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Abstract

We examine map projections and their distortions in a discretized, 
time-dependent computer mapping environment; and we propose 
some new map projection paradigms. The computer environment 
permits us to display animated projection evolution (realized as a 
movie of continuous deformation from a perspective view of the orig 
inal datum surface to the projection surface). An animated pro 
jection evolution technique may also be used to produce varivalent 
projections (cartograms) built by iterative discrete distortion tech 
niques. The discretized environment also allows us to quickly change 
the viewpoint and the projection orientation (by means of pixel shift 
operations) to produce a sequence of overlapping maps, each of which 
is distortion-free (up to sub-pixel resolution) with respect to a mov 
ing central point. We also examine methods for producing large scale 
route strip map sets such that each route segment is distortion-free 
throughout the strip map in which it is featured.

INTRODUCTION
What would the savvy map user ask for in a map projection these days if' 
he or she knew about the latest possibilities for computer generated maps? 
Probably the,same thing that a hopelessly naive user might request-a to 
tally distortion-free map! While a distortion-free map is and always will 
be a mathematical impossibility for any region containing 4 or more non- 
coplanar points, one may, nonetheless, (and for sufficiently large scales) 
hold displacement distortion to subpixel size and draw a map with no dis 
cernible distortion. The following are technology-inspired tactics to (1) min 
imize perceptible distortion at and around a rapidly moving viewpoint, to 
(2) minimize distortion along a particular route, and to (3) minimize distor 
tion under a magnifying glass that we baby-boomers are finding increasingly 
necessary to use to read our maps.

BRESENHAM-TYPE METHODS
Every computer graphics student learns early about J. E. Bresenham's el 
egantly simple algorithms for coloring pixels one by one to generate raster 
representations of straight lines [Bre65] and circles [Bre77]. The algorithms
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employ elementary integer arithmetic operations of addition and subtrac 
tion (and nothing else!) They are fast, robust, and surprisingly easy to 
implement and to prove correct. This paper (and an associated computer 
demonstration) attempt to extend the flavor, if not the theory, of Bresen- 
ham's work to two and three dimensions by incrementally updating the 
pixels of the 2-D map of the ground below Dr. Bresenham as he moves 
along and above the surface of the earth in nice pixel-sized increments. 
What we accomplish with our incremental methods are real-time azimuthal 
projections continuously centered directly below a moving observer. There 
is never any linear or angular distortion at the current viewpoint (always 
the center of the map). Distortion is always radial (so directions from 
the current viewpoint are always correct); and concentric circles about the 
viewpoint delineate "contours of equal distortion." We discuss the different 
incremental procedures needed to update different azimuthal projections; 
and we define simple incremental procedures and analyze their resulting 
projection properties. The central symmetry of all of our adjustments per 
mits shortcut computations (similar to Bresenham's observation [Bre77] 
that for circles, one needs'only compute an arc that is 1/8 the circumfer 
ence, then reflect in various axes).

The speed of the incremental computations permits a discrete image to 
be generated at a much higher resolution than the display. The computed 
higher resolution grid may then be smoothed with a filter (in much the 
same way that anti-aliasing is often applied to remove the jaggies from 
Bresenham's line). Moreover, the incremental changes of the observer's 
movement may be everywhere realized as pixel shifts followed by smoothing 
or averaging (averaging is necessary when the finer grid pixels only move 
a fractional amount of the larger pixel size). The observer's movement 
may be decomposed into its X, Y, and Z components; and the effect on 
the image of each step in one of the three perpendicular directions may 
be computed once and stored in a lookup table. Since movements in the 
three independent directions "almost" commute with each other, we may 
sum the pixel shift effects of the X, Y, and Z components in any order to 
determine the net effect.

A Moving Pixel's Perspective

Motion of the viewer translates into apparent-motion of an image in the 
opposite direction. As a train passenger looks out the window; he sees the 
scenery moving past him in the opposite direction to the train's motion. 
Objects that are close to the train appear to move more rapidly than distant 
objects. The moon appears to be keeping up with the train because its 
relative motion is so slight that it seems to not move backwards at all! 
The geometry of this apparent motion with respect to the train window is 
straightforward—the rate that a stationary object appears to move past the 
window is inversely proportional to its distance from the viewer. One may
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Figure 1: Linear point motion as captured in the digitized image plane.

discretize this apparent motion by imagining that the window is screened 
(a fine-grained rectangular grid), the viewer's eye is fixed with respect to its 
distance and position relative to the screen, and the viewed objects appear 
to move from one tiny rectangle of the screen to an adjacent rectangle as 
the train moves forward. For the train example, all actual motion and all 
apparent motion is horizontal! If the vehicle could move vertically as well, 
but continued in^a straight line, then the distant point object would appear 
to move from cell to cell in the gridded screen in exactly the same pattern 
as the incremental linear Bresenham algorithm generates successive grid 
cells, as is illustrated in Figure 1.

Pixel trajectories

Consider now the sequence of screen rectangles (pixels) in which a particular 
distant point light source appears over time. At any time the light point 
representation on the screen has a screen position and a screen velocity. If 
the screen contains a line parallel to the direction of motion of the train, 
then the lighted pixel's velocity will be constant and linear; hence, the 
individual pixel's trajectory over time will be correctly modeled by the 
Bresenham algorithm for painting successive pixels along a line at regularly 
spaced time intervals. If one knows all of the pixels' velocities (speed and 
direction) at each instant, then one may integrate the velocities to obtain 
tracks or trajectories for each individual pixel component of a map's images. 
The significant notions that we .can exploit here are (1) the pixel content 
(is it black or white or colored?) makes absolutely no difference to the 
trajectory determination; and (2) the pixel movements repeat their patterns 
(so that the full image of pixel shifts may be saved and re-used so that they 
may be applied repeatedly to generate successive images). The movement 
of objects in the foreground will appear to outpace the movement of more

349



distant objects; hence, foreground objects may overtake and temporarily 
obstruct the view of more distant objects, and then the foreground objects 
will again uncover or reveal distant objects as the foreground objects appear 
to move past the background objects. If all of the objects are in a single 
plane parallel to the screen (i.e., all the same distance from the plane of the 
screen), then the apparent pixel motion on the screen will be completely 
uniform (same direction and same pixel speed) everywhere. This model is 
a bit too simplified for our applications!

Figure 2: Pixels' displacement simulates rotational motion.

Let's look at some image updates for which pixel movement is not uni 
form. Consider the following simplified animation of the spinning earth icon 
or applet: shaded pixels are displayed in a circle in a way that produces 
the illusion of a spinning globe, as illustrated in Figure 2. The pixel shifts 
that accomplish this illusion produce trajectories along the perspective pro 
jection of parallel circles of latitude. The speed of the pixel movements is 
greater at the equator and diminishes near the poles. The speed near the 
edges of the circular disk also diminishes to produce the effect of less motion 
in the viewing screen plane (the greater component of the rotational motion 
is perpendicular to the viewing screen plane). Note that the persistence of 
the specular reflection (a lightening of pixels as they approach the center 
of the circle) reinforces the effect that the globe itself is rotating and the 
viewer and light source remain fixed. It is worthwhile to emphasize that 
the pixel shifts relative to their reference position in the circular display are 
identical from the first image to the second, from the second to the third, 
and from the third to the fourth. Each successive image represents a 20° 
rotation; and the pixel shifts are completely determined by that fact (and 
not by whatever happens to occupy a pixel location at any moment).

If the globe were transparent, and if we were far enough away from it 
(so that all rays that we perceive are effectively parallel), we would see each 
point on the earth trace out an ellipse. The pixel motion necessary to trace 
out an ellipse is easily described in terms of Bresenham's circle drawing 
routine: if we give our pixels an aspect ratio of b/a, then the figure that 
we draw with Bresenham's circle drawing routine is actually an ellipse; and 
the flattening of that ellipse is precisely (a — b)/a.

We may offer one final illustration based on the appearance of a rotating 
spherical globe as viewed from space: Suppose that we position ourselves 
one earth diameter from the earth's surface and we place a giant convex lens
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tangent to the earth at the point nearest to us, as illustrated in Figure 3. 
If the lens bends the light as shown in Figure 3, with viewer and antipodal 
point as conjugate points, then the viewer "sees" the stereographic projec 
tion. If the viewer imagines a fine pixel grid superimposed on the central 
plane of the lens, then lateral movement of the viewer coupled with corre 
sponding movement of the lens will correspond to sliding the tangent point 
for the plane of the azimuthal stereographic projection.

Figure 3: Optical construction of stereographic projection.

The relative shifts of pixels corresponding to the same point on the 
earth's surface is easy to describe and compute. The stereographic pro 
jection is conformal; and the radial displacement on the projection of a 
point at distance R9 along a great circle arc from the point of tangency is 
2Rtan(6/2,). The scale factor at distance RO along a great circle arc from 
the point of tangency is 2/(l + cos 9). The scale factor is the relative size 
of velocity vectors corresponding to movement at the point in question. It 
is precisely those velocity vectors that provide the magnitude of the pixel 
shifts for the viewpoint change on the projection surface.

Graphics speed-up tricks

If observer's movements proceed linearly (in a constant direction), then 
double-buffering techniques can be applied easily to "leap-frog" the gener 
ated images. The computation (and buffer loading) of all "odd" observer 
positions may proceed apace with the computation (and buffer loading) of 
all "even" positions so that the dual buffers may stay synchronized as they 
flush alternate frames to the screen. This and other "fast drawing" tricks 
of computer graphics theory that may facilitate real-time map updates in 
volving continuously changing projections [Pet95]. The key to updating 
projections with a moving viewpoint is that if the relative motion neces 
sary to update the viewpoint does not change, then the pixel movements 
(in terms of pixel locations) are identical. Only the pixel content changes 
from shift to shift. In a manner identical to constructing and repeating 
the shifts of pixels necessary to simulate earth rotation, we may reposition

351



the tangent point of our azimuthal projection by shifting all pixels in the 
opposite direction. To move right, we take the pixel on the right and shift 
it left. A pixel that is far away will have to shift a greater distance. For 
example, a pixel that is 90° away from the tangent pixel will move twice 
as fast because the scale factor is exactly two in the projection at 90° from 
the point of tangency.

CONFORMAL TRIPTIKS
In this section we examine some opportunities to construct and use maps 
that are conformal along a route

Oblique Mercator Strip Maps

An oblique Mercator projection of the sphere, with its cylinder tangent 
to the great circle joining two points of interest, provides a distortion- 
free representation of all points along the shortest path between those two 
points [Sny94]. Such a representation provides a pilot or a navigator with 
a direct routing from start to destination. Any point along the great circle 
route corresponds to a point of no distortion on the map. For ground- 
following routes, one may approximate the multi-directional path by a se 
quence of great circle arcs on a sphere modeling the Earth; then one may 
compute oblique Mercator projections along each great circle arc. One 
might present each arc's projection separately; or one might even "blend" 
the projections using other available computer graphics techniques [Far93]. 
We will visit blending once again when we briefly touch upon homotopy 
and homotopic projections.

Minimizing distortion along and near a closed path

One may minimize distortion along a path by keeping the function confor 
mal in a neighborhood of the path and also maintaining a constant scale 
along the path. Since the length of a path on the map differs from the 
length on the datum surface by a factor of scale (which is constant), we 
must have that relative lengths along partial paths are preserved every 
where. Chebyschev had conjectured (and others later proved) [BS95] that 
a conformal scale-constant mapping of the closed boundary of a simply con 
nected region to the closed boundary of another simply connected region 
extends conformally to the interior of the regions in a way that minimizes 
scale variation within the region.

Cheng's Conformal Polyconics

Yang Cheng [Che92] showed how to attach a tangent developable surface to 
any smooth rectifiable curve on a datum surface (sphere or ellipsoid); and 
from that construction, he is able to extend the projection of that curve
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conformally to a neighborhood of that curve with no distortion along the 
tangent curve itself. Cheng's methods have been applied in detail to specific 
important curves such as satellite ground tracks [Che96]. They may also 
be applied readily for any route on the sphere or ellipsoid for which we 
may compute geodesic curvature. We must merely construct a plane curve 
whose curvature matches the geodesic curvature of the curve on the sphere 
or ellipsoid; then we may widen, expand, or buffer the curve in the plane to 
produce a swath (or wiggly triptik!) on which we may construct a conformal 
mapping of a neighborhood of the curve. This conformal mapping will have 
no scale distortion along the curve itself.

DYNAMIC CARTOGRAMS
Morphing technology in computer graphics has created a standard toolbox 
for animators, graphic artists, and image processors. We focus here on 
describing a subset of morphing tools that possess desirable map projection 
properties such as conformality and equivalence; and we show how those 
tools can be applied effectively to create an interesting collection of map 
products.

Homotopies

A homotopy may be regarded as a continuous deformation over time of 
one function to another. Formally, if / : X — *• Y and g : X — » Y are two 
functions on the same domain X and range Y, then we say that / and g 
are homotopic if there exists a continuous function 0 : X x [0, 1] — > Y such 
that for all x € X, f(x] = </>(#, 0) and g(x) — (/)(x, 1). One may regard the 
second parameter of the bivariate function 0 as a time parameter: at t — 0 
the function </> behaves like /; at t = I the function 0 behaves like g] and 
for 0 < t < 1, the function 0 changes continuously with respect to t.

Because each cross-section (j> : X x {to} — * Y of a homotopy is only 
required to be continuous (and not necessarily bijective), the intermediate 
slices of two homotopic projections / and g may not be projections in 
the usual sense (because of collapsing). For example, if one rotates any 
projection through 180°:

If f(x) = (/t>,0), then g(x) = (p,0 + 180°), 

then defines a straight line deformation from / to g:

then the function 0 collapses to the origin everywhere at t = 1/2.
Often the function </> is called the convex combination of g and /. If g and 

/ are analytic complex-valued functions of a complex variable, then every 
convex combination of g and / will also be an analytic function. Analytic is
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the same as conformal or angle preserving provided the function does not 
collapse somewhere. There are many other possibilities for guaranteeing 
conformality of combined functions. All complex arithmetic operations 
return conformal functions.

Complex Variables and Conformal Functions

Conformal functions have some amazing properties related to the struc 
ture of the complex number field that mathematicians have discovered and 
studied. These properties are at the same time very constraining and yet 
very powerful in nature. One very important property is that the complex 
numbers are not simply two-vectors, they possess an algebraic interaction 
that manifests itself very nicely in the geometry. To multiply two complex 
numbers by adding their angles and multiplying their magnitudes is both 
incredible and liberating. Another defining property is differentiability in 
the complex variable sense. A derivative exists at each point; and it may be 
computed as a limit from any direction. A directional derivative is a scale 
factor in the particular direction. For conformal functions, all directional 
derivatives at a single point are the same (complex) value. In other words, 
at each individual point in the domain, the scale factor (magnitude change 
of any tangent vector) in every direction is the same; and so is the rotation 
component of each tangent vector. Here are some of the other amazing 
properties of conformal functions [Cur43]:

1. If a function is once (complex) differentiable in an open neighborhood 
of a point, then it is infinitely differentiable in the neighborhood of 
the point.

2. Each conformal mapping is fully determined in a maximum circular 
region about any point by the first, second, third, and higher order 
derivatives at the single point.

3. A conformal function is fully determined in a maximum circular region 
by its values on any open set, however small. (This is perhaps the 
most constraining property since we lose all freedom to assign our 
own set of values to a conformal function even far from the defining 
site.)

4. A conformal function has a power series expansion in a complex vari 
able. The radius of convergence extends exactly as far as the nearest 
singularity of the function.

5. We have some bad news, too: we want to stay away from singularities. 
In any neighborhood of a singularity, a conformal function assumes 
every possible sufficiently large value.

6. For any simply connected region, there exists a conformal function 
that sends the unit disk onto the region. (This says that we can
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preserve local scale and shape and still distort the global picture as 
much as we want. This seems counter-intuitive!)

7. A conformal function is an open map. It sends open sets to open sets.

8. Any two conformal functions that agree on an infinite set of points 
agree everywhere.

9. The composition of two conformal functions remains conformal.

10. Boundary conditions may preclude the existence of any satisfying 
conformal functions.

11. Homotopy and conformality meet [ST83] in Cauchy's Theorem: If a 
closed path j(t) is homotopic to the null path in a region of differen 
tiability of /, then / / = 0. If two closed paths 7i(£) and 72(i) are 
homotopic in a region of differentiability of /, then j / = / /•

12. The homotopy properties guarantee the existence of anti-derivatives 
as well as infinitely many derivatives.

Quasiconformal Functions

Quasiconformal functions [Ahl87] are as close to conformal as one may get 
when boundary conditions are such that conformality is impossible. If we 
use the eccentricity of the ellipse of the Tissot indicatrix [Las89] to measure 
our failure to achieve conformality, then quasiconformal functions have the 
smallest eccentricity possible while still satisfying the defining boundary 
conditions. Some important quasiconformal functions correspond to con- 
formal transformations followed by affine transformations (which wind up 
flattening all Tissot ellipses in the same direction and by the same fractional 
amount).

Area Preservation and Area Distortion

Waldo Tobler [Tob86] and Lev Bugayevskiy [BS95] have studied the dif 
ferential equations of varivalent transformations; and Tobler has produced 
several programs to implement his methods [Tob74]. An opportunity to ex 
amine the discretized version of the transformations exists for us to apply 
the incremental methods described in this paper to the theory of Tobler 
and others.

FINAL REMARKS
We have only had time and space to present what appears to be a laundry 
list of possibilities for new map projection paradigms. We certainly do not 
claim to have exhausted the possibilities; and our limited perspective is just 
that—quite limited. Nevertheless, we believe that we have highlighted a
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series of related opportunities; and we hope that our viewpoint stimulates 
new research into map projections and their uses.
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