 
measurements of vertices used in the simplification. The results of those 
experiments and more information on the algorithms themselves, including 
complete working code, are available to the interested reader at the World Wide 
Web site http://ra.cfm.ohio-state.edu/grad/zhao/algorithms/linesimp.html.

Our key practical result is the use of the sector bound as a new measurement of 
line simplification; and our key theoretical result is the proof that the sector 
bound, an easily maintained measurement, is locally geometrically equivalent to 
an e-buffer strip of the type used in the classic Douglas-Peucker algorithm.

Finally we mention that future work is suggested by our choice of the descriptor 
"sleeve" and its extended meaning in 3-D. Our "sector bound" in 3-D is not just 
a single cone, but an intersection of cones. A sleeve, however, is nothing more 
nor less than a right circular cylinder having radius e.
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