
MAINTAINING CONSISTENT TOPOLOGY INCLUDING 
HISTORICAL DATA IN A LARGE SPATIAL DATABASE

Peter van Oosterom
Cadastre Netherlands, Company Staff

P.O. Box 9046, 7300 GH Apeldoorn, The Netherlands.
Phone: +31 55 528 5163, Fax: +31 55 355 7931.

Email: oosterom@kadaster.nl

This paper describes a data model and the associated processes 
designed to maintain a consistent database with respect to both 
topological references and changes over time. The novel contri 
butions of this paper are: 1. use of object identifiers composed of 
two parts: oid and time; 2. long transactions based on a check- 
out/check-in mechanism; and 3. standard SQL (structured query 
language) enhanced with SOL (spatial object library) for both the 
batch production of update files and for the interactive visualiza 
tion of the changes over time.

1 Introduction

Large scale Topographic and Cadas 
tral data in the Netherlands [9] are 
stored and maintained in one in 
tegrated system based on the re 
lational database CA-Openlngres 
with the spatial object library 
(SOL) [4] and X-Fingis [10, 11, 13]. 
Storing and maintaining consistent 
topological relationships is impor 
tant in a spatial database. Topol 
ogy is essential to the nature of the 
Cadastre: parcels may not overlap 
and parcels should cover the whole 
territory. About 400 persons (sur 
veyors, cartographers) are updating 
these data simultaneously. After the 
initial delivery of all data, the cus 
tomers get periodic updates of the 
database. Without storing object- 
history in the database, these update 
files are difficult to extract [16]. His 

torical data is also used to find the 
previous owners of a certain polluted 
spot. This illustrates the need for 
consistently maintaining both time 
and topology in the database.

General introductions to spatio- 
temporal modeling are given in [14, 
18, 21] 1 . Although several authors 
have described a spatial-temporal 
data model and query language, 
they ignore the problem of maintain 
ing the data in their models, which 
is complicated due to the topology 
references. Our data model based 
on topology and history is presented 
in Section 2. Topological editing 
of information is discussed in Sec 
tion 3, in which particular atten 
tion is paid to the fact that multiple 
users must be able to work simulta-

*A glossary of temporal terms in 
databases can be found in [8].
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Fig. 1: Boundary record 194425 Fig. 2: Parcel record 177612

neously. The production of update 
files using standard SQL (structured 
query language) is described in Sec 
tion 4. In contrast to these 'batch' 
type of jobs, some possibilities for 
interactive visualizations of changes 
over time are given in Section 5 to 
gether with other future work. Fi 
nally, conclusions can be found in 
Section 6.

2 Data model
Integrated storage of all compo 
nents of the data (metric informa 
tion, topology, thematic attributes, 
and historic information) in one 
database is the key property, which 
enables controlling data consistency. 
Example records are shown in Fig.l 
and 2: boundary with parcel bound 
aries and parcel with additional 
parcel information. Note the inte 
grated use of traditional data types 
and spatial data types, such as 
point, line, and box in the data 
model. In the data model all objects

get a unique identifier object-id2 , 
which enable efficient communica 
tion with customers of the update 
files.

Topological references
In theory, explicitly storing pla 
nar topological information (refer 
ences) causes data redundancy, be 
cause the references can be derived 
from accurate metric information as 
stored in the shape attribute of 
type line (35) in the boundary ta 
ble and in the location attribute 
of type point in the parcel table. 
However, explicitly storing the topo 
logical references makes checking 
the topological structure (data qual 
ity) feasible within the database. 
Further, it is also convenient for 
data manipulation; e.g. compute the 
polygon 3 or find neighbors of a face.

2 The object_id is unique within each 
group of an object type ogroup and is 
maintained nation-wide. Sometimes in 
this paper the pair ogroup, object_id is 
abbreviated to just old for simplicity.

3The terms face, edge, and node are
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Fig. 3: GEO++ screendump with example boundary record

The spatial basis of the data model 
is a planar topological structure, 
called the CHAIN-method [15], sim 
ilar to the winged edge structure [3]; 
see Figs. 1, 2, and 3. However, 
all references to edges are signed 
(+/—), indicating the direction of 
traversal when forming complete 
boundary chains. The edges con 
tain four references to other edges: 
in the boundary table there are 
attributes to indicate the immedi 
ate left and right edge at the first 
point (f l_line_id and f r_line_id) 
and the immediate left and right 
edge at the last point (ll_line_id 
and lr_line_id). Further, refer 
ences from a face to the first edge 
of its boundary chain and, if is 
lands are present, references to the

used when the topological aspects are in 
tended. The terms polygon, polyline, and 
point are used when discussing the metric 
aspects. Finally, terms such as parcel and 
boundary are used to refer to the objects.

first edge of every island-chain are 
stored. In this model polygons re 
lated to faces can be composed by 
using the signed references only. So, 
without using geometric computa 
tions on the coordinates. Besides 
the references from faces to edges, 
and from edges to edges, there are 
also references from edges to left and 
right faces: l_obj_id and r_obj_id 
in the boundary table. A bounding 
box bbox attribute is added to ev 
ery table with spatial data in order 
to implement efficient spatial selec 
tion. Finally, the computed area is 
stored in the oarea attribute of the 
parcel table.

Historical information
The updates in our database are 
related to changes of a discrete 
type in contrast to more continu 
ous changes such as natural phe 
nomena or stock rates. The num 
ber of changes per year related to
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the total number of objects is about 
10%. It was therefore decided to 
implement history on tuple level4 . 
This in contrast to implementing 
history on attribute level, which re 
quires specific database support or 
will complicate the data model sig 
nificantly in a standard relational 
database; see [19, 14, 20, 27]. In 
our model every object is extended 
with two additional attributes: tmin 
and tmax5 . The object description 
is valid starting from and includ 
ing tmin and remains valid until 
and excluding tmax. Current ob 
ject descriptions get a special value 
MAX-TIME, indicating that they are 
valid now. MAXJTIME is larger than 
any other time value. There is a dif 
ference between the system (trans 
action) time, when recorded ob 
ject changed in the database, and 
the valid (user) time, when the 
observed object changed in real 
ity. In the data model tmin/tmax 
are system times. Further, the 
model includes the user time at 
tribute object.dt (or valid_tmin) 
when the object was observed. Per 
haps in the future also the attributes 
last_verif icationjdt 
and valid_tmax could be included, 
which would make it a bitemporal 
model.

When a new object is inserted, the 
current time is set as value for

4 Instead of storing the old and new 
states, it is also possible to store the events 
only [7, 1]. However, it will not be easy to 
retrieve the situation at any given point in 
time.

5 This is similar to the Postgres model 
[23]. A temporal SQL extension is de 
scribed in [22]. In [26] a temporal object 
database query language for spatial data is 
presented.

tmin, and tmax gets a special value: 
MAX_TIME. When an attribute of 
an existing object changes, this at 
tribute is not updated, but the com 
plete record, including the oid, is 
copied with the new attribute value. 
Current time is set as tmax in the 
old record and as tmin in the new 
record. This is necessary to be able 
to reconstruct the correct situation 
at any given point in history. The 
unique identifier (key) is the pair 
(oid, tmax) for every object ver 
sion in space and time.

For the topological references, only 
the oid is used to refer to another 
object and not tmax. In the situ 
ation that a referred object is up 
dated and keeps its oid, then the 
reference (and therefore the cur 
rent object) does not change. This 
avoids, in a topologically structured 
data set, the propagation of one 
changed object to all other objects 
as all objects are somehow con 
nected to each other. In case the 
oid of a referred object has changed 
(becomes a different object), the re 
ferring object is also updated and a 
new version of the referring object is 
created.

The following example shows the 
contents of a database, which con 
tained on 12 jan one line with oid 
1023. On 20 feb this line was 
split into two parts: 1023 and 1268; 
see Fig. 4. Finally, the attribute 
quality of one of the lines was 
changed on 14 apr. The SQL- 
queries in Section 4 show how easy 
it is to produce the update files with 
new, changed, and deleted objects 
related to a specific time interval.
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Fig. 4: A 'line' split into 2 parts

line
old shape ... quality train tmax 
1023 (0,0),(4,0),(6,2) 1 12jan 20feb 
1023 (0,0),(4,0) 1 20feb 14apr 
1268 (4,0),(6,2) 1 20feb MAX.T 
1023 (0,0),(4,0) 2 14apr MAX_T

Predecessor and successor
A query producing all historic ver 
sions of a given object only needs 
to specify the old and leave out 
the time attributes. This does work 
for simple object changes, but does 
not work for splits, joins, or more 
complicated spatial editing. How 
ever, this information can always 
be obtained by using spatial overlap 
queries with respect to the given ob 
ject over time, that is, not specifying 
tmin/tmax restrictions.

3 Locking, check-out, 
and check-in

A GIS is different from many other 
database applications, because the 
topological edit operations can be 
complicated and related to many old 
and new objects. This results in 
long transactions. During this pe 
riod other users are not allowed to 
edit the same theme within this rect 
angular work area. They must also 
be allowed to view the last correct 
state before the editing of the whole 
database. An alternative to lock 
ing is versioning [5], but it is impos 
sible to merge conflicting versions 
without user intervention. There 

fore, the edit locking strategy is used 
and this is implemented by the table 
lock.

As the database must always be in a 
consistent state, it may not be pol 
luted with 'temporary' changes that 
are required during the topological 
edit operations. This is the motiva 
tion for the introduction of a tem 
porary work copy for the GIS-edit 
program; e.g. X-Fingis [10, 11, 13]. 
The copy is made during check-out 
and is registered in the lock ta 
ble. This is only possible in case 
no other work areas overlap the re 
quested region with respect to the 
themes to be edited. The database 
is brought from one (topologically) 
consistent state to another consis 
tent state during a check-in. It is 
important that all changes within 
the same check-in get the same time 
stamps in tmin/tmax (system time 
as always). This architecture also 
has the advantage that it enables an 
easy implementation of a high level 
'cancel' operation (rollback).

Locking a work area
What exactly should be locked when 
a user specifies a rectangular work 
area? Of course, everything that 
is completely inside the rectangle 
must be locked. This is achieved 
at the application level: check-out 
and check-in. Objects that cross 
work area boundaries could also 
be locked, but this may affect a 
large part of the database. Other 
users may be surprised to see when 
they want to check-out a new non- 
overlapping part (rectangle), this is 
impossible due to elongated objects 
that are locked. Therefore, the con 
cept of partial locks is introduced for
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these objects: the coordinates of the 
line segment crossing the boundary 
of the work area are not allowed to 
change. Together with the fact that 
the rectangular work areas can never 
overlap, this implies that the other 
changes to the edges and faces that 
cross the borders of two work areas 
are additional and can be merged in 
the database. Therefore these ob 
jects do not have to be locked, but 
have to be checked in with some ad 
ditional care. It is possible that two 
check-ins want to modify the same 
object; see Fig. 5. If no care is taken 
and both check-ins replace the ob 
ject, then only the second version 
is stored and the changes from the 
first are lost. Therefore, the follow 
ing steps must be taken for every 
changed object crossing the work 
area boundary:

• refetch the object from the 
database and acquire a database 
update lock for this object;

• if other changes have occurred, 
then 'merge' these with the 
work area version of objects;

• reinsert the 'merged' object 
in database and release the 
database update lock.

The 'solution' for avoiding dead 
locks, is to allow only one check-in 
at a time (check-in queue). So, all 
check-ins are processed sequentially.

Errors and improvements
Errors in the past with respect to 
data collecting or entering pose a 
difficult problem: should these be 
corrected by changing the history 
tmin/tmax? Because of possible 
consistency problems it was decided

Split X and Replace V by W

rectangular work area 1 (in) rectangular work area 2 (in)

Fig. 5: Difficult check-in rectangular 
work areas

not to do so. An alternative solution 
is to mark error objects by setting 
an additional attribute error-date.

Another special case is the result 
of geometric data quality improve 
ment. After obtaining new accurate 
reference points and 'rubber sheet 
ing' related objects, many relatively 
small changes occur. It was decided 
to treat these as normal updates, be 
cause the customers must also have 
the same geometric base as the data 
provider. Otherwise, potential topo- 
logical errors may occur (in the fu 
ture) due to these small differences 
in the coordinates. However, the 
customers must be informed about 
quality improvement, because they 
will receive large update files.

4 Update files

As explained in the introduction, af 
ter an initial full delivery of the data 
set, the customers receive periodic 
update files, which contain the dif 
ferences with respect to the previ 
ous delivery [16]. The time inter 
val for a typical update file starts 
at the begin point in time t_beg
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and stops at the end point in time 
t_end. The update files are com 
posed of two parts: OLD (in Dutch 
WAS): deleted objects and old ver 
sions of changed objects; NEW (in 
Dutch WORDT): new objects and 
new versions of changed objects.

Besides selecting these data from 
the database (using SQL queries 
with time stamps), the production 
of update files at least has to include 
reformatting the database output in 
the national data transfer standard 
NEN-1878 [17] or some other de 
sired data transfer format. The 
object changes might occur in at 
tributes, such as topological refer 
ences, which the customer does not 
receive. These invisible changes 
can be either filtered out (sig- 
nif-changes) or may be left in the 
update file (alLchanges). There are 
two ways of interpreting the begin 
(t_beg) and end (t_end) time re 
lated to an update file: as a com 
plete time interval or as two indi 
vidual points (instants) in time. In 
the second case, the customer is not 
interested in temporary versions of 
the objects between the two points 
in time t_beg and t_end. This re 
sults in four different types of up 
date files:

1. intervaLalLchanges: all changes 
over time interval (t_beg, t_end] 
including t_end, with delivery of all 
temporary object versions.

/* deleted/updated objects */ 
select * from line 1 where

t_beg < l.tmax and l.tmax <= t_end;

/* new/updated objects */ 
select * from line 1 where

t_beg < l.tmin and l.tmin <= t_end;

In case an object is updated two 
times, two versions of old objects 
(OLD: x,tl and x,t2) and two ver 
sions of new objects (NEW: x, t2 and 
x,MAX_TIME) will be included in the 
update file; see the example below:

oid=x,
o id=x, tmax=MAX_TIME 

oid=x, tmax=t2 |—————————> 
tmax=tl I ———————— | 
——————— | t2

tl
t_beg (time line) t_end 
__0————————————————————x———>

2. points-alLchanges: only changes 
comparing the two points in time 
t_beg and t_end, excluding all tem 
porary versions, have to be deliv 
ered. This means that the object 
versions have to overlap in time 
either t_beg (deleted/updated ob 
jects) or t_end (new/updated ob 
jects).

/* deleted/updated objects */ 
select * from line 1 where
t_beg < l.tmax and l.tmax^<= t_end 

and l.tmin <= t_beg;

/* new/updated objects */ 
select * from line 1 where
t_beg < l.tmin and l.tmin <= t_end
and t_end < l.tmax;

In the example above this will pro 
duce only one version of the old 
object (OLD: x,tl) and only one 
version of the new object (NEW: 
x,MAX_TIME).

3. intervaLsignif-changes: all 
changes over time interval (t_beg, 
t_end] with respect to the delivered 
attributes (A1,A2,... ,An) are in 
cluded in the update file. Ai can 
be a geometric data type. As the 
data has to be reformatted anyhow
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by the front-end application in order 
to produce the standard transfer for 
mat NEN-1878, it is easy to include 
the filter for significant changes in 
this application (especially if the in 
put data is sorted on old):

select l.oid,l.tmax,l-Al,l.A2,.. .
from line 1
where /* deleted/updated */

t_beg < l.tmax and l.tmax <= t_end
or /* new/updated */
t_beg < 1.train and 1.train <= t_end 

sort by l.oid, l.tmax;

4- points-signif.changes: all changes 
com 
paring the two points in time t_beg 
and t_end with respect to the deliv 
ered attributes (A1,A2,. . . ,An) are 
included in the update file. It is now 
not true anymore that the reported 
object versions have to overlap in 
time either t_beg (deleted/updated 
objects) or t_end (new/updated ob 
jects), because they can be related 
to insignificant changes. It could 
be that a significant change occurs 
somewhere in the middle; see the ex 
ample below:

oid=y,
oid=y, tmax=MAX_T 

oid=y, tmax=t3 I——————> 
oid=y, tmax=t2 I ————— I 
tmax=tl | ————— | t3 
————— I t2 insignif

tl signif change 
insignif change
change

t_beg (time line) t_end 
__0————————————————————X———>

In general, many insignificant ver 
sions of an object, w.r.t. the at 
tributes for a customer, may pre 
cede and/or follow a version with 
a significant change. These should 
be temporarily glued together with 
versions related to insignificant

changes; not in the database itself. 
This can be included easily in the 
application program in two steps: 
first 'glue', then filter out glued ob 
ject versions, which do not overlap 
the two points in time: t_beg and 
t_end.

5 Future work

Visualizing changes over time re 
quires implementing specific tech 
niques [2, 12, 14] in a geographic 
query tool such as GEO++ [25]. 
The following is an overview of pos 
sible techniques to visualize spatial 
temporal data; more details can be 
found in [24]. Double map: Dis 
play besides each other the same 
region with the same object types 
but related to two different dates. 
Change map: Display the changed, 
new and deleted objects over a spec 
ified ̂ time interval on top of the map. 
Temporal symbols: Use a static map 
with thematic symbols for a tem 
poral theme; e.g. depicting dates, 
change rates, order of occurrence, 
etc. Space-time aggregation: Aggre 
gate the (number of) changed, new, 
and deleted objects to larger units 
in order to visualize the change rate 
in different regions. Time anima 
tion: Visualize changes through an 
animation by displaying the same 
region and object types starting at 
t_beg in n steps to t_end. Time as 
third dimension: Visualize changes 
over time, by using the third dimen 
sion for time. The user navigates 
through this 3D-space; see Fig. 6.

Although many aspects of maintain 
ing topology and time in a database 
have been described, there are still
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10 parcel A exists
11 A split into B and C
12 B modified into D(attr)
13 C split into E, F, and G
14 E and F merged into H

Fig. 6: 3D visualization of parcel 
changes over time

some open questions: 1. should we 
try to model the future?, and 2. how 
long should the history be kept in 
side the database tables? The cur 
rent proposal is to keep the informa 
tion in the database forever.

Returning to the first question: in 
addition to the history we might also 
want to model the (plans for the) fu 
ture. In contrast to the past were 
there is only one time 'line', the 
future might consist of alternative 
time 'lines', each related to a differ 
ent plan. There is a different type of 
'time topology' for these future time 
lines; see [6]. In this case multiple 
versions are needed [5].

6 Conclusion

This paper shows how changes in 
map topology may be recorded in 
a temporal database by only using 
the old part of the key for topol 
ogy references and omitting the time 
part tmax. This avoids updating 
the neighbors in many cases. The 
check-in/check-out of workfiles en 
able long transactions and assure 
that the database is always in a 
correct state and that the spatial 
topology references are always cor 
rect. Further, the temporal topol 
ogy is also correct as object versions

are adjacent on the time line. The 
model allows 1. easy reconstruction 
of the situation for every given point 
in time, and 2. easy detection of all 
changes over a time interval or be 
tween two points in time for the pro 
duction of several type of update 
files.
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