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Abstract
We examine some benefits of using the medial axis as a centreline for rivers and 
lakes. One obvious benefit, automatic centreline generation, has been used for 
many years. We look at how the topological relationships between the medial axis 
and the river banks or lake shores can provide extra network characteristics such 
as river areas and opposite river banks. We also report on our experience at ap 
proximating the medial axis with a Voronoi diagram of point sites.

1 Introduction
Maps are rich in geometric structure. Adjacencies between features, containment 
in regions, intersections of lines or regions, and relative orientations or proximi 
ties of features all contribute to the value of maps and map operations. For digital 
maps, much of this structure is lost to computers; the visual cues that people use 
to see the geometric structure are not available to a computer. Instead, we develop 
algorithms for topology building, polygon containment, and polygon intersection 
to capture this structure for map analysis by computers.

Structure, in particular locality and proximity, appears in various forms. Reg 
ular grids [21] and quad trees [12, 19] localise points into a small region of space. 
The medial axis describes the "shape" of polygons in a variety of fields such as map 
labelling [2], shape matching [13, 15], solid modelling [24], mesh generation [9], 
and pocket machining [10]. Voronoi diagrams [3, 8] capture both the locality of 
objects as well as their proximity to one another for applications such as identify 
ing polygon closures and line intersections while digitising from maps [7]. In this 
paper, we focus on the medial axis.

Centrelines have been a standard tool of manual cartography for generalising 
networks for many years. Digital cartography inherits centrelines for generalisa 
tion of river and road systems [14], for simplifying the analysis of these same sys 
tems, and for extracting linear features from raster models [17]. The medial axis
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is one method that practitioners have used to generate these centrelines automati 
cally.

The characteristics that make the medial axis a good choice for centrelines can 
be taken one step further for river networks. An edge of a river's the medial axis is 
the bisector of the two nearest river banks. Therefore, each medial edge identifies 
a pair of river banks that are nearest to one another. This nearness relationship 
allows us to

• associate opposite banks of a river.
• tie analysis on centreline networks to original river bank data.
• calculate surface areas for rivers and river segments.
• extend network orderings, such as the Strahler [22] or the Horton [11] orders 

on river networks, to include lakes and wide rivers for cartographic gener 
alisation.

Although the medial axis is a well-defined structure, calculating the structure 
in the presence of degeneracies can be difficult. Consequently, we use an approx 
imation to the medial axis in our experiments. The approximation is based on a 
robust implementation of the Voronoi diagram for points.

In section 2 we describe our motivation for looking at centrelines of river net 
works. Section 3 provides some basic geometric definitions. Section 4 gives a few 
more details on the benefits of the medial axis as a centreline. Finally, our approx 
imation to the medial axis.by a Voronoi diagram of points appears in section 5.

The work in this paper has been done in conjunction with Facet Decision Sys 
tems.

2 The Problem
River slope, shore length, and surface area are three characteristics that influence 
the suitability of a river for salmon spawning. In digital maps, rivers appear as a 
single-line or as a set of river banks. In the first case, river slope and shore length 
come directly from the single-line rivers and a surface area estimate comes from 
some nominal width for the river. In the second case, the river is defined implicitly 
by its banks. We can compute slope and length for individual river banks, but there 
is no correlation between opposite banks. As with single-line rivers, a nominal 
width for the river generates an approximation to the surface area, but the approach 
ignores the implicit information of the map, namely the delineation of the river 
itself.

River centrelines lead to a better estimate of both length and area for wide rivers. 
Centrelines are a common approach to converting hydrology networks into tree 
like river networks [14]. The length of the centreline averages-out the difference 
in length of the two river banks as the river meanders. Moreover, a centreline with 
flow-directed edges establishes upstream and downstream relationships between 
tributaries on opposite sides of the rivers.
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The area of a wide river is a bit more elusive than the length. Although river 
banks may be labelled as either a right or left bank, digital maps do not usually 
encode which portion of a river bank is opposite another bank. Consequently, we 
know where the river is, to the left or right of an edge, but we don't know how wide 
the river is. The key to getting a better area estimate beyond using a nominal river 
width lies with finding the centrelines automatically and with making better use of 
the rivers' centrelines.

In our system, river centrelines are a subset of the medial axis of the river poly 
gons. Efficient algorithms [1,6] can compute the medial axis of a river automati 
cally and generate river slopes and lengths. As a by-product of the algorithm, each 
edge of the medial axis is tagged with the two closest river banks and each river 
banks is tagged with its nearest medial edge. Consequently, given a point on a river 
bank, we can find the distance from this point to its nearest medial axis edge; this 
distance is half of the river's width at that point. Knowing the width of the river at 
any point of our choosing allows us to make a better estimate of a river's surface 
area.

3 Definitions
The medial axis of a polygon [4, 18] con 

sists of the centre of all the circles contained 
inside the polygon that touch two or more dif 
ferent polygon edges. Polygon vertices, where 
two edges meet, are counted as a single edge. 
For any such circle, its centre is equidistant to 
the two edges that it touches and is therefore on 
the bisector of the two edges (figure 1).

The Voronoi diagram [3,16] of a set of point 
sites is a partition of the plane into maximally- 
connected regions in which all points share the . ,- , .^ •<. r» • * *u * -j- * * Figure 1: Medial axis of a same nearest sites. Points that are equidistant ~ / , ^ . , , , . f ., , j . ,- , polygon (dotted) and two to two nearest sites form the boundaries of the ,. . ,*•*• > 11 TU, 11 u j • 11 j I/ touching circles, partition s cells. The cell boundaries, called Voronoi °
edges, are bisectors between the closest sites. Points that are equidistant to three or 
more nearest sites are called Voronoi vertices. In non-degenerate cases, the Voronoi 
vertices are defined by three sites; if you join the three sites that define a Voronoi 
vertex then you obtain a Delaunay triangle. The same definition of a Voronoi di 
agram holds when line segments, such as the edges of a polygon, or arcs are the 
sites instead of points.

4 Medial Axis Benefits
The key aspect of the medial axis in Section 2 is the association between the edges 
of the medial axis and the nearest banks of the river. This association provides
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more benefits than simply an estimate of river widths.
First, the association of the medial axis edges to their nearest river banks tie 

future calculations on the centreline to original data elements. The river centrelines 
replace the river banks in a network to give a single-line river network. Further 
analysis, such as identifying drainage basins, locating fish spawning habitat, and 
tracking the run-off of forest cut blocks, uses the single-line network. Attributes 
of the medial axis edges from these operations are propagated to the appropriate 
river banks. The single-line network allows for simpler network analysis without 
sacrificing links to the river banks.

Second, the medial axis edges define opposite banks. Since a medial axis edge 
is the bisector of its closest river banks, these two banks are, in effect, opposite one 
another along the river. Attributes of opposite banks such as slope, elevation, soil 
type, and vegetation type can then be compared, to detect either inconsistencies of 
the data or anomalies in the environment.

(a) (b) (c)

Figure 2: A river network with its Horton order (a) and the subnetworks 
with Horton numbers greater than 1 (b) and 2 (c).

Third, the association extends network orderings to wide rivers and lakes for 
cartographic generalisation. The medial axis or centrelines of rivers have long 
been used to generalise rivers [14]. Network orders on single-line networks, such 
as the Horton [11], Strahler [22], and Shreve [20] orders, extract the primary branches 
of a river network for generalisation at large map scales. Figure 2 shows a sample 
network with its Horton order and the result of selecting edges of only high order 
from the network. These same orderings can be applied to networks that contain 
lakes or river banks by treating the lakes and wide rivers as their medial axis; this 
is not surprising. The original lake shore edges receive an order number from the 
nearby medial edges. Selecting edges with high network orders will also extract 
the lakes along the path. A minimum area for the lake is of added benefit at large 
map scales.

The propagation of network orders to lake shores and river banks can take one 
of two forms. Lake shores receive the network order of the nearest medial edge or 
lake shores receive the network order of the highest medial edge in the lake. The 
latter form treats a lake as a single unit to preserve the visual cues of lake extent
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and shape and is our preference for network simplifications. (Not all edges of a 
centreline have the same network order number.)

5 Computation of the Medial Axis
The computation of the medial axis is well-studied in computational geometry. 
Optimal algorithms [1,6] have been published to compute the structure for simple 
polygons. The medial axis is also a subset of the Voronoi diagram of the polygon's 
edge and, as such, algorithms that compute Voronoi diagrams [5, 16, 18, 25] are 
applicable to finding the medial axis.

Unfortunately, few implementations for computing the medial axis of a poly 
gon available are robust. Although many Voronoi diagram algorithm implemen 
tations exist, most do not handle the "degeneracies" of lines that share common 
endpoints, which arise when you try to compute the medial axis as a subset of a 
Voronoi diagram. Consequently, we use a robust sweep algorithm for the Voronoi 
diagram of point sites to approximate the medial axis of a polygon.

5.1 Medial Axis Approximation
Given the polygonal contour of a river or lake, we discretise the boundary of the 
river, compute the Voronoi diagram of these points, and approximate the medial 
axis from the result. Theoretically, as more points are added to discretise the bound 
ary of the polygon, the Voronoi diagram inside the polygon converges to a superset 
of the polygon's medial axis. Computationally, adding more points to the boundary 
adds degeneracies and increases the computation time. We need to strike a balance 
between computation time and diagram fidelity.

Figure 3: Delaunay triangles inside the polygon after (a) the initial point, (b) 
one decomposition step, and (c) two decomposition steps.

Our solution adaptively discretises the river boundary and starts with the points 
in the river bank's polygonal lines (figure 3(a)). After computing the Voronoi dia 
gram of these points, we compare each Delaunay triangle of the Voronoi diagram 
with the boundary of the river: if some river boundary cuts through any Delaunay 
triangle then we split the edge at its midpoint, add the midpoint to the set of point 
sites and recompute the Voronoi diagram (figure 3(b)). The result of these itera 
tions is a decomposition of the river's interior into Delaunay triangles (figures 3(c) 
and 4).
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We do not want the entire medial axis as the centreline of a river. We only want 
those edges that lead to tributaries or that link tributaries; we consider the outflow 
end of a river to be a tributary. Consequently, we mark all of the Delaunay triangles 
that have a tributary at one of its vertices and mark the Delaunay triangles inside 
the river that form a path between the tributaries' triangles.

There are two ways to approximate the medial axis from the marked triangu- 
lation. The first uses the subset of the Voronoi diagram whose vertices correspond 
to marked Delaunay triangles. If the initial discretisation of the river edges re 
sulted in a good triangulation and the points along an edge were far apart from 
one another then this approximation can look like a zig-zag pattern rather than an 
expected smooth centreline.

The second uses a representa 
tive point inside each Delaunay tri- . • <| i 
angle and joins the points of adj a- ,.- ., ;' ; ;' 
cent marked triangles into paths. Of _.. i / ; "" 
course, the result of this method de 
pends on the choice of represen 
tative points. One possibility uses 
the centroid of each triangle. If the 
base of the triangles alternates be 
tween river banks and the triangles 
have one side much smaller than 
the other two sides, then the approx 
imation is jagged. Another possi 
bility uses the midpoint of the line 
between the middle of the shortest 
triangle edge and its opposite triangle vertex as a representative point and produces 
a much smoother effect for long and thin triangles. In both cases, the approxima 
tion has a tree structure and both the Voronoi edges and the Delaunay triangles 
record the closest river bank edges.

The medial axis itself does not address the entire problem; the direction of wa 
ter flow along the medial axis edges has been ignored so far. A correct direction of 
flow is important when you want to answer queries such as "What is the river area 
upstream from a particular point?" or "If a particular tributary is polluted, what 
(downstream) fish spawning habitats may be affected?" In most cases for rivers, 
the direction of flow for the medial axis edges matches either the flow direction of 
a tributary at one end of the edge or the flow direction on the river banks that define 
the medial edge. This does not apply to medial axis edges inside lakes since the 
lake shore edges do not contain any flow. For lakes, a few simple topological rules 
have been sufficient in our experiments:

• if an edge is adjacent to a tributary then the flow of the edge matches the flow 
of the tributary.

• if the medial axis edges inside a lake meet at a node then there must always 
be at least one edge that enters and at least one edge that leaves the node.

Figure 4: Delaunay triangles inside of a lake.
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We set the direction of flow on medial edges that lead directly to tributaries accord 
ing to the first rule before examining the inner edges of the medial axis.

5.2 Area Generation
As mentioned in Section 2, the area of a river can be derived from the river's length 
and width. When Voronoi edges approximate the medial axis, width measurements 
are the distance between Voronoi edges and river banks. When paths between De- 
launay triangles approximate the medial axis, we obtain the area in a different man 
ner: assign the area of each Delaunay triangle to its representative point. Since the 
Delaunay triangulation decomposes the interior of the river, the river area between 
two points is the sum of the areas at the approximation's nodes between the two 
points.

Computing river area from Delaunay triangles has some drawbacks. Not ev 
ery Delaunay triangle has its representative point in the approximate medial axis 
since the approximation only keeps the portions of the medial axis that link tribu 
taries. As seen in figure 5, the areas of some inlets and bays must be allocated to 
a nearby representative points to preserve all of the feature's area. The variation 
in granularity of the triangle areas is another drawback. The area of a triangle in 
a river branch may be small while the area of a triangle at a river junction may be 
large.

6 Sample Centrelines
Our data is supplied by the Canadian Department of Fisheries and Oceans and 
Facet Decision Systems. It is a set of coded polygonal lines that outline terrain 
features. We use the hydrological features: rivers, river banks, and lake shores. 
The data is grouped in 1:20 000 scale map sheets with a 1 metre accuracy in the 
xy-plane and a 5 metre accuracy in elevation. The data adheres to the 1:20 000 
TRIM data standard of British Columbia [23]: rivers and river banks are digitised 
in a downstream direction while lake shores are digitised in a clockwise direction. 
Rivers whose width is less than 20 metres are digitised as the centreline of the river. 
Rivers whose width exceeds 20 metres have their left and right banks digitised; 
no association between opposite banks appears in the source data. Although the 
polygonal lines are not guaranteed to appear in any particular order, the digitis 
ing standard mandates two characteristics: polygonal lines only meet at their end- 
points, which are numerically identical.

Since the polygonal lines are unordered, we must build the topology of the data 
before computing the medial axis of the features. Adjacent lines share numerically 
identical endpoints so we place all the line endpoints into two-dimensional buck 
ets and then use matching points within each bucket to find adjoining edges. The 
matched ends provide enough topology to trace the outline of lakes and rivers.

We have extracted the directed centrelines and areas of features in the moun 
tainous interior of British Columbia where lakes have few out-flowing rivers. In
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Figure 5: The area of inlets and bays must be assigned to 
nearby medial edges or vertices.

the 500 lakes and rivers tested, the resulting water flow has been consistent with 
the expected flow in all of the cases. In the majority of the cases, the lakes only had 
one outlet and one inlet so deriving the direction of flow is simple. Other rivers or 
lakes, as in figure 6, have a medial axis that branches more than off just one centre 
line where the outlets were grouped at one end of the lake. The grouping makes the 
general water flow patterns simpler and more predictable than a lake with widely 
distributed outlets.

Although we obtained area estimates for the lakes and rivers in the tested wa 
tersheds, the process was not without difficulties. While the data digitising stan 
dard seemed ideal for geometric computations, we still needed to find and remove 
inconsistencies— primarily digitising errors: open polygons, miscoded edges, re 
versed edges, and missing edges.

Another difficulty, which we have not yet resolved, is the over-estimate of the 
area caused by islands and sandbars. Sandbars appear along river banks and nar 
row the effective width of the river. Islands eliminate area from the river. We ex 
pect to handle sandbars by using a more liberal definition of a river bank. As for 
islands, we can subtract their area from the rivers or lakes to which they belong, but 
this solution is not very satisfactory; it does not give us an easy method for finding 
the area of a river between two points on the river banks, and the automatically- 
generated centrelines do not necessarily respect the land formations (figure 6).
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Figure 6: The medial axis of the boundary does not respect islands.
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