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ABSTRACT

The modeling of dynamic urban systems has been of interest to spatial analysts 
for the better part of the past four decades, and the development of geographic 
information systems (GIS) has sparked continued interest in spatial process 
modeling. Recent research in a number of far reaching disciplines has shown 
artificial neural networks (ANN) to be powerful tools for modeling many dynamic 
systems (Vemuri and Rogers, 1994). This research investigated the possibilities for 
ANN's as spatial analytic tools. To this end, an artificial neural network was linked 
with a GIS for the purpose of modeling urban growth in sub-regions of a 
metropolitan area. The validity of the ANN model was tested against a linear 
regression model. The results of this research support the hypothesis that ANN are 
in fact useful spatial analytic tools and can be used to accurately model dynamic 
urban systems.

INTRODUCTION

Modeling and prediction of urban growth have been of interest to researchers 
for the better part of the past four decades (Chapin and Weiss, 1968, Batty and 
Longley, 1994). Much of the rationale behind this research was to determine the 
cause and effect of the urban form on transportation patterns and to use this 
knowledge for the planning of future transportation networks. Researchers were 
interested in the potential for computer models to enable the testing of changes in 
policy and urban resources on transportation networks, and thus the models 
proposed were deductive in nature.
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The model put forth in this research was an inductive approach to the urban 
modeling problem, and incorporated an artificial neural network (ANN) in 
conjunction with a geographic information system (GIS) to model a spatio- 
temporal database of single family residential building permits. The model was 
based on the assumption that the time of occurrence and magnitude of urban 
growth in a sub-region of a metropolitan area is a function of the development 
already occurring in the sub-region and within it's neighboring areas.

METHODOLOGY

The spatial data structure created for this research was an arbitrarily defined 
tessellation of 2.6 square mile regular hexagons covering the two county Columbia 
SC study area. The benefits of using a regular hexagon tessellation was that 
neighborhood relations, shape, size and orientation are held constant throughout the 
surface. Building permits are indicators of the morphology of the urban landscape 
Halls, Cowen and Jensen (1994). This study used the single family residential 
housing units subset of a building permits database for an eleven year period. For 
this study, the training set included the building permit data from the years 1981 
through 1989. The test set contained the data from 1990 and 1991. For this study 
a hexagon had to have had at least 10 permits issued at least one of the years during 
the period. This ensured that there was enough training set data for the neural 
network to find a pattern of development (fig.l).

Based on previous research it was determined that artificial neural networks 
model the time series of nonlinear dynamic systems by mapping the state of the 
system at time t, x(t), to some future state, x(t + At). Chakraborty et al (1992) 
demonstrated improved results by incorporating the time series of comparable 
objects (cities) as inputs, and this approach was adapted to this study by including 
the states of the "neighborhood" (the six surrounding hexagons) with the state of 
each hexagon as inputs to the ANN model (fig 2). The spatial relationships 
between the hexagon and its neighbors are built into the structure of the ANN 
through the arrangement of the input nodes and the weight connections between the 
input layer and the hidden layer. This arrangement is held constant throughout the 
study area. This has the effect of defining a regular semi-lattice organization over 
the entire surface (fig. 3). In terms of the specifics of the dynamic urban system, 
this is the urban organization argued for by Alexander (1965) in his two part essay 
"A City is Not a Tree". Few models have adopted this structure, opting instead for 
a simpler hierarchical tree-like structure.

Since the spatial relationships between neighboring hexagons are hard coded 
into the ANN structure, one set of network weights for the entire area would not 
necessarily provide the best model. In fact, the relationship between each hexagon 
and it's neighbors changes with respect to the central business district (CBD) 
throughout the study area (Fig. 4). Once the permits were partitioned in space and
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Figure 1 Distribution of building permits in hexagonal data structure.
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time, their theoretical time series would start with a period of no growth 
corresponding to the period when the area was in non-urban land use, a short 
period of active growth as the urban fringe passes through the area and a final 
period of no development occurring when the available space in the area has 
become saturated with development.

Output Node

Input Nodes

NEIGHBORHOOD:
ABC

Fig. 2 Hexagonal ANN Figure 3 ANN Neighborhood

Increasing time ( t)

Fig. 4 Hypothetical time series from CBD

The last issue to be resolved was the development of the specifics of the 
artificial neural network model(s). This process involved the selection of an 
appropriate number of hidden nodes, the scaling of the data from real world values 
to ANN values, and the training threshold of the sum of the square error to be used
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in training the ANN. A number of researchers have indicated the difficulty of 
determining appropriate network architecture's (i.e. the number of hidden nodes) 
for modeling a wide range of data sets (Heermann and Khazenie, 1992;; Fletcher 
and Goss, 1993; Lodewyck and Deng, 1993). Lowe and Webb (1991) have 
suggested that the number of hidden nodes represent a Euclidean dimension into 
which the dimension of the attractor of the system (which may be of fractal 
dimension) is embedded. For this research, initial feedback indicated that between 
four and two hidden nodes were adequate to produce acceptable results. Of the 
ninety-four ANN models chosen, forty-eight (48) utilized four hidden nodes, 
twenty-five (25) utilized three hidden nodes and twenty-one (21) utilized two 
hidden nodes. The scaling used in this study incorporated the following rules:

1. The scaling values were between 0.2 and 0.8.
2. The minimum and maximum values for each training set were 
determined from the center hexagon in the seven hexagon 
neighborhood. Values in the surrounding six hexagons which 
were less than the minimum were assigned the minimum value 
and values which were greater than the maximum were assigned 
the maximum value.
3. In many instances the range of activity was still quite large 
with many small values and a few instances of large values. In 
these cases, experimentation indicated that taking the log of the 
data values produced desirable results.

Thus, for each model that was developed, two approaches were used - ordinary 
linear and log-linear scaling". Twenty-four ANN models were developed for each 
of the ninety-four hexagons in the study area. The twenty-four models correspond 
to variations in the number of hidden nodes (2,3,4), the scaling method used 
(linear, log-linear), and the learning criteria used to end the training phase of the 
ANN model development. The log-linear scaling method was used by sixty (60) 
of the ninety-four ANN models and the straight linear scaling was used by thirty- 
four (34). A final consideration in specifying the model was the learning threshold 
for the sum of the squared error that must be reached before the training of the 
network weights ends. It is generally agreed that small sum-of-the-square errors 
attained during the training phase result in networks which have "learned" the 
idiosyncrasies of the training data, and may result in poor generalization to the test 
data set and other data the network has not previously "seen". To adjust for this, 
this study tested four different training thresholds, 0.1, 0.25, 0.4 and 0.55, at which 
time adjustment of the network weights stopped. The "best" model for each 
hexagon was chosen as the one with the lowest sum of the square error on the test 
data set (1990,1991). This model was then used in all subsequent analysis.
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MODEL EVALUATION
The ANN predictions for the years 1982 through 1990 were generated by 

iterating the model forward one year using actual data from the year before as 
inputs. For example, actual 1981 data was used to produce predictions for 1982 
and so forth. The 1991 ANN prediction is a two iteration case in which the model 
predictions for 1990 were used as inputs to produce the prediction. The linear 
trend model is plotted as the regression line representing the trend of the data 
between 1981 and 1989 extended through the test set years of 1990 and 1991. For 
each hexagon, the "best" model was chosen as the one which had the lowest sum 
of the square error on the test data set (fig. 5). In most cases the ANN model was 
able to lock into a pattern of development in the training data and produce 
predictions which were superior to the linear trend model. The ANN models with 
small learning criteria (< 0.1) approximate the trend of training set data quite well, 
while those models with larger learning criteria do not represent the training data 
as well.

Fig. 5 Predicted building permits versus actual
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A few cases illustrate how some of the models predicted the building permit 
data (fig. 6). In case 1 an ANN model was able to accurately approximate the 
nonlinear trend of the building permit data, including the test data set. Case 2 is an 
interesting case in which the trend of the building permit data does not match the 
hypothetical time series. The ANN model was able to pick up on the appropriate 
pattern and predict the increase in permits occurring in 1991. The prediction is not 
drastically different from the linear trend model in this year, but the ability of the 
ANN model to adjust for this upswing is evident. Case 3 is justification for using 
higher learning criteria during the training phase of the model development. The 
increased learning criteria allowed the ANN model to ignore what may be noise in 
the training set data and still have the ability to model the general trend of the data 
and produce desirable results on the test set data. This property gives ANN's a 
distinct advantage over linear trends when modeling dynamic systems. Case 4 
illustrates a problem involved with modeling dynamic systems. In this case the 
model has picked up on an inappropriate trend in the data and has projected the 
growth upwards in 1991 when in actuality it is tending towards zero.

Case
Hidden Nodi 
Scaling Log-li 
learning Criteria 0999

—D—Actual -

Hidden Nodes 3 
Scaling Log- Linear 
teaming Criteria 2490

:ase2
Hidden Nodes 3 
Scaling Lhear 
Leamhg Criteria 0996

Fig. 6 Four examples of ANN and linear predictions

The final evaluation was based on regressing each model's (ANN and 
regression) predictions against the actual building activity occurring within each
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hexagon in both 1990 and 1991 (fig. 7). This resulted in four bivariate regression 
equations . Over the 94 hexagons in the study area, the ANN models were shown 
to be superior to the linear trend models in that the ANN models produced 
predictions which were closer to the actual data values than did the linear trend 
model. For the 1990 ANN one iteration model the regression parameters for the 
one iteration ANN model predictions for 1990 the r2 was 0.83. In contrast the 
regression model had an r2 of 0.61. The intercept for the regression estimate was 
9.49 which was significantly different than zero. These parameters indicate that the 
linear trend predictions for 1990 consistently over-predicting the number of 
building permits throughout the study area.

Neural Network Results • One iteration (1990 Data)

Neural Network Results - Two interattons (1991 data)

Linear Regression Results (1990 Data)

Linear Regression Results (1991 Data)

• _. la, 10 109945 I Test 00001

Fig. 7 Regression results of ANN versus linear model.

The regression model for the two iteration ANN model predictions for 1991 
and the actual number of permits had an r2 of only 0.52 and a slope of 1.19. The 
expected growth of the error term between the trajectory of the ANN model 
predictions and the actual data values is apparent in these results. The fact that the 
two iteration case had an intercept of zero and a slope near 1 which indicate that 
while the models do not perform consistently for all hexagons, they do produce 
results which are around the desired values. The comparison of the linear trend 
predictions for 1991 and the actual number of permits generated an r2 of 0.55 with

73



a slope of 1.37. As was the case with the results of the linear trend on the 1990 test 
data, the linear predictions for 1991 are consistently higher than the actual number 
of permits. The difference between the two approaches is most clearly 
demonstrated by the fact that the intercept of the ANN model is approximately 
zero (0.86) and the intercept of the linear trend model significantly greater than 
zero (10.11).

CONCLUSIONS

A spatial temporal database was constructed by aggregating a database of 
building permit data to a tessellation of regular hexagons. Artificial neural network 
techniques were used to develop models that replicated the time series for each 
hexagon. These models were evaluated by comparing the predictions of the 
models for two years of data the model did not see during the training phase of 
model development against the predictions from a linear trend model. The results 
of the study provide strong evidence for power of an ANN to model non-linear 
trends. For the one iteration case, the ANN model was able to produce predictions 
over the entire study area which closely resembled the actual values, while the 
linear trend model produced results which consistently overestimated the actual 
number of permits. The models were able to adjust to the variations in the building 
permit data without being aware of fluctuations in the local economy, available 
land for development, accessibility, etc. The success of the approach used here is 
encouraging for modeling systems, such as urban dynamics, for which the 
relationships between the underlying mechanisms are not well understood and for 
which precise data is not available.
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