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INTRODUCTION
 

The basic difference between the approach taken in this paper and those in 

other studies of the line is that it is postulated that a line has always a certain 

thickness.
 

The concept of a line having an areal extent is not too obvious to the mathema 

tician who usually thinks of the line as a locus with zero width. The cartographer

can, however, feel comfortable with it; in fact, the basis of many manual line gen

eralizations is the idea of widening the line with decreasing scale. Since the 

curvature of a line has to be larger than the width of its generalized equivalent in 

order that it does not disappear within the black area of the line, with decreasing

scale, a line a) occupies a larger area, b) the curvature of the line decreases and 

c) it can be defined by less points. The reduction of points for the definition of 

the line can also be called an increase of abstraction in the definition of the line.
 

The presented theory can be associated with an alternative explanation. A 

line is a combination of a number of frequencies, each of which can be represented

by certain band-widths. The break-up of a line into series of bands, therefore,

could be equated with the stepwise removal of the high frequencies from the line.
 

Before going on, however, a few terms should be explained in detail. A line is 

here defined as a sequence of connected points. A connection between two points in 

a sequence of points is called a segment. The extent of a line is its number of 

segments. We thus exclude from this discussion those lines which are defined by one 

or several mathematical functions since their characteristics and problems are quite

different from the discretely identified lines.
 

To the cartographer, the use of the term "line" for what we intend to discuss 

might be quite obvious. However, other terms such as chain (Chrisman, 197^)> chord 

(O'Callaghan, 1975)> segment, arbitrary line (H. Freeman, 1975)5 random line, snake
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(Clement, 197*0> etc., have all been used. Most of them, however, can lead to mis 

understanding if transferred to another discipline. Chain is also used for a type

of line encoding (Freeman, 1961); chord is a straight line in photogrammetry, as is 

segment in several disciplines. The term "arbitrary line" could be misleading in 

cartography since a cartographic line is never arbitrary, with at most arbitrary

deviations from a straight or smoothly curved line, etc. Furthermore, some of the 

definitions like chain (Chrisman, 197*0? and snake (Clement, 197*0, imply additional 

topological information. Therefore, it might be safer to use the general term 

"line."
 

In computer graphics, the number of line segments per line is usually rela 

tively small, it is, however, frequently very large in cartography. Lines with 

more than 1,000 points are not rare in some storage systems (Schmidt, 1969). It is 

therefore logical that the interest to develop better algorithms for line manipula

tion is very great in cartography. This paper is a contribution to these efforts 

through an attempt to formalize some characteristics of lines, after a short dis 

cussion of the most frequent encoding systems.
 

The most straight-forward form of discrete encoding of lines is by the abso 

lute coordinates (Figure 1a) of the points along the line. The order of the point

in the array of coordinates gives the sequence of points. If the lines are discon 

tinuous, their connectedness can be given by a continuancy label (the structure of 

many plotting commands) or a dummy point which indicates the end of one line and the 

start of the next.
 

For the incremental mode, an absolute start is given for every line, but the 

subsequent points are encoded in terms of their distance to the previous points

(Figure 1b). This approach sometimes reduces storage requirements since the incre 

ments can be given by shorter storage units (e.g., 16 bits); some computations can 

be faster, like the computation of the length of a line — but for most line mani 

pulations the absolute coordinates of the points have to be computed.
 

The third very common encoding mode is called "chain encoding" (Freeman, 1961,

Freeman and Shapiro, 1975). A line is broken into straight portions of equal change

in the x- and y- direction. This results in eight unique step directions which can 

be encoded in three bits (Figure 1c). Therefore, a byte of six bits can contain two 

steps. For bytes of eight bits, the first bit can be a continuation code and the 

other three are either step-indicators or continuation counters (Tomlinson, 197*0.
 

P4(3,6) P4(-3,3) 
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P2(4,l) P2(3,0) 
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There are other encoding systems (see for example, Pfaltz and Rosenfeld, 1967,

for skeleton encoding), but they usually have to be converted into absolute coordi 

nates for most computations.
 

Although the presented theory is implemented on the basis of the absolute 

coordinate scheme, it is unimportant which coordinate scheme the reader is used to. 

Indeed, certain computations are more efficient in some of the other schemes.
 

THE CONCEPT
 

A line of any extent can be defined by
 

1) A general direction and a band with
 
2) A width, and
 
3) Its length
 

Different ways of computing the general direction will be discussed later. At this 

time it can be said that the general direction of a line can be any direction; the 

reduction of a problem to a solution is however faster the closer the general di 

rection approaches the direction of the minimum bounding rectangle.
 

The band is the bounding rectangle, given a certain general direction (Figure

2). In other words, the sides and ends of the band are parallel, and perpendicular,

respectively, to the general direction, totally enclosing it. In set-theoretic 

notation this can be stated as follows:
 

P., (l)

i
 

Where L^ represents the total extent of the line, and the band of the total line
 
and P1 to Pn all the points of the line.
 

idth 

length 

2 

510 



A line of n points can be subdivided into up to n-1 sublines, each with its 

own characteristic band. At the highest degree of abstraction it is represented

by only one band, at the lowest degree it is represented by n bands. At the highest

degree of abstraction the band is generally the widest, at the lowest, the bands 

have a zero width. In other words, with decreasing degrees of abstraction, the area 

covered by the band decreases (Figure 3) although it can remain the same from one 

step to the next in exceptional cases.
 

k n
B1 >
 
U U U B?
i
1=1
 

Here, the upper subscript indicates the order of abstraction and, implicitly, the 

number of sub-bands.
 

(2) can be proven with one reservation. If one breaks up a subline at step i 

into two sublines at step i+1, the limiting case is that the two resulting bands 

have the same width and direction as the previous band in which case the combination 

of the two bands is identical to the original band. In all other cases the bands 

have to have a different direction and therefore leave some portion of the original

band unoccupied. Although the new bands can have portions outside the original

band, these portions are insignificant since they do not contain any sections of the 

line. The width of a band can actually get larger from one level to the next. 

These degenerate cases can be easily detected and circumvented in the implementation

of the theory by breaking the line up into sections if the width of the band is 

larger than a given portion of the length.
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According to (2) a line with n points has n levels of abstraction with a total 

of (n-1).n bands. It is the objective of the theory to keep the computation at any 


time on the highest level of abstraction that the particular problem allows. The 

critical issue of the theory is to find the highest level in any different type of 

problem. Some applications of this approach will be shown after a discussion of 

different types of bands.
 

THE TYPES OF BANDS
 

A multitude of bands can be constructed from a line. The right type depends

upon the frequency at which the characteristics of the band must be computed (the

higher the frequency the faster the computation has to be), the particular speed of 

convergence (the slower the problem converges the smaller the band has to be), and 

on the special characteristics of some encoding systems.
 

The band which can be computed most quickly is the bounding rectangle which is 

orthogonal to the coordinate system. One axis of the coordinate system is the di 

rection of the band and the extreme points in the direction of the other axis mark 

the width of the band. This method has been used for a long time to test situations 

like the potential intersection of two segments. The major advantage of this type

of band is its computational speed. Since all four sides have to be computed every

time, however, it is not always the fastest, because with other types one often has 

to compute only two sides.
 

For chain encoding (Freeman, 1961) and skeleton encoding (Pfaltz and Rosenfeld,

1967), a band at an angle of ^5 or 135 degrees can be of advantage. The eight steps

of the chain encoding can be converted into steps to the left or right of the ^5 

degree and the 135 degree directions with four counters keeping track of the maxima 

and minima. The wider margin will then give the length of the band and the smaller 

one its width. Similarly for skeleton encoding half the block-distance of a rhombus 

gives its extension in the four V? degree directions.
 

An easy compromise which the author has adopted for most of the implementations

of the theory is to link the start and the end of the line and take that as its 

general direction. The advantage of this approach is again speed. Its disadvantage

is that the band can become relatively large in cases where the line is closed or 

nearly closed.
 

A more involved approach which should bring better results is to find the 

principle axis of the point set. This method should produce a band which is fairly

close to the minimum band.
 

Freeman and Shapiro (1975) have shown that this minimum band can be produced

via the bounding convex polygon. The minimum band and the bounding convex polygon

have at least one side in common. The minimum band can therefore be constructed by

computing the convex polygon and then testing for each side whether the resulting

band is smallest.
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LINE GENERALIZATION
 

The theory of the cartographic line has initially been conceived as an after 

thought to the development of a algorithm for line generalization (Douglas and 

Peucker, 1973). This algorithm was developed at about the same time in at least 

two other papers (Ramer, 1972; Duda & Hart, 1973). Therefore, the execution of the 

idea has to be explained only as far as it relates to the theory (Figure U).
 

The line is partitioned into subsets until each subset has a band with a 

width less than a predetermined threshold. At each step, the partitioning process

is performed by selecting those points which touch the sides of the bands as starts 

and ends of the subsets.
 

The actual implementation of the concept is somewhat different (Douglas and 

Peucker, 1973). The general direction of the line is given by the link between its 

start and its end. For every point, the vertical distance from the link is computed

and the point with the maximum absolute value is retained as the new point which 

divides the line in two portions which are subsequently treated independently the 

same way (Figure 5).
 

threshold 
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LINE INTERSECTION
 

In cartography, lines can be very extended, i.e., contain many segments. ¥hen 

the computations involve two or more lines, the speed of traditional algorithms

usually develops in proportion to the product of the extents of the two lines. The 

intersection of two lines is a good example. The traditional approach tests every

segment of one line against every segment of the other line. There is usually a 

pretest involved which checks whether the bounding orthogonal rectangles of the two 

segments overlap and return with a "false" signal if they do not. But even this 

pretest can be rather time consuming if it has to be performed at a frequency of the 

product of the number of segments of the two lines.
 

The concept of the band of a line can be of substantial help. It is quite

obvious and easy to prove that the intersection(s) of two lines have to be located 

within the parallelogram which is built by the intersection of the two bands 

(Figure 6). Since for the second step only the portions of the lines within the 

parallelogram are used, the second pair of bands tend to be much smaller. There 

fore, the problem tends to converge to the pair of minimum bands (two single seg

ments) very quickly.
 

The practical implementation of the approach takes advantage of several simpli

fications characteristic of the problem. For one, only the width of the band has to 

be determined. Furthermore, the parallelogram is not derived but the process is
 



shortened to close to half by constructing the band of one line and then immediately

finding the portion of the other line within the first band, etc. (Figure 7). Also 

the process is stopped when the remaining lines consist of a total of six or less 

segments because the conversion process with less segments can run into complica

tions.
 

There are other precautions which take action if the procedure is in danger

of converging slowly or has reached a dead end loop. If the "raw length" of the 

line (the distance between start and end of the line) is less than three times its 

width, the line is partitioned into three portions which are processed one after 

the other.
 

The savings in computer time over the traditional method are impressive. For 

example, in the implemented algorithm, the multiple intersection of two lines with 

120 points each was achieved in 1/23 of the time of the traditional method. This 

would mean a ratio of less than 1/200 with 1,000 points per line.
 

LINE MATCHING
 

Another problem which can be solved very elegantly by the band approach, but 

can be a tedious problem without it, is the test whether or not two lines can be 

considered to be the independently coded representations of one line. Encoding

usually produces two types of factors which will cause two digital representa

tions of a line to differ:
 

• Encoding noise or digitizing errors
 

• Differences in the choice of the sampling points
 

A method which measures the degree of agreement of the two representations is 

therefore desirable.
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This can be done by the requirement that the bands of the two lines overlap at 

a certain percentage. If, therefore, the error variance of the digitizing is known, 

one can construct the bands with a width of twice that variance and then test 

whether or not the bands of one line overlap with the bands of the other at more 

than a given percentage.
 

POINT SORT AND POINT-IN-POLYGON SEARCH
 

The point-in-polygon problem has been attacked many times but to the author's 

knowledge, only three so far have developed algorithms which employ less than all 

the segments of the polygon for the test whether a point is inside or outside a 

polygon (Pfaltz and Rosenfeld, 1967; Loomis, 1968; James, et al., 1973).
 

The concept of the band can also be used for this purpose if the procedure has 

to be performed several times for one polygon, or if several points have to be 

sorted into a number of polygons.
 

If the data structure is based on "chains" (i.e., portions of lines with topo-

logical indicators, see Chrisman and Little, 197*0 > the chains can be used for the 

first case (one polygon — several points). Otherwise, any procedure can be used 

which partitions the polygon boundary into three or more portions. In the second 

case (several polygons — several points), a chain structure has to be produced if 

it is not available.
 

The basic idea of the sorting procedure is that the problem space can be 

divided into three parts — the area left of a band, the area right of it and the 

band itself. If one or more points fall into the band, the level of abstraction has 

to be lowered and bands of several subsections employed. The level is lowered until 

there are no points left within the bands.
 

It is quite clear how this approach can be used for the case of one polygon.

First, the boundary is broken down into three or more portions. The bands of 

these portions are constructed and the first point tested. If any of the bands 

have to be split, every new band is stored with its direction and dimensions (a

tree structure would serve the purpose best), to be used for later tests. Of 

course, this approach is economically feasible only if the number of points to be 

tested is relatively large.
 

In the case of several polygons and several points, the method can already be 

feasible with relatively few points because it avoids a loop in which a point has to 

be tested through all polygons. For this problem, the chains have to be grouped to 

lines which divide the problem space in a successive order. The first divide the 

total area, the next two the two areas left and right of the first, etc. When all 

chains have been used, all points are sorted in. In other words, the method uses a 

chain only once, no matter how many points are involved.
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DOUBLE LINE AND OTHER LINE SYMBOLS
 

It is hoped that the theory of the cartographic line will be useful to problems

yet to be discovered. It should also serve as a guideline for the solution of prob

lems which seem to be less connected with the theory. As an example, the construc 

tion of the double line and other line symbols will be discussed.
 

Several algorithms are known which construct double lines around a given line 

or one new line at a given distance from an input line. The procedures usually

simply reconstruct every point at the given vertical distance to one or both sides 

of the line. As Figure 8 shows, the procedure can get totally confused when very

small zig zag lines occur.
 

For a solution within the framework of the above concept one has to realize 

that these zig zag lines would disappear if the double line were filled black. It 

is therefore advisable to generalize the line with an offset of half the width of 

the double line before producing the double line. If the resulting corners are 

undesirable, additional points can be inserted between the points by a smoothing

routine.
 

Dashed lines pose similar problems. If the distance between two starts of 

dashes is called the unit distance, any segment shorter than that unit will cause 

problems for this type of line drawing. The line should therefore also be general

ized before the construction of the line symbol.
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CONCLUSION
 

This paper presents a theory of the cartographic line which has already re 

sulted in some algorithmic manipulations of lines and promises to serve for more 

applications. The theory, however, is also helpful for the understanding of the 

cartographic line itself. Only a slim attempt has been made to exploit this aspect

of the theory. It is hoped that others will pick up the idea and expand it as part

of a growing body of cartographic theory.
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