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ABSTRACT

This paper describes potential strategies for analyzing complex spatial 
queries in multi-layer vector CIS. The purposes of such analysis are (1) to 
reduce the size of the query, still providing acceptable accuracy, and (2) to 
provide information to the user about how the query should be reformulated to 
obtain an acceptable result. Several reasoning-based strategies for the reduction 
of query size are considered: finding reasoning chains which lead to the most 
accurate available approximation of a query; filtering out least significant 
categories, identifying the most sensitive elements in a query which could 
produce best gains in accuracy once re-specified. Since elements in a complex 
query, including categories, relations between categories, and spatial context, 
can be specified to a given certainty, the problem involves reasoning with 
imprecise premises, and certainty propagation. The task is formalized within 
the framework of determinacy analysis and logic which provide a 
computational solution for the accuracy of a corollary statement (query result, 
in our case) based on such "imperfect" premises. A series of experiments 
demonstrate the dependence of the query accuracy on the absolute values and 
on the degree of certainty in definitions of each category and relation in the 
query.

INTRODUCTION

Processing complex spatial queries is one of fundamental capabilities of 
Geographic Information Systems (GIS). Formulation of query languages 
encompassing a wide variety of spatial analytical tasks has been a subject of 
extensive recearch in recent years (Ooi, 1990; Langran, 1991; Tomlin, 1990; 
Egenhofer, 1992, etc.) Responding to a query can be fairly straightforward, 
when it involves only an attribute database search. However, common queries 
in cartographic modeling may involve more than one attribute, and require 
overlay of several map layers, or some other geometric processing. Consider, 
for example, a query "select areas in parks within the city, such that there is a 
lake within the park, and also the area has slopes not greater than 5% and soils 
of a given type". A direct way to resolve such a query is to overlay maps of 
parks, lakes, city boundaries, slopes, and soils. Though each subsequent overlay
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deals with smaller area, the solution may take a lot of computer resources. 
Besides, a rigid following the definitions of the categories and relations may 
result in a zero answer, without providing any information about how the query 
should be reformulated, and thus making the "what-if' scenario of geographic 
analysis with GIS a long and frustrating experience. It is important, therefore, 
to resolve such a query, or some aspect of it, in a way that (1) minimizes the 
processing time required to report the results, and (2) suggests how to improve 
the query by re-specifying its elements.

The fact that each of the elementary query components can contain 
uncertainty, requires their formal modeling as uncertain statements, and 
modeling error propagation in combinations of such statements. This paper 
investigates how such complex queries can be decomposed and optimized, 
using a set of analytical and reasoning techniques known as determinacy 
analysis and determinacy logic (Chesnokov, 1990; Zaslavsky, 1995). 
Determinacy logic allows to estimate the binary truth values for syllogisms with 
uncertain premises, and, conversely, to propagate certainty bounds in reasoning 
chains. We will consider reasoning-based estimates of the area covered by a 
combination of categories to be reported by a complex query. The paper starts 
with a formalization of uncertainty propagation in a complex query, as a 
reasoning problem. Then, we compare different methodologies for reasoning 
about elements in such query. Finally, a series of experiments are described 
showing the strategies for query improvement.

UNCERTAINTY BV A COMPLEX QUERY, AND ITS 
FORMALIZATION

The complex query described above, has several important properties. The 
results reported by a query depend on both definitions of categories (park, lake, 
city, soils), and relationships ("within" and "intersect", in this case, see 
Egenhofer and Franzoza, 1991, and subsequent works on qualitative spatial 
reasoning on description of other topologically distinct spatial relations). 
Uncertainty inherent in such definitions may be greater than uncertainty 
associated with formal processing of geographic data in GIS, and it should be 
taken into account during the translation of common-sense geographic 
circumstances into a formal language of GIS queries.

It may be possible to resolve a complex query with acceptable accuracy 
(within user-defined certainty thresholds) without performing an overlay. If a 
sufficient amount of information about previous queries has been accumulated 
in the system, new queries can be resolved with the help of a reasoning engine.
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Let's consider a query based on elementary categories "a" and "c" from 
layers A and C, respectively. Each of the categories is specified with certain 
accuracy, that is, areal proportions of "a" and "c" in the entire area, P(a) and 
P(c), are such that <yt < P(a) < Ol , and 6)3 < P(c) < 03 , where
co and 0 are some numbers in the [0, 1] interval (here and below I follow the
notation of Chesnokov, 1990). The task is to respond to a query about the area 
in overlay of "a" and "c".

Beyond an obvious (and seldom useful) solution

or
a)

0 
maxi , > < P(ac) < 1

the task can be described as a quantitative reasoning problem, in which 
auxiliary information is used to better specify the relationship between "a" and 
"c". Suppose we don't know the relation between "a" and "c", but we have 
accumulated information about the relations between these two categories, and 
categories from other layers in the same database. Let's call such other category 
"b " from layer B, and characterize its uncertainty as G)2 < P(b) < 02 ,
similarly to the specification of categories "a" and "c" above. Each of the 
relations, (a->b) and (b-^c), may be also uncertain, i.e. the areal proportions of 
combinations of "a" and "b ", "c" and "b ", respectively, are described as:

rl2 < P(db) I P(a) < sn r23 < P(bc) I P(b) < s23

r21 < P(ab) I P(b) < s2l and r32 < P(bc) I P(c} < s32 (2)

The task then is to find such intermediate category "b" so that the syllogism

(a-)b) and (b -x) => (a->c) (3) 

is true, and relation (a->c) is accurate within the preset limits

r3l <P(ac)/P(c)<s3l

By obtaining a narrow estimate ofP(ac)/P(a) and P(ac)/P(c), we would 
approximate a query involving overlay of "a" and "c".
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ALTERNATIVES FOR UNCERTAINTY PROPAGATION IN 
COMPLEX QUERIES

The desirable properties of a spatial reasoning engine for the problem 
described above are: (1) ability to process inexact premises (which makes the 
machinery of Boolean algebra inapplicable); (2) topological "conformance", or 
description of uncertainty as deviations from topologically distinct cases 
requested by most kinds of queries; (3) ability to interpret the reasoning 
outcome as proportions of areas rather than abstract certainty values, and (4) 
ability to handle different kinds of relationships between premises, including 
transitivity and multiple evidence. Below, we briefly characterize some 
available reasoning schemes from the perspective of these desired properties.

Probabilistic reasoning

The most common way to solve the problem described above is to interpret 
the proportions of areas as probabilities, and apply some probability 
propagation technique (like Bayesian combination of beliefs). Some of the 
problems associated with this approach are: (1) large size of a completely 
specified model where knowledge of each category is conditioned on knowledge 
of all other categories, and all of their combinations. This size is typically 
lowered by using the conditional independence assumption, which is often not 
true for geographic data; (2) transitivity as a fundamental element of material- 
implication interpretation, is shown to be wrong in AI systems based on 
Bayesian propagation (Pearl, 1988), and (3) arbitrary assignment of prior 
probabilities. The critical question is whether the very interpretation of 
empirical relative frequencies and areal proportions as probabilities is justified. 
Following Kolmogorov (1951), for example, we can consider probabilities as 
both purely mathematical objects (first section of his famous "Foundations of 
the Theory of Probability", 1933), and empirical frequencies in von Mises's 
interpretation (second section of the same book). From this perspective, 
empirical objects should be treated as probabilities if they conform with the 
axiomatics of probability calculus. Practically, in order to make the transition to 
probability, it is necessary to specify a random process, and a homogeneous 
probability field None of these requirements are typically satisfied for common 
data layers in GIS.

Fuzzy reasoning

Fuzzy representation of map categories is useful for modeling boundary 
uncertainty (Burrough, 1989; Heuvelink and Burrough, 1993), and for 
processing multiple statements with uncertainty. However, fuzzy membership is 
different from certainty of statements which describe relations between 
categories as proportions of areas. Lack of empirical basis of membership
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grades, and axiomatic propagation of membership values, make fuzzy 
reasoning inadequate in the tasks of empirical analysis of complex queries to 
traditional map information. Converting proportions of areas into fuzzy 
membership grades would be another interpretational leap which is difficult to 
justify.

Determinacy logic

This approach, developed by Chesnokov (1984, 1990), focuses on 
processing empirical conditional frequencies without interpreting them as 
either probabilities or fuzzy membership grades. On the elementary level, 
Determinacy Analysis focuses on statements in the form "IF a THENb" called 
determinacy statements, or (a->b), and accompanied by values of statement 
accuracy (proportion of "b " in "a", Qil(a-^b) = P(BA)/P(A)), completeness 
(proportion of "a" in "b ", or C(a >b) = P(BA/P(A)\ and context (portion of 
the database for which the statement is examined). The main formal object of 
Determinacy Logic is determinacy syllogism, a statement connecting two 
determinacies, (a->b) and (b->c), to produce corollary (a-x). Its general 
analytic solution, for arbitrary lower and upper bounds on the definitions of 
categories and relations, has been obtained by Chesnokov (1990). The 
advantages of determinacy reasoning over other reasoning systems when 
applied to data in GIS, include: (1) material-implication interpretation of 
certainty measures (i.e., the resulting measures of uncertainty can be expressed 
in proportions of areas rather than in abstract units); (2) a computational 
solution for bounds propagation is provided, versus axiomatic approaches of 
other logical systems; (3) the conditional independence assumption of Bayesian 
beliefs propagation is not employed; (4) transitivity syllogisms are allowed, by 
contrast to AI systems based on Bayesian schemes; (5) qualitative reasoning 
about topological spatial relations can be considered as its general case.

Within the determinacy approach, responding to complex queries can 
proceed as follows (figure 1). Once the user specifies a spatial query about 
relationship (a-x) in context k, the system searches a previously accumulated 
meta-database of relationships between "a", "c", and categories from other 
layers, for such intermediate category "b ", that combination of (a-*b) and 
(b-*c) produces the most accurate and narrow estimate of (a-*c). If the 
estimated accuracy of the query is not acceptable, the actual polygon overlay 
has to be performed, with a direct computation of query characteristics. The 
results of this overlay are appended to the database of relationships, to be used 
in estimating future queries.

Each record in the database of relationships between layers represents a 
description of a determinacy statement; its structure can be as follows: (1) 
context of determinacy k (locational, incidence, neighborhood, directional);
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Fig. 1. Query implementation in a system based on determinacy logic

(2) the "argument" of determinacy (a->b), "a" (a single category, or a 
combination of categories); (3) the "function" of determinacy (a-^b), "b " (a 
single category, or a combination of categories); (4) P(a) - proportion of the 
study area covered by category, or combination of categories, "a", in the 
context k defined in the first field; (5) P(b) - - proportion of the study area 
covered by category, or combination of categories, "b ", in the same context; (6) 
accuracy of determinacy (a-*b) = Area (a & b)/Area(a)\ (7) completeness of 
determinacy (a->b) = Area (a & b)/Area(b). The information in this table can 
accumulate in the self-learning process during regular work with the dataset. 
Besides, the dataset can be left in a "training" regime, when the program builds 
a meta-database for given contexts, or for certain layers. Eventually, sufficient 
information accumulates and starts to produce reasonable accuracies of 
corollary statements.

Currently, this approach is implemented as a loosely coupled set of 
programs. Arc/Info is used to formulate and process queries, then the database 
is dumped into a text file and processed with the LOGIC module of the 
determinacy analysis package. This module is used in examples and 
computations below.

Figure 2 shows a computational example of this scheme with the data from 
the Klamath Province Vegetation Mapping Pilot Project (Final Report..., 
1994). The chain producing the most narrow response to a query about the
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combination of "a" ("dense canopy closure on the coverage with 5 acre 
minimum resolution") and "c "("Douglas Fir on the 40-acre coverage"), 
includes "dense canopy closure on the 40-acre coverage" as the intermediate 
category "b ". This reasoning produces the area estimate in overlay between "a" 
and "c" as between 2.881 * 106 and 3.566 * 106 acres (the actual area is 3.235* 
106 acres), i.e. the accuracy is within 10%.

DENSE canopy
closure 
on the 5-acre cov.
P(A)=0-77

P(B)=037 

Q Qfi DENSE canopy closure

/ P(B>=0 79

/ 092' ' ^ EVEN vegetation structure
\ on the 5-acre coverage 
\ P(B)=0.86

\ ^ MULTI-LAYERED -

0.45 

0.42 \

0.84 /
vegetation on the 5-acre coverage 
P(B>=005

0-53^ MEDIUM tree size
on the 5-acre coverage 
P(B)=050

DOUGLAS FIR
on the 40-acre coverage
P(C)=0.40

Relation

1
2
3
4
5

Lower 
bound
0.343
0.403
0.272
0.219
0.234

Upper 
bound
0.516
0.499
0.516
0.516
0.516

Range

0.173
0.096
0.244
0.297
0.282

Fig. 2. An example of reasoning-based estimate of query results (source of data: 
Klamath Province Vegetation Mapping Pilot Project, 1994). The value on each 
arrow is accuracy of corresponding determinacy.

REFORMULATION OF A QUERY

Now suppose that the accuracy of the estimate obtained above is below the 
user's expectations, i.e. the area under the combination of categories "a" and 
"c" is not in the interval specified by inequalities (4). The task then is to inform 
the user about those elements of the query that need reformulation in order to 
approach the desired accuracy in an optimal fashion.
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For the simplest case, the graphic idea of a solution is shown in Figure 3. 
In this case, where C0i = (o; 0, = 1; r12 = r23 = rn = /£ Sj2 = s23 =s13 =l, the 
lower bound on accuracy v of the corollary statement (Chesnokov, 1984) is:

v = maxi
0

2 -I /CD (5)

(O

Fig. 3. The solution space for the 
simplest case is composed of two 
volumes, depending on the context 
(first), and on both context and the 
premises (second).

redefine the categories involved in the 
or its width, or both), and vice versa.

The solution space is formed by 
two volumes, the first one depending 
on CD only, and the second depending 
on both co and (i. For any point 
specified in coordinates (co, jj, v) 
beyond these two volumes, it is 
possible to determine its distance to 

each of the volumes. It is assumed 
that following the shortest distance to 
the area where the syllogism is true, 
translates into suggested changes to 
parameters of the query. For example, 
if the point in question is closer to the 
first volume, it makes sense to 

query (either the context of the category,

Below, we show the results of numeric experiments with the general 
solution of determinacy syllogism, for arbitrary coit 6,, rv, and sy. The purpose 
of the experiments is to demonstrate which parameters (absolute values of the 
context and the accuracy of the premises, and their certainty intervals) need 
priority improvement to make the syllogism correct. The results are shown in 
Figure 4. The contour plot on the left panel shows the dependency of the lower 
accuracy bound of the corollary statement upon the context co (horizontal 
scale), and upon the accuracy of the premises ju (vertical scale) in a query, with 
1%-wide uncertainty of the context. For the most part, the increase in the 
context values does not lead to any gain in accuracy until co reaches 0.5 for 
premises with accuracy 0.5 and higher. The accuracy of the query rapidly 
increases when the values approach co = 0.5 while the accuracy of the premises 
remains low. In this case, which corresponds to situations close to maximum 
avoidance between categories "a" and "c", the emphasis on narrowing the 
context would lead to dramatic increase in accuracy of the query. If the values 
of the context are fairly low (0.1 - 0.5), and accuracy of the found premises is 
above 0.6, only further increase in the accuracy of premises would pay off with 
higher accuracy of the composite query.

113



Oj6 
/

QA

0.2

0

£0.4 Determinacy 
does not exist 

fcO.7

0 OJ2 0.4 tj6 OjB 1 
(O

0 0.05 0.1 0.15 0.2
certainty of context (0—GJ)/2

Fig. 4. Dependency of query accuracy on its components: on the context 
of the categories (specified to 1% certainty) and accuracy of the 
premises (left panel); on the width of certainty interval for different 
absolute values of the context and accuracy of premises (right panel).

The second plot demonstrates the dependence of the query accuracy on the 
width of uncertainty interval for the context. With the decrease in the 
uncertainty of the context, from 0.2 to 0.05 and below, the query certainty is 
gradually increasing, though the pattern of this increase depends on the 
accuracy of the premises and, even more so, on the areal proportion of the 
categories (solid lines correspond with a> = 0.8, dashed lines - with co = 0.5, 
and dotted lines with co - 0.2). Significant increase in query accuracy with the 
decrease of context uncertainty is achieved only for small absolute values of the 
context. Other experiments showed that the increase in premises certainty 
results in a modest increase of query accuracy until to = 0.5, while with CD > 0.5 
the result does not depend on how accurately the premises are specified. 
Strategies aimed at narrowing the uncertainty of the premises would be most 
successful if their absolute values are relatively low.

CONCLUSION

This work investigated the determinacy approach to formal modeling and 
resolving complex spatial queries, in which both elementary categories, and 
relations between them, can be specified with a certain accuracy. We showed 
that by accumulating the descriptions of relations between map layers as simple 
areal proportions, and identifying appropriate reasoning chains, it is possible to 
arrive at acceptable query accuracy without performing costly overlays. Query 
accuracy depends both upon uncertainty associated with categories and 
relations, and upon the absolute values of accuracy of the relations and the
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context. Thus, such formal modeling can inform the user what elements of a 
query need re-specification should the user require a higher accuracy.
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