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ABSTRACT. In classification and regression tree (CART) analysis, the 
observations are successively partitioned into a prediction tree. At each node in 
the tree, the CART algorithm searches for the value of one of the predictor 
variables that explains the greatest amount of variation in the response variable. 
The observations are split into two groups at each node according to this splitting 
criterion until the tree reaches a size that balances predictive power and 
parsimony. We illustrate a method for mapping the spatial relationships in a 
prediction tree when the cases are spatial. Each leaf in the tree has a unique set of 
predictor variables and corresponding value ranges that predict the value of the 
response variable at the observations belonging to the leaf. If the tree is arranged 
such that observations with lower values of the splitting variable are always on 
the left at each node, then there is an unambiguous ordering to the tree. One 
method for assigning mapping symbols to the observations of the leaves is by 
locating each leaf in a corresponding position along the continuum of one of the 
color visual variables. Observations that are closer in perceptual value to others 
indicate a closer relationship in the structure of prediction.

INTRODUCTION

Classification and regression trees (CART) are a multivariate analysis 
technique made popular by Breiman et al. (1984). Applications are varied: 
examples include machine learning (Crawford, 1989), medicine (Efron and 
Tibshirani, 1991), optical character recognition (Chou, 1991), soil classification 
(Dymond and Luckman, 1994), forest classification (Moore et al., 1991), 
vegetation ecology (Davis et al., 1990; Michaelson et al., 1994), animal 
distribution (Walker, 1990), biodiversity (O'Connor et al., 1996), and others.

In an application where the cases are spatial locations, the geography of the 
prediction tree results may reveal insights into mechanistic relationships between 
the predictors and the response. Mapping residuals from the prediction tree may 
also help to identify missing variables or gaps in knowledge. Previous work in 
mapping CART results includes Davis et al. (1990), Walker (1990), Moore et al. 
(1991) and O'Connor et al. (1996). We explore this idea by proposing an 
objective method for assigning map symbols to the leaves of regression (or 
classification) trees. We illustrate this mapping method with both simulated and 
real data.
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METHODS

In regression tree development, the midpoints between all values of all of the 
predictor variables that are present in the data form the possible splits for the tree. 
In the first step, sums of squares of differences between the observations and their 
means are computed for all binary divisions of the observations formed by all of 
the splits. The minimum sum determines the split. The observations are then 
divided into two sets based on the split and the process recursively repeats on the 
two descendent sets. Splitting continues until a stopping criterion is reached. We 
used the cross-validation pruning techniques of Breiman et al. (1984), as 
implemented by Clark and Pregibon (1992), and as investigated by Sifneos et al. 
(in preparation), to determine the optimal size of trees.

We prepared two simulated data sets as examples. The first set consisted of 
three predictor variables defined as two level (xl), or three level (x2 and x3), step 
functions. The response variable (y) was defined as a four level step function. 
All variables were defined on a 10 by 10 grid, simulating a spatial surface. The 
steps were defined on one quarter or one half of the grid (Figure 1). The second 
simulated set also consisted of three predictors, but these were samples from a 
lognormal distribution (xl) and two different normal distributions (x2 and x3), 
respectively. The response (y) was defined differently in each quadrant of the 
grid to simulate the contingent effects of hierarchical interactions that CART is 
well suited to analyze. The first quadrant was defined as y = xl + 2x2 + 3x3, for 
example, and the other quadrants as indicated in Figure 2.

In addition, we used portions of a data set from a fish biodiversity study 
(Rathert et al., in preparation). For illustrating the regression tree mapping 
method we used total fish species richness, including native and introduced 
species, as a response variable. We used 20 predictor variables representing 
climatic, elevational, hydrographic extent, and human impact effects (Figure 4). 
All variables were provided for 375 equal area sample units covering the state of 
Oregon. (The variable representing the length of 4th and higher order streams in 
each sampling unit is not shown in Figure 4.)

We can think of the mapping of regression trees in the framework of 
measurement scales. The terminal nodes, or leaves, of a tree contain 
observations that have a unique chain of prediction rules with respect to other 
leaves. The uniqueness property confers at least a nominal scaling on the leaves. 
Because the predictor splits can be arranged in an unambiguous order with lower 
values of continuous variables, for example, always appearing in the left 
branches, an ordinal scaling can be imposed as well. (Nominal predictor 
variables can meet this criterion with an arbitrary ordering of categories.) More 
ambitiously, we may attempt to convey distance in prediction space by mapping 
leaf positions to an interval scale. Color visual variables are good candidates to 
symbolize these scaling distinctions. In this paper we present tree mapping using
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ordinal scaling of the value or brightness dimension. We select a number, equal 
to the number of leaves, of equally-spaced division points along the value scale. 
In another paper we present a more refined implementation of this idea using a 
recursive partition of the hue spectrum to mimic the recursive partitioning of the 
observation space by the regression tree (White and Sifneos, hi preparation).

RESULTS

The stepped prediction and response surfaces (Figure 1) produced a simple 
tree that has perfect prediction. That is, the variation explained, computed as the 
ratio of sums of squares in the leaves to that of the root node, subtracted from 
one, is exactly equal to 1. The tree diagram expressing the prediction 
relationship (Figure 1) followed the pattern of predictors precisely: the first split 
recognized the division of the observation grid into two halves by xl; the left 
branch of the tree representing the top half of the grid was split by x2; and the 
right branch representing the bottom by x3. A multiple linear regression on this 
data also achieved perfect prediction with an R-Squared of 1.

The contingent response from normally and lognormally distributed 
predictors (Figure 2) produced, in one realization, a tree with six leaves (Figure 
3). We applied the value scaling to the leaves and mapped the prediction groups 
of observations on the simulated study area grid (Figure 3). The variation 
explained by the tree was 0.71. A multiple regression with no interactions 
between predictors produced a R-Squared of 0.28. (A multiple regression 
including interactions between predictors would have a higher R-Squared.)

A regression tree analysis of the fish data set produced a tree with seven 
leaves (Figure 5). Each of the six splits used a different predictor variable. The 
variation explained by the tree was 0.72. A multiple regression fit with no 
interactions had a R-Squared of 0.50, using seven predictor variables determined 
through stepwise procedures. The map of prediction groups from the regression 
tree revealed a strong east-west structure in Oregon (Figure 6). On the west side 
of the Cascades, climate and elevation variables formed the prediction, while on 
the east side, stream length variables. The value scale mapping of leaf prediction 
groups with gray tones helped to identify this structure. Comprehensive analysis 
of this data and an interpretation of the biogeography will be found in Rathert et 
al. (in preparation).
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