
MAINTAINING CONSISTENT TOPOLOGY INCLUDING
HISTORICAL DATA IN A LARGE SPATIAL DATABASE

Peter van Oosterom
Cadastre Netherlands, Company Staff

P.O. Box 9046, 7300 GH Apeldoorn, The Netherlands.
Phone: +31 55 528 5163, Fax: +31 55 355 7931.

Email: oosterom@kadaster.nl

This paper describes a data model and the associated processes
designed to maintain a consistent database with respect to both
topological references and changes over time. The novel contri
butions of this paper are: 1. use of object identifiers composed of
two parts: oid and time; 2. long transactions based on a check-
out/check-in mechanism; and 3. standard SQL (structured query
language) enhanced with SOL (spatial object library) for both the
batch production of update files and for the interactive visualiza
tion of the changes over time.

1 Introduction

Large scale Topographic and Cadas
tral data in the Netherlands [9] are
stored and maintained in one in
tegrated system based on the re
lational database CA-Openlngres
with the spatial object library
(SOL) [4] and X-Fingis [10, 11, 13].
Storing and maintaining consistent
topological relationships is impor
tant in a spatial database. Topol
ogy is essential to the nature of the
Cadastre: parcels may not overlap
and parcels should cover the whole
territory. About 400 persons (sur
veyors, cartographers) are updating
these data simultaneously. After the
initial delivery of all data, the cus
tomers get periodic updates of the
database. Without storing object-
history in the database, these update
files are difficult to extract [16]. His

torical data is also used to find the
previous owners of a certain polluted
spot. This illustrates the need for
consistently maintaining both time
and topology in the database.

General introductions to spatio-
temporal modeling are given in [14,
18, 21] 1 . Although several authors
have described a spatial-temporal
data model and query language,
they ignore the problem of maintain
ing the data in their models, which
is complicated due to the topology
references. Our data model based
on topology and history is presented
in Section 2. Topological editing
of information is discussed in Sec
tion 3, in which particular atten
tion is paid to the fact that multiple
users must be able to work simulta-

*A glossary of temporal terms in
databases can be found in [8].

327

Fig. 1: Boundary record 194425 Fig. 2: Parcel record 177612

neously. The production of update
files using standard SQL (structured
query language) is described in Sec
tion 4. In contrast to these 'batch'
type of jobs, some possibilities for
interactive visualizations of changes
over time are given in Section 5 to
gether with other future work. Fi
nally, conclusions can be found in
Section 6.

2 Data model
Integrated storage of all compo
nents of the data (metric informa
tion, topology, thematic attributes,
and historic information) in one
database is the key property, which
enables controlling data consistency.
Example records are shown in Fig.l
and 2: boundary with parcel bound
aries and parcel with additional
parcel information. Note the inte
grated use of traditional data types
and spatial data types, such as
point, line, and box in the data
model. In the data model all objects

get a unique identifier object-id2 ,
which enable efficient communica
tion with customers of the update
files.

Topological references
In theory, explicitly storing pla
nar topological information (refer
ences) causes data redundancy, be
cause the references can be derived
from accurate metric information as
stored in the shape attribute of
type line (35) in the boundary ta
ble and in the location attribute
of type point in the parcel table.
However, explicitly storing the topo
logical references makes checking
the topological structure (data qual
ity) feasible within the database.
Further, it is also convenient for
data manipulation; e.g. compute the
polygon 3 or find neighbors of a face.

2 The object_id is unique within each
group of an object type ogroup and is
maintained nation-wide. Sometimes in
this paper the pair ogroup, object_id is
abbreviated to just old for simplicity.

3The terms face, edge, and node are

328

Fig. 3: GEO++ screendump with example boundary record

The spatial basis of the data model
is a planar topological structure,
called the CHAIN-method [15], sim
ilar to the winged edge structure [3];
see Figs. 1, 2, and 3. However,
all references to edges are signed
(+/—), indicating the direction of
traversal when forming complete
boundary chains. The edges con
tain four references to other edges:
in the boundary table there are
attributes to indicate the immedi
ate left and right edge at the first
point (f l_line_id and f r_line_id)
and the immediate left and right
edge at the last point (ll_line_id
and lr_line_id). Further, refer
ences from a face to the first edge
of its boundary chain and, if is
lands are present, references to the

used when the topological aspects are in
tended. The terms polygon, polyline, and
point are used when discussing the metric
aspects. Finally, terms such as parcel and
boundary are used to refer to the objects.

first edge of every island-chain are
stored. In this model polygons re
lated to faces can be composed by
using the signed references only. So,
without using geometric computa
tions on the coordinates. Besides
the references from faces to edges,
and from edges to edges, there are
also references from edges to left and
right faces: l_obj_id and r_obj_id
in the boundary table. A bounding
box bbox attribute is added to ev
ery table with spatial data in order
to implement efficient spatial selec
tion. Finally, the computed area is
stored in the oarea attribute of the
parcel table.

Historical information
The updates in our database are
related to changes of a discrete
type in contrast to more continu
ous changes such as natural phe
nomena or stock rates. The num
ber of changes per year related to

329

the total number of objects is about
10%. It was therefore decided to
implement history on tuple level4 .
This in contrast to implementing
history on attribute level, which re
quires specific database support or
will complicate the data model sig
nificantly in a standard relational
database; see [19, 14, 20, 27]. In
our model every object is extended
with two additional attributes: tmin
and tmax5 . The object description
is valid starting from and includ
ing tmin and remains valid until
and excluding tmax. Current ob
ject descriptions get a special value
MAX-TIME, indicating that they are
valid now. MAXJTIME is larger than
any other time value. There is a dif
ference between the system (trans
action) time, when recorded ob
ject changed in the database, and
the valid (user) time, when the
observed object changed in real
ity. In the data model tmin/tmax
are system times. Further, the
model includes the user time at
tribute object.dt (or valid_tmin)
when the object was observed. Per
haps in the future also the attributes
last_verif icationjdt
and valid_tmax could be included,
which would make it a bitemporal
model.

When a new object is inserted, the
current time is set as value for

4 Instead of storing the old and new
states, it is also possible to store the events
only [7, 1]. However, it will not be easy to
retrieve the situation at any given point in
time.

5 This is similar to the Postgres model
[23]. A temporal SQL extension is de
scribed in [22]. In [26] a temporal object
database query language for spatial data is
presented.

tmin, and tmax gets a special value:
MAX_TIME. When an attribute of
an existing object changes, this at
tribute is not updated, but the com
plete record, including the oid, is
copied with the new attribute value.
Current time is set as tmax in the
old record and as tmin in the new
record. This is necessary to be able
to reconstruct the correct situation
at any given point in history. The
unique identifier (key) is the pair
(oid, tmax) for every object ver
sion in space and time.

For the topological references, only
the oid is used to refer to another
object and not tmax. In the situ
ation that a referred object is up
dated and keeps its oid, then the
reference (and therefore the cur
rent object) does not change. This
avoids, in a topologically structured
data set, the propagation of one
changed object to all other objects
as all objects are somehow con
nected to each other. In case the
oid of a referred object has changed
(becomes a different object), the re
ferring object is also updated and a
new version of the referring object is
created.

The following example shows the
contents of a database, which con
tained on 12 jan one line with oid
1023. On 20 feb this line was
split into two parts: 1023 and 1268;
see Fig. 4. Finally, the attribute
quality of one of the lines was
changed on 14 apr. The SQL-
queries in Section 4 show how easy
it is to produce the update files with
new, changed, and deleted objects
related to a specific time interval.

330

Fig. 4: A 'line' split into 2 parts

line
old shape ... quality train tmax
1023 (0,0),(4,0),(6,2) 1 12jan 20feb
1023 (0,0),(4,0) 1 20feb 14apr
1268 (4,0),(6,2) 1 20feb MAX.T
1023 (0,0),(4,0) 2 14apr MAX_T

Predecessor and successor
A query producing all historic ver
sions of a given object only needs
to specify the old and leave out
the time attributes. This does work
for simple object changes, but does
not work for splits, joins, or more
complicated spatial editing. How
ever, this information can always
be obtained by using spatial overlap
queries with respect to the given ob
ject over time, that is, not specifying
tmin/tmax restrictions.

3 Locking, check-out,
and check-in

A GIS is different from many other
database applications, because the
topological edit operations can be
complicated and related to many old
and new objects. This results in
long transactions. During this pe
riod other users are not allowed to
edit the same theme within this rect
angular work area. They must also
be allowed to view the last correct
state before the editing of the whole
database. An alternative to lock
ing is versioning [5], but it is impos
sible to merge conflicting versions
without user intervention. There

fore, the edit locking strategy is used
and this is implemented by the table
lock.

As the database must always be in a
consistent state, it may not be pol
luted with 'temporary' changes that
are required during the topological
edit operations. This is the motiva
tion for the introduction of a tem
porary work copy for the GIS-edit
program; e.g. X-Fingis [10, 11, 13].
The copy is made during check-out
and is registered in the lock ta
ble. This is only possible in case
no other work areas overlap the re
quested region with respect to the
themes to be edited. The database
is brought from one (topologically)
consistent state to another consis
tent state during a check-in. It is
important that all changes within
the same check-in get the same time
stamps in tmin/tmax (system time
as always). This architecture also
has the advantage that it enables an
easy implementation of a high level
'cancel' operation (rollback).

Locking a work area
What exactly should be locked when
a user specifies a rectangular work
area? Of course, everything that
is completely inside the rectangle
must be locked. This is achieved
at the application level: check-out
and check-in. Objects that cross
work area boundaries could also
be locked, but this may affect a
large part of the database. Other
users may be surprised to see when
they want to check-out a new non-
overlapping part (rectangle), this is
impossible due to elongated objects
that are locked. Therefore, the con
cept of partial locks is introduced for

331

these objects: the coordinates of the
line segment crossing the boundary
of the work area are not allowed to
change. Together with the fact that
the rectangular work areas can never
overlap, this implies that the other
changes to the edges and faces that
cross the borders of two work areas
are additional and can be merged in
the database. Therefore these ob
jects do not have to be locked, but
have to be checked in with some ad
ditional care. It is possible that two
check-ins want to modify the same
object; see Fig. 5. If no care is taken
and both check-ins replace the ob
ject, then only the second version
is stored and the changes from the
first are lost. Therefore, the follow
ing steps must be taken for every
changed object crossing the work
area boundary:

• refetch the object from the
database and acquire a database
update lock for this object;

• if other changes have occurred,
then 'merge' these with the
work area version of objects;

• reinsert the 'merged' object
in database and release the
database update lock.

The 'solution' for avoiding dead
locks, is to allow only one check-in
at a time (check-in queue). So, all
check-ins are processed sequentially.

Errors and improvements
Errors in the past with respect to
data collecting or entering pose a
difficult problem: should these be
corrected by changing the history
tmin/tmax? Because of possible
consistency problems it was decided

Split X and Replace V by W

rectangular work area 1 (in) rectangular work area 2 (in)

Fig. 5: Difficult check-in rectangular
work areas

not to do so. An alternative solution
is to mark error objects by setting
an additional attribute error-date.

Another special case is the result
of geometric data quality improve
ment. After obtaining new accurate
reference points and 'rubber sheet
ing' related objects, many relatively
small changes occur. It was decided
to treat these as normal updates, be
cause the customers must also have
the same geometric base as the data
provider. Otherwise, potential topo-
logical errors may occur (in the fu
ture) due to these small differences
in the coordinates. However, the
customers must be informed about
quality improvement, because they
will receive large update files.

4 Update files

As explained in the introduction, af
ter an initial full delivery of the data
set, the customers receive periodic
update files, which contain the dif
ferences with respect to the previ
ous delivery [16]. The time inter
val for a typical update file starts
at the begin point in time t_beg

332

and stops at the end point in time
t_end. The update files are com
posed of two parts: OLD (in Dutch
WAS): deleted objects and old ver
sions of changed objects; NEW (in
Dutch WORDT): new objects and
new versions of changed objects.

Besides selecting these data from
the database (using SQL queries
with time stamps), the production
of update files at least has to include
reformatting the database output in
the national data transfer standard
NEN-1878 [17] or some other de
sired data transfer format. The
object changes might occur in at
tributes, such as topological refer
ences, which the customer does not
receive. These invisible changes
can be either filtered out (sig-
nif-changes) or may be left in the
update file (alLchanges). There are
two ways of interpreting the begin
(t_beg) and end (t_end) time re
lated to an update file: as a com
plete time interval or as two indi
vidual points (instants) in time. In
the second case, the customer is not
interested in temporary versions of
the objects between the two points
in time t_beg and t_end. This re
sults in four different types of up
date files:

1. intervaLalLchanges: all changes
over time interval (t_beg, t_end]
including t_end, with delivery of all
temporary object versions.

/* deleted/updated objects */
select * from line 1 where

t_beg < l.tmax and l.tmax <= t_end;

/* new/updated objects */
select * from line 1 where

t_beg < l.tmin and l.tmin <= t_end;

In case an object is updated two
times, two versions of old objects
(OLD: x,tl and x,t2) and two ver
sions of new objects (NEW: x, t2 and
x,MAX_TIME) will be included in the
update file; see the example below:

oid=x,
o id=x, tmax=MAX_TIME

oid=x, tmax=t2 |—————————>
tmax=tl I ———————— |
——————— | t2

tl
t_beg (time line) t_end
__0————————————————————x———>

2. points-alLchanges: only changes
comparing the two points in time
t_beg and t_end, excluding all tem
porary versions, have to be deliv
ered. This means that the object
versions have to overlap in time
either t_beg (deleted/updated ob
jects) or t_end (new/updated ob
jects).

/* deleted/updated objects */
select * from line 1 where
t_beg < l.tmax and l.tmax^<= t_end

and l.tmin <= t_beg;

/* new/updated objects */
select * from line 1 where
t_beg < l.tmin and l.tmin <= t_end
and t_end < l.tmax;

In the example above this will pro
duce only one version of the old
object (OLD: x,tl) and only one
version of the new object (NEW:
x,MAX_TIME).

3. intervaLsignif-changes: all
changes over time interval (t_beg,
t_end] with respect to the delivered
attributes (A1,A2,... ,An) are in
cluded in the update file. Ai can
be a geometric data type. As the
data has to be reformatted anyhow

333

by the front-end application in order
to produce the standard transfer for
mat NEN-1878, it is easy to include
the filter for significant changes in
this application (especially if the in
put data is sorted on old):

select l.oid,l.tmax,l-Al,l.A2,.. .
from line 1
where /* deleted/updated */

t_beg < l.tmax and l.tmax <= t_end
or /* new/updated */
t_beg < 1.train and 1.train <= t_end

sort by l.oid, l.tmax;

4- points-signif.changes: all changes
com
paring the two points in time t_beg
and t_end with respect to the deliv
ered attributes (A1,A2,. . . ,An) are
included in the update file. It is now
not true anymore that the reported
object versions have to overlap in
time either t_beg (deleted/updated
objects) or t_end (new/updated ob
jects), because they can be related
to insignificant changes. It could
be that a significant change occurs
somewhere in the middle; see the ex
ample below:

oid=y,
oid=y, tmax=MAX_T

oid=y, tmax=t3 I——————>
oid=y, tmax=t2 I ————— I
tmax=tl | ————— | t3
————— I t2 insignif

tl signif change
insignif change
change

t_beg (time line) t_end
__0————————————————————X———>

In general, many insignificant ver
sions of an object, w.r.t. the at
tributes for a customer, may pre
cede and/or follow a version with
a significant change. These should
be temporarily glued together with
versions related to insignificant

changes; not in the database itself.
This can be included easily in the
application program in two steps:
first 'glue', then filter out glued ob
ject versions, which do not overlap
the two points in time: t_beg and
t_end.

5 Future work

Visualizing changes over time re
quires implementing specific tech
niques [2, 12, 14] in a geographic
query tool such as GEO++ [25].
The following is an overview of pos
sible techniques to visualize spatial
temporal data; more details can be
found in [24]. Double map: Dis
play besides each other the same
region with the same object types
but related to two different dates.
Change map: Display the changed,
new and deleted objects over a spec
ified ̂ time interval on top of the map.
Temporal symbols: Use a static map
with thematic symbols for a tem
poral theme; e.g. depicting dates,
change rates, order of occurrence,
etc. Space-time aggregation: Aggre
gate the (number of) changed, new,
and deleted objects to larger units
in order to visualize the change rate
in different regions. Time anima
tion: Visualize changes through an
animation by displaying the same
region and object types starting at
t_beg in n steps to t_end. Time as
third dimension: Visualize changes
over time, by using the third dimen
sion for time. The user navigates
through this 3D-space; see Fig. 6.

Although many aspects of maintain
ing topology and time in a database
have been described, there are still

334

10 parcel A exists
11 A split into B and C
12 B modified into D(attr)
13 C split into E, F, and G
14 E and F merged into H

Fig. 6: 3D visualization of parcel
changes over time

some open questions: 1. should we
try to model the future?, and 2. how
long should the history be kept in
side the database tables? The cur
rent proposal is to keep the informa
tion in the database forever.

Returning to the first question: in
addition to the history we might also
want to model the (plans for the) fu
ture. In contrast to the past were
there is only one time 'line', the
future might consist of alternative
time 'lines', each related to a differ
ent plan. There is a different type of
'time topology' for these future time
lines; see [6]. In this case multiple
versions are needed [5].

6 Conclusion

This paper shows how changes in
map topology may be recorded in
a temporal database by only using
the old part of the key for topol
ogy references and omitting the time
part tmax. This avoids updating
the neighbors in many cases. The
check-in/check-out of workfiles en
able long transactions and assure
that the database is always in a
correct state and that the spatial
topology references are always cor
rect. Further, the temporal topol
ogy is also correct as object versions

are adjacent on the time line. The
model allows 1. easy reconstruction
of the situation for every given point
in time, and 2. easy detection of all
changes over a time interval or be
tween two points in time for the pro
duction of several type of update
files.

Acknowledgments
Many ideas with respect to storing topol
ogy and history were developed in early
discussions with Chrit Lemmen. The
developers of GEO++ (Tom Vijlbrief)
and X-Fingis (Tapio Keisteri and Esa
Mononen) were helpful with there com
ments. Paul Strooper, once again, thor
oughly screened this paper, which caused
a significant improvement. Finally, several
colleagues (Berry van Osch, Harry Uiter-
mark, Martin Salzman, Bart Maessen,
Maarten Moolenaar, Peter Jansen, and
Marcel van de Lustgraaf) volunteered to
act as reviewers and all did give useful sug
gestions.

References
[1] C. Claramunt abd M. Theeriault. To

ward semantics for modelling spatio-
temporal processes within gis. In 7th
SX>#, volume 1, pages 2.27-2.43, Au
gust 1996.

[2] C. Armenakis. Mapping of spatio-
temporal data in an active carto
graphic environment. Geomatica,
50(4):401-413, 1996.

[3] Bruce G. Baumgart. A polyhedron
representation for computer vision.
In National Computer Conference,
pages 589-596, 1975.

[4] CA-Openlngres. Object Magemenent
Extention User's Guide, release 1.1.
Technical report, June 1995.

[5] M. E. Easterfield, R. G. Newell, and
D. G. Theriault. Version manage
ment in gis - applications and tech
niques. In EGIS'90, pages 288-297,
April 1990.

[6] A. U. Frank. Qualitative tempo
ral reasoning in GIS - ordered time
scales. In 6th SDH, pages 410-430,
September 1994.

335

[7] C. M. Gold. An event-driven ap
proach to spatio-temporal mapping.
Geomatica, 50(4):415-424, 1996.

[8] C. S. Jensen, J. Clifford, and R. El-
masri. A consensus glossary of tem
poral database concepts. SIGMOD
Record, 23(l):65-86, 1994.

[9] Kadaster, Directie Geodesic. Hand-
boek LKI - extern, technische as-
pecten. Technical report, Dienst van
het Kadaster en de Openbare Regis
ters, November 1989. (In Dutch).

[10] Karttakeskus, Helsinki, Finland. Fin-
gis User Manual, version 3.85. Tech
nical report, 1994.

[11] T. Keisteri. Fingis - software and
data manipulation. In Auto Carto
London, volume 1, pages 69-75,
September 1986.

[12] ry>M. J. Kraak and A. M. MacEachren.
Visualization of the temporal compo
nent of spatial data. In 6th SDH,
pages 391-409, September 1994.

[13] KT-Datacenter Ltd., Riihimaki, Fin
land. X-Fingis Software VI.1, IN
GRES version. Technical report, Oc
tober 1994.

[14] G. Langran. Time in Geographic In
formation Systems. Taylor & Francis,
London, 1992.

[15] C. Lemmen and P. van Oosterom. Ef
ficient and automatic production of
periodic updates of cadastral maps.
In JEC-GI'95, pages 137-142, March
1995.

[16] C. H. J. Lemmen and B. Keizer.
Levering van mutaties uit de LKI-
gegevensbank. Geodesia, 35(6):265-
269, September 1993. (In Dutch).

[17] NEN-1878.
Automatische gegevensverwerking -
Uitwisselingsformaat voor gegevens
over de aan het aardoppervlak gere-
lateerde ruimtelijke objecten. Techni
cal report, Nederlands Normalisatie-
instituut, Juni 1993. (In Dutch).

[18] D. Peuquet and L. Qian. An in
tegrated database design for tempo
ral gis. In Proceedings of the 7th
International Symposium on Spatial
Data Handling, Delft, The Nether
lands, pages 2.1-2.11, August 1996.

[19] D. J. Peuquet and E. Wentz. An
approach for time-based analysis of
spatio-temporal data. In 6th SDH,
pages 489-504, September 1994.

[20] H. Raafat, Z. Yang, and D. Gau-
thier. Relational spatial topologies
for historical geographical informa
tion. IJGIS, 8(2):163-173, 1994.

[21] A. A. Roshannejad. The Manage
ment of Spatio-Temporal Data in
a National Geographic Information
System. PhD thesis, Enschede,
The Netherlands, Twente Univeristy,
1996.

[22] R. T. Snodgrass, I. Ahn, and
G. Ariav. Tsql2 language specifica
tion. SIGMOD Record, 23(l):65-86,
1994.

[23] M. Stonebraker and L. A. Rowe. The
design of Postgres. ACM SIGMOD,
15(2):340-355, 1986.

[24] P. van Oosterom and B. Maessen. Ge
ographic query tool. In JEC-GI'97,
page ?, April 1997. To be published.

[25] T. Vijlbrief and P. van Oosterom.
The GEO++ system: An extensible
GIS. In 5th SDH, pages 40-50, Au
gust 1992.

[26] A. Voigtmann, L. Becker, and K. H.
Hinrichs. Temporal extensions for an
object-oriented geo-data-model. In
7th SDH, volume 2, pages 11A.25-
11A.41, August 1996.

[27] M. F. Worboys. Unifying the spa
tial and temporal components of ge
ographical information. In 6th SDH,
pages 505-517, September 1994.

336

