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ABSTRACT

During the past year researchers at the U.S. Geological Survey have been 
using historical maps and digital data for a 168-km x 220-km area of the 
Baltimore-AVashington region to produce a dynamic database that shows 
growth of the transportation system and built-up area for 270-meter grid cells 
for several years between 1792 and 1992. This paper presents results from the 
development of a Mathematica package that spatially generalizes and 
temporally interpolates these data to produce a smoothly varying urban intensity 
surface that shows important features of the 200-year urban process. The 
boxcount fractal dimension of a power-2 grid pyramid was used to determine 
the most appropriate level of spatial generalization. Temporal interpolation was 
then used to predict urban intensity for 4320-m cells for 10-year periods from 
1800 to 1990. These estimations were spatially interpolated to produce a 1080- 
m grid field that is animated as a surface and as an isopleth (contour) map (see 
USGS 1997 for the Internet address of the animation). This technique can be 
used to experiment with future growth scenarios for the region, to map other 
kinds of land cover change, and even to visualize quite different spatial 
processes, such as habitat fragmentation due to climate change.

In 1994 a team of U.S. Geological Survey (USGS) and academic 
researchers produced an animation of the growth of the San 
Francisco/Sacramento region using a temporal database extracted from 
historical maps, USGS topographic maps, digital data, and Landsat imagery 
(Gaydos and Acevedo 1995). Publicly televised videotapes of this work 
received sufficient attention to support a larger team that had planned to work 
on the development the Boston/Washington megalopolis (Gottmann 1990) (The

*Any use of trade, product, or firm names is for descriptive purposes only 
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current research involves staff from USGS, National Air and Space 
Administration, the Smithsonian Institution, and University of Maryland 
Baltimore County.) Resource and time constraints, however, limited efforts to 
the southern part of the region shown in figure 1 (Crawford-Tilley et al 1996, 
Clark et al. 1996). The animation of urbanization in this region is based on a 
5122-cell grid data structure that represents whether or not a given 270-meter 
cell is built-up in each of 8 base years (figure 2). This raster was interpolated for 
intervening years, but still represents a binary condition for each of the grid 
cells. Throughout this work there was interest in how we might analyze the 
intensity of development, perhaps by sacrificing spatial resolution for temporal 
and measurement resolution (table 1). Because the urban phenomenon 
(cartographic feature) is self-organized, complex, and probably also critical 
(Bak 1996), it is reasonable to suppose that scaling properties would assist in 
this transformation (Quattrochi and Goodchild 1997).

Figure 1. The study area in the Boston-Washington 
megalopolis.

Table 1. Dimensions of the data

DIMENSION

SPACE X 

TIME* 
FEATURE/

Bait/Wash 

1772-1992 

Land cover

EXTENT
138km 

200 years 
Built-up

RESOLUTION / 
DATA ANIMATION
270-meter grid 1080-meter 

-25 years 10 years 

[0, 1] binary [0, 256]
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Consider therefore a location in space x at a given time t and spatial 
resolution level / for which a measurement / is made; call this measurement 
fl(xt). For example, in the present case we are interested in whether or not a 
given grid cell of a certain size is built-up (covered by buildings, has a dense 
road network, etc.). In this simplest case we have a binary function fi(xf) = {1 if 
Xf is built-up, 0 otherwise}. Assume at the finest scale level / = 0 that this 
measurement is reliable but what can be said of the phenomenon at other 
spatial scales? Table 2 shows how a 10-level power-2 image pyramid can be 
built upon the 0-level data in the present case. One (not necessarily obvious) 
way to examine data at coarser scales is simply fboxi+j(xt) = {0 if a\\ff(xf) = 0, 1 
otherwise}, i.e. the value of a higher-level / + 1 cell will be "on" if any of the 
lower-level / cells is on. This is called a box-covering algorithm because a high- 
level box is needed to cover 1 or more lower-level boxes (De Cola 1997). 
Consider the 0-level image of figure 2, which contains 41,183 built-up cells, as 
reported in the last row of table 3, which presents the box counts for each level 
and each of the raw data years The table shows at the next highest level / = 1 
that 14,892 cells are necessary to cover these cells. This number is 45% larger 
than the (41,183 / 4 =) 10,296 level-1 cells that would be necessary if all the 
level-0 cells were spatially compact. The excess number is due to spatial 
complexity of the urban phenomenon, which has fractal dimension D< 2, where 
D = 2 would be the dimension of say a perfect disk (for a comprehensive 
discussion of the fractal nature of cities see Batty 1995).

1992

Figure 2. Level 0 grid for 1992.
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Table 2. Characteristics of the image pyramid

LEVEL
9

8

7

6

5

4

3

2

1

0

CELLS 
PER ROW

1

2

4

8

16

32

64

128

256

512

CELL SIZE 
(meters)
138,240

69,120

34, 560

17,280

8,640

4,320

2, 160

1,080

540

270

MAXIMUM 
VALUE
262,144
65,536
16,384

4,096

1,024
256
64

16

4

1

EXAMPLE
Size of the study area

Interpolation level

Animation

BaltWash Pixel

The 0-level row of the table 3 illustrates that for at least 200 years there has 
been some urbanization in the region (A fit of a linear model to the 0-level data 
yields ln[/o(*/)] = - 40 + 0.026 t which predicts a ^-intercept at about the year 
1575). The table cells that are shaded represent completely covered pyramid 
levels, showing how in later years the windows rapidly become saturated. This 
happens at / = 8 in 1792 and by level 6 in 1972 and later. One way to avoid this 
saturation is to expand the extent of the study area, and this indeed is underway. 
But another problem with this analysis is that traditional maps (1772-1850) 
produced to widely varying cartographic styles, are being analyzed along with 
carefully standardized USGS maps (1900-1953) and satellite imagery (1972- 
1992). Nevertheless and this is another advantage of multiscale analysis at 
coarser scales the difference among these disparate data sources diminishes.

1.0
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-0.5 --

Figure 3. Fractal dimension estimation 1953.
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Table 3. Box Counts for each year and level

LEVEL

9
8
7
6
5
4
3
2
1
0

1792
1

4
:,„,,,,,, ^ ̂

31
40
52
59
83

142
286

1850
1

4
16
42
75
99

126
197
412

1069

1900
1

4
16
62

190
360
539
909

1790
4431

1925
1

4
16
63

218
457
763
1402
2897
7089

1953
1

4
16
63 1

230 '
588

1216
2560
5956

15463

1972

1
4

16
'•-^••••-•- - •v: ii': : :-:?;: : . vj^.^'i^i 
;^::;;'i:;^!'^i::;^;;i;^;;i;;i;-!;i;:;^ :;:&s5;;___,

750
1894
4741

12296
33092

1982

1
4

16
i;:; 64

243
770

1985
5118

13564
36742

1992
i;
4;

•ill
fl
245
784

2076
5448

14892
41183

The box counts in table 3 can be used to compute the fractal dimension of 
the built-up area for each year. For example, figure 3 shows the regression line 
estimating Iog2[//(^ l953)] = 0.89 - 1.51 /for 1953, which yields a fractal 
dimension of Z) 1953 =1.51 and an R2 = .99 (Falconer 1990). The box counts for 
each level and each year are used to compute the 8 values of Df, the fractal 
dimensions for each of the data years, shown in figure 4. There is a continuing 
debate in urban studies about how regions develop. One school argues that so- 
called "primate" metropolitan regions continue to grow from a point to a 
centralized but spreading metropolitan pole. But another school envisions a 
dispersed metropolis that may eventually completely disperse, returning to a 
collection of isolated points (Alonso 1980, De Cola 1985). Figure 3 certainly 
shows the early stages of this process; we can only speculate about whether Df 
will eventually decline, although its rate of increase seems to be leveling off. 
This scenario suggests the possibility of future dispersion in which the urban 
complex not only breaks up into dispersed centers but even perhaps returns to 
the low-dimension post-industrial "village" system similar to that of the 18th 
century.
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Figure 4. Boxcount fractal dimensions 1792-1992.
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Each of the fractal dimensions Df for the data years is a linear estimate of 
the behavior of the box counts over the scale levels. Yet the fit is not perfect, as 
figure 3 shows for 1953; there is a similar pattern of parabolic residuals among 
all the years. In general the middle scale levels / = 4 and 5 have higher residuals, 
suggesting that at about the 6-km scale the urban area has its most compact 
representation. But the box count aggregation algorithm, which yields 0/1 
values, cannot be used to generalize the data. Another way to aggregate grid 
data is to sum lower-level values using fsumi^(xf) = £//(*?) where the 
aggregation is over subwindows of 4 cells each. The algorithm fsum is like a 
mean filter that aggregates subregions into a higher-level region whose value is 
the average of lower-level elements. The generalized animation is therefore 
based on the level-4 generalization, which gives for each of 32 2 = 1024 cells of 
size 4320-m an 8-bit dynamic range of [0, 256] (see table 2). Figure 5 shows 
what happens to the 1992 data for 5 successive levels of aggregation. The 
lower-level images allow us to focus on the individual features of the region, 
while the higher-level images highlight the unified nature of the BaltWash 
metropolis.

Figure 5. Sum pyramid for 1992.

Let 1 = 4 and consider the central-cell x = (col, row) = (16, 16) for each of 
the t = 1,...,8 data years. The values offsum4(xt) for this cell are shown in figure 
6 and (as did D( in figure 4) these points suggest a logistic curve, which can be 
estimated with an interpolation (prediction) function fsumP that predicts/sw/w for 
any year and not just the 8 data years. Figure 6 shows {fsumP4(xf)'. x = (16,16), t 
e [1750 to 2000]}. When this function is used at level-4 we only get 322 
predictions. This is how we obtain a gain in feature resolution (from [0,1] data 
to [0, 256] values), and a gain in temporal resolution (from 8 irregularly spaced
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measurements to 20 decadal interpolations), by sacrificing a loss in spatial 
resolution (from 270-m to 4321-m cells).

Central Cell Interpolation

250

200
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50

CELL COUNTS

1800 1850 1900 1950 2000

Figure 6. Actual and interpolated values for cell (16,16).

The unique temporal interpolation functions for each of the (322 =) 1024 
level-4 cells can be arrayed into a Mathematica table that provides a grid of 
predictions for any year in the study period. A sample for 1990 is shown in 
figure 7, taken from the animation (USGS 1997). The data have been spatially 
linearly interpolated to level 1 (540 meters) to provide a smooth surface for 
visualization (for a alternative approaches to the interpolation problem see 
Tobler 1979 and Bracken and Martin 1989). The image, which is one frame of a 
20-period animation, illustrates the polycentric nature of the 
Baltimore/Washington urban process. The animation shows reveals a self- 
organizing system that has been growing along the Northeast U.S. transportation 
corridor. During the past 200 years urban leadership has shifted between the two 
centers at least three times, and since World War II there has arisen a 
polycentric post-industrial system whose fractal dimension has been growing 
logistically and may be leveling off.

Another way to visualize the growth process is isopleths or contours, which 
emphasize the geographic location of urbanization, figure 8 shows not only the 
2 urban centers in 1992, but such other features as the edge cities of Frederick, 
Annapolis, and La Plata, MD as well as Potomac Mills, VA. The picture also 
highlights the linear nature of the whole system, oriented along Interstate 95, 
which continues from Boston to Miami.
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Figure 7. 3-d plot of estimated built-up areas for 1990.

Naturally we are interested in the future of the region, and the analysis 
suggests approaches. (A logistic curve fitted to the 0-level data in table 2 yields 
fo(xt) = 55800 [1 + Exp(2.09 - 0.0469(f - 1923))]" 1 , which has a maximum 
growth rate of 2.1% in 1923 (Haggett, Cliff and Frey 1977:238)). This 
expression has an asymptotic value of 55,800 pixels, which is only about 20% 
of the window at level-0.

1990

Figure 8. Contour plot of estimated built-up areas 1990.
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The analysis of the last 3 data years (1972, 1982, 1992) was based on 
Landsat imagery, and the growth both of the fractal dimension Df (figure 4) as 
well as of one of the generalized cells fsum4(x{) (figure 6) show a linear growth 
trend. The growth rate for 1972-1992 is mapped in figure 9; darker shades show 
faster growth up to 2% per year. Recent metropolitan development displays 
the doughnut patterns typical of U.S. cities (Whyte 1968). The Baltimore 
growth ring is broken by Patapsco Bay and the Washington ring by a Potomac 
River "greenbelt" that would clearly be the fastest growing edge city were the 
river bridged from Sugarland Run VA to Seneca Creek MD. It is interesting 
how strongly topography still influences the development of this region.

Figure 9. Contour plot of growth rates, 1972-1992.

The research presented here is part of a 118-year history of the use of 
USGS core skills in the physical, and more recently human and biological 
sciences to understand human-induced land transformations. These efforts 
exhibit not only institutional expertise but also rich historical databases that can 
be used to understand spatial processes, to forecast change, and help to shape 
future policy. The dimensions highlighted in table 1 suggest new directions for 
this research. First, the analysis can profit from a broader spatial view, 
expanding to Megalopolitan and even world urbanization. Second temporal 
extrapolation and deeper "data mining" will help planners envision the future of 
the region as well as its distant past. Third, more features (shoreline, land 
cover, climate) need to be studied and animated. A central theoretical and policy
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problem highlighted by this work therefore is the development of rigorous, 
informative, and visually effective transformations of data along and among 
spatial, temporal, and phenomenological scales.
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