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ABSTRACT:

Topographic maps are generated using Digital Terrain Models (DTMs), which provide the basis for 
numerical solutions of several important problems, such as the determination of contour lines of 
the terrain. Because DTMs do not address the question of the shape of the region worked with, in 
certain cases they may represent the region imprecisely. This work is concerned with the contour 
problem in the generation of topographic maps. By contour we mean a simple polygon that bounds 
a region containing all points gathered in the terrain. This paper presents a technique to determine 
a contour using geometric characteristics of the terrain data.

1 INTRODUCTION

Problems involving terrains are well documented in the literature (Van Kreveld, 1996). Work in 
this area, besides being useful for society, is especially interesting for computational geometry.

Several mathematical models have been used to represent the terrain numerically, but they usu 
ally do not take into account the shape of the region worked with. In general, algorithms for terrain 
modeling consider the convex hull (Preparata and Shamos, 1985) of the set of points In doing so, 
when the region of interest is not convex, they can induce wrong results. Although this question has 
been subject of intense research in computer science, in this scenario it remains without a suitable 
solution, to the best of the author's knowledge. The work presented in the following sections is a 
contribution in this direction.

This work address the contour problem in the generation of topographic maps. By contour we 
mean the polygonal curve, not necessarily convex, that bounds the polygonal region containing all 
points gathered in the terrain. We will focus the contour problem in the contour lines layer of 
topographic maps.

We begin by briefly presenting aspects related to the digital generation of topographic maps. 
Then, we describe a solution to the following problem' given n points pi,p2, • • -,Pn of the plane, 
compute the boundary polygon which fits the region containing these points better than the convex 
frontier. The aim is to minimize the imprecision in the representation of a terrain.

This paper is organized as follows. The next section discusses the Digital Terrain Models and the 
contour problem. Section 3 presents the methodology used to generate topographic maps considering 
contour determination. Section 4 describes a contour-generating algorithm. The following section 
makes some practical considerations about the implementation and shows one result obtained. Fi 
nally, concluding remarks are presented in the last section.
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2 DIGITAL TERRAIN MODELS AND THE CONTOUR PROBLEM

For generation of digital topographic maps, a mathematical model describing the terrain is re 
quired, and this description must be as close as possible to the terrain's real aspect. In general, a 
Digital Terrain Model (DTM) is composed by points sampled from the region under study.

Digital Terrain Models are classified according to the mathematical model used. Interpolation 
models (network of points/tesselations) are usually preferred to approximation models (analytical 
equations) (Sakude, 1992). Based on the spatial distribution of the sampled points, the models 
can have a regular distribution (square, rectangular and triangular tesselations) or an irregular one. 
Despite their frequent use, regular tesselations do not yield a good representation of the variations 
of the terrain, because they are created artificially (Buys et alii, 1991). Tesselations of irregular dis 
tributions based on the original points gathered in the terrain can define more precisely the region in 
study. Because the triangle is the minimum polygon, irregular tesselations are usually triangulations.

There are many possible different triangulations for the same point set. Intuitively, a "good" 
triangulation for the propose of terrain modeling is the one in which triangles are as equiangular as 
possible. In other words, it is desirable to avoid long and thin triangles (De Floriani, 1987; Falcidieno 
and Spagnuolo, 1991; Buys et alii, 1991).

The Delaunay triangulation, a fundamental construction in Computational Geometry, is as 
equiangular as possible, and for this reason it is a standard tool in terrain description (Preparata and 
Shamos, 1985). Besides its very good capability of terrain modeling, it also saves on computation 
time with the choice of a suitable data structure. However, the domain of the Delaunay triangula 
tion is the convex hull of the point set, and in certain situations the region of interest is not convex. 
Thus, another kind of frontier is necessary. In the case of sinuous regions like roads, for instance, 
this is a serious problem, because computations are extrapolated to places not known in the original 
region. In practice, this can invalidate the resulting topographic maps.

In this context, it is necessary to determine a contour to points set, minimizing extrapolation 
errors. We present a mechanism that minimizes this type of problem, while using the Delaunay 
triangulation. In the next sections we describe an algorithm which dynamically modifies the original 
convex hull to address this situation.

3 METHODOLOGY

Using the coordinates x, y and z of the points gathered in the terrain, the adopted method to 
the generation of topographic maps, considering their contours, consists in five fundamental steps 
(Figure 1).

1. Partition of the region into triangles, using the Delaunay triangulation of the sampled points.
2. Determination of a polygon smaller than the convex hull contouring the point set.
3. Elimination of the Delaunay triangles outside the new contour.
4. Computation of the points that will constitute the contour lines for the representation of the 

relief.
5. Design of the topographic map: B-Spline interpolation of the constituting points of the con 

tour lines and insertion of information of other required layers.

A number of well-known algorithms exist to implement each of the steps above, except for step 
2, in which we will work.
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Figure T The applied methodology.

4 THE CONTOUR-GENERATING ALGORITHM

4.1 Definitions

For a given finite set of points of the plane, we wish to determine a simple polygon, with a smaller 
area than the convex hull, which bounds the polygonal region containing the points.

A polygon is defined as an ordered sequence of n (n > 3) points in the plane, p\,pi,. ,pn , and 
the edges P1P2,P?P3, • • -,P(n-i)Pn an<3 pnPi formed by them A simple polygon is a polygon with 
the restriction that non-consecutive edges do not intersect (Shermer, 1992) The convex hull of the 
point set defines the convex polygonal region with the smallest area that contains the points.

4.2 Description of the algorithm

The algorithm determines the contour departing from the known convex hull of the points. The 
idea is to dynamically modify the convex frontier, looking for candidate points to constitute the new 
edges of the searched contour. A circle is used to determine the candidate points to be analysed.

Beginning at one of the edges of,the convex hull, a circle having this edge as diameter is drawn. 
The points of the set that lie within this circle are the candidate points. A candidate edge for the 
new contour is obtained by joining the candidate point closest to one of the two vertices of the edge 
under consideration to that vertex to which it is closest. To verify whether this is an acceptable 
edge, we form a triangle with the two vertices that defined the circle and the candidate contour 
point. Should the triangle so formed not contain any other point, the chosen point is accepted and 
the candidate edge will form part of the final polygon sought. In this way, the edge which was being 
worked with can be discarded and replaced by two new ones, reducing the area delimited by the 
contour.

399



This process is repeated recursively to one of the generated edges until the circle drawn contains 
no other points In this case, the edge is kept and the process goes on to the next edge of the convex 
hull. On completion of the process, the contour sought is produced. The convex polygon may be 
processed in a clockwise or anti-clockwise direction. The direction in which the polygon is processed 
affects the shape of the final contour.

A more formal description of the contour-generating algorithm is:

1. Let ci,C2,...,cn be the vertices of the determined convex hull, whose edges are ordered as 
ciC2, 0203,..., cn c\. The coordinates of the vertices GI, c2 ,.. ,cn are (xi, y\), (x 2 ,2/2), • • •, (xn , J/n) 
respectively.

2. Each of the edges of the convex hull is worked on separately. To start the algorithm, one vertex 
of the convex hull is chosen as GI (for example, that vertex with the smallest y coordinate value) 
and a direction (clockwise or anti-clockwise) is chosen for proceeding the algorithm Starting 
from the edge c\c-z, for example in the anti-clockwise direction, the circle C is determined 
whose diameter is given by the length of the edge being worked with and whose center lies at 
the mid-point of this edge.

3. The circle C will establish a region for analysis equivalent to a half-circle in which may lie 
points which will determine reentrances, denning edges different from the previous one. Then 
it is determined which points (x, y) lie within C.

4. Considering the points inside C, it is determined the closest one, called pt, to one of the 
extremities c\ or c%:

(a) The candidate edge is formed by pt and the vertex nearest to pt .
(b) It is determined whether points exist within the triangle formed by GI, 02 and pt .
(c) Should any point lie within Cic2pj, the point pt is eliminated from the analysis and the 

candidate edge is not accepted. The next point meeting the condition set in item 4 is 
then identified

(d) Should cicipt not contain any other point in its interior, pt will form part of the solution 
polygon, defining an edge with the vertex to which it is nearest, GI or c-i.

5. A new circle C is drawn, with diameter equal to the edge formed by pt and the anterior vertex 
which it is not nearest.

6. Steps 4 and 5 are repeated until no point lies within the circle, which means that the edge 
that defined the circle, in the context in question, can not be further reduced.

Figure 3 illustrates the working of the contour-generating algorithm applied to the edge c\ci of 
the convex hull of the set of points m Figure 2.

c i 

Figure 2. The convex hull of a finite set of n points.
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Figure 3: Contour generating for the edge c\c?, of the convex hull.
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4 PRACTICAL CONSIDERATIONS

The described algorithm was coded as a module in a system designed to generate topographic 
maps m engineering projects related to roads With this, it was possible to do tests with real data 
and a more realistic model. It was used in the generation of topographic maps in the project of du 
plication of the Brazilian interstate road BR-381 between the states of Sao Paulo and Minas Gerais 
Figure 4 shows the contour lines generated using the described method with contour determination 
for a topographic map from this project

The system was implemented in C and the compiler used was the Gnu C. It can work in DOS and 
Unix The algorithm to implement the Delaunay triangulation was based on the divide-and-conquer 
approach (Lee and Schachter, 1980), using the winged-edge data structure (Baumgart, 1975)

Figure 4. An example of contour determination.

5 CONCLUDING REMARKS

Many applications in Geographic Information Systems and other areas, as computer graphics 
and robotics, require a polygonal form closer to the region of points being dealt with, that is, they 
require that a non-convex contour of the points be generated In order to meet the needs of such 
applications and minimize imprecision in representation of the set of points, this algorithm can be 
used In most cases, the described method proved to be appropriate, finding a smaller polygon than 
the convex one. It also presented a good tradeoff between the quality of the solution and time, being 
able to solve complex instances on a PC compatible microcomputer (Avelar, 1994).

As the direction in which the polygon is processed affects the shape of the final contour, it can 
be considered that there is an alternative solution which can be compared with the first one, chosing 
the more convenient contour to the worked region.

This solution is not, in general, the optimal one, because of the very strong convexity hypothesis. 
The optimality criteria depends on each particular application Of course, if the polygonal region is 
convex, the convex hull is the right answer. But, in general, this is not true, as illustrated in Figure 
3. The new shape has vertices and edges that do not belong necessarily to the original polygon
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